Systems Biology
FN1 and cancer-associated fibroblasts markers influence immune microenvironment in clear cell renal cell carcinoma
J Gene Med. 2023 Jun 26:e3556. doi: 10.1002/jgm.3556. Online ahead of print.
ABSTRACT
BACKGROUND: Altered tumor microenvironment (TME) is characterized in clear cell renal cell carcinoma (ccRCC) as a result of the heterogeneity observed in the TME. Modulations in TME have shown tumor metastasis promotion; hence, identifying TME-based biomarkers can be critical for theranostics application.
METHODS: Here, we performed an integrated systems biology approach utilizing differential gene expression, network metrics and clinical samples cohorts to prioritize the major deregulated genes and their associated pathways specific for metastasis.
RESULTS: The gene expression profiling of 140 ccRCC samples resulted in 3657 differentially expressed genes, from which a network of 1867 up-regulated genes were further computed using network metrics for screening hub-genes. The specific pathways of ccRCC entailed through functional enrichment analysis of the hub-gene clusters indicated the role of the identified hub-genes in the enriched pathways, further validating the functional significance of the hub-genes. The positive correlation of TME cells, namely cancer-associated fibroblasts (CAFs) and its biomarkers (FAP and S100A4) with FN1, signified the role of hub-gene signaling for promoting metastasis in ccRCC. Thereafter, comparative expression, differential methylation, genetic alteration and overall survival analysis were analyzed to validate the screened hub-genes.
CONCLUSIONS: The hub-genes were validated and prioritized by correlating with expression-based parameters, including histological grades, tumor, metastatic and pathological stages (based on median transcript per million; analysis of variance [ANOVA], P ≤ 0.05) from a clinically curated ccRCC dataset to further substantiate the translational benefits of the screened hub-genes as potential diagnostic biomarkers for ccRCC.
PMID:37358013 | DOI:10.1002/jgm.3556
Missense3D-PPI: A Web Resource to Predict the Impact of Missense Variants at Protein Interfaces Using 3D Structural Data
J Mol Biol. 2023 Jul 15;435(14):168060. doi: 10.1016/j.jmb.2023.168060. Epub 2023 Mar 24.
ABSTRACT
In 2019, we released Missense3D which identifies stereochemical features that are disrupted by a missense variant, such as introducing a buried charge. Missense3D analyses the effect of a missense variant on a single structure and thus may fail to identify as damaging surface variants disrupting a protein interface i.e., a protein-protein interaction (PPI) site. Here we present Missense3D-PPI designed to predict missense variants at PPI interfaces. Our development dataset comprised of 1,279 missense variants (pathogenic n = 733, benign n = 546) in 434 proteins and 545 experimental structures of PPI complexes. Benchmarking of Missense3D-PPI was performed after dividing the dataset in training (320 benign and 320 pathogenic variants) and testing (226 benign and 413 pathogenic). Structural features affecting PPI, such as disruption of interchain bonds and introduction of unbalanced charged interface residues, were analysed to assess the impact of the variant at PPI. The performance of Missense3D-PPI was superior to that of Missense3D: sensitivity 44 % versus 8% and accuracy 58% versus 40%, p = 4.23 × 10-16. However, the specificity of Missense3D-PPI was lower compared to Missense3D (84% versus 98%). On our dataset, Missense3D-PPI's accuracy was superior to BeAtMuSiC (p = 3.4 × 10-5), mCSM-PPI2 (p = 1.5 × 10-12) and MutaBind2 (p = 0.0025). Missense3D-PPI represents a valuable tool for predicting the structural effect of missense variants on biological protein networks and is available at the Missense3D web portal (http://missense3d.bc.ic.ac.uk).
PMID:37356905 | DOI:10.1016/j.jmb.2023.168060
Lactobacillus rhamnosus reduces CD8<sup>+</sup>T cell mediated inflammation in patients with rheumatoid arthritis
Immunobiology. 2023 Jun 20;228(4):152415. doi: 10.1016/j.imbio.2023.152415. Online ahead of print.
ABSTRACT
BACKGROUND: The T cells, components of adaptive immunity participate in immune pathology of the autoimmune inflammatory disorder called rheumatoid arthritis (RA). The presence of TLRs on the surface of the CD8+ T cells and their ability to recognize bacterial moieties adds to the inflammatory burden in case of RA. It has been reported that the gut microbiome is necessary for the crucial shift in the balance between proinflammatory and anti-inflammatory cytokines. The altered gut microbiome and the presence of TLRs emphasizes on the microbiome driven inflammatory responses in case of RA.
METHODS: Eighty-nine RA patients participated in this study. Clinical variations like disease duration, number of actively inflamed joints, number and type of bone deformities, CRP, RF, Anti-CCP, ESR, DAS 28 score were recorded for each patient. Co-culture of CD8+T cells and bacteria has been performed with proper culture condition. TLRs and inflammatory mediators' expression level were checked by both qPCR and flow cytometry analysis.
RESULTS: We observed in the suppression of pro-inflammatory molecules like Granzyme B and IFNƳ and expression of TLR2 in CD8 + T cells upon treatment with Lactobacillus rhamnosus (L. rhamnosus). Moreover, L. rhamnosus activated CD8+T cells such that they could induce FOXP3 expression in CD4+T cells thereby skewing T cell population towards a regulatory phenotype. On the contrary, TLR4 engagement on CD8+T cell by Escherichia coli (E.coli) increased in inflammatory responses following ERK activation.
CONCLUSIONS: Thus, we conclude that L. rhamnosus can effectively suppress CD8+T cell mediated inflammation by a simultaneous decrease of Th1 cells that may potentiate better treatment modalities for RA.
PMID:37356231 | DOI:10.1016/j.imbio.2023.152415
Characterization of olfactomedin 4+ cells in prostate and urethral-tube epithelium during murine postnatal development and in adult mice
Sci Rep. 2023 Jun 25;13(1):10290. doi: 10.1038/s41598-023-37320-9.
ABSTRACT
Olfactomedin4 (Olfm4) is expressed in normal mouse prostate. However, Olfm4+ cells in the murine prostate have not been well characterized. In this study, we generated an Olfm4eGFP reporter mouse line with C57BL/6 mice and investigated the distribution of Olfm4/eGFP-expressing cells during postnatal development from P1, P7, P14, P20, P42, P56 to adult male mouse prostate and urethral tube. We observed Olfm4/eGFP expression in urogenital and prostatic epithelial cells during early postnatal development, which persisted into adulthood in urethral-tube and anterior-prostate (AP) epithelium. We found Olfm4+ cells are E-cadherin+/CD44+/Foxa1+ and some of subpopulation are Ck8+/Ck5+/Sca-1-/Ck4-/Syn- in the adult mouse AP epithelium. Functional studies of single-cell preparations of Olfm4/eGFP-expressing cells isolated from adult Olfm4eGFP mouse prostate demonstrated that Olfm4+ cells can grow and form colonies, spheres, or organoids in culture. Bioinformatic analysis of Olfm4+ cells using single-cell RNA sequencing meta data in adult mouse urethra (GSE145865) identified upregulation of genes related to cell and tissue migration and development, as well as upregulation of xenobiotic metabolism signaling pathways. In conclusion, Olfm4eGFP mouse is a novel model to further study Olfm4's biological functions and Olfm4+ cells may contribute importantly to cellular processes supporting development and homeostasis of the epithelium in murine prostate and urethral tube.
PMID:37357228 | DOI:10.1038/s41598-023-37320-9
An efficient and safe strategy for germ cell-specific automatic excision of foreign DNA in F<sub>1</sub> hybrid transgenic silkworms
Insect Sci. 2023 Jun 25. doi: 10.1111/1744-7917.13219. Online ahead of print.
ABSTRACT
The safety of transgenic technology is a major obstacle in the popularization and use of transgenic silkworms and their products. In sericulture, only the first filial generation (F1 ) hybrid eggs produced by cross-breeding Japanese and Chinese original strains are usually used for the large-scale breeding of silkworms, but this may result in uncontrolled transgene dispersal during the popularization and application of the F1 hybrid transgenic eggs. To address this issue, we developed a safe and efficient strategy using the GAL4/Upstream activating sequence (UAS) system, the FLP/flippase recognition target (FRT) system, and the gonad-specific expression gene promoters (RSHP1p and Nanosp) for the germ cell-specific automatic excision of foreign DNA in the F1 hybrid transgenic silkworms. We established 2 types of activator strains, R1p::GAL4-Gr and Nsp::GAL4-Gr, containing the testis-specific GAL4 gene expression cassettes driven by RSHP1p or Nanosp, respectively, and 1 type of effector strain, UAS::FLP-Rg, containing the UAS-linked FLP gene expression cassette. The FLP recombinase-mediated sperm-specific complete excision of FRT-flanked target DNA in the F1 double-transgenic silkworms resulting from the hybridization of R1p::GAL4-Gr and UAS::FLP-Rg was 100%, whereas the complete excision efficiency resulting from the hybridization of Nsp::GAL4-Gr and UAS::FLP-Rg ranged from 13.73% to 80.3%. Additionally, we identified a gene, sw11114, that is expressed in both testis and ovary of Bombyx mori, and can be used to establish novel gonad-specific expression systems in transgenic silkworms. This strategy has the potential to fundamentally solve the safety issue in the production of F1 transgenic silkworm eggs and provides an important reference for the safety of transgenic technology in other insect species.
PMID:37356084 | DOI:10.1111/1744-7917.13219
Plucked scalp hair follicle samples are useful RNA sources for mRNA analysis of most genodermatosis-associated genes
J Dermatol Sci. 2023 Jun 15:S0923-1811(23)00144-5. doi: 10.1016/j.jdermsci.2023.06.004. Online ahead of print.
NO ABSTRACT
PMID:37355462 | DOI:10.1016/j.jdermsci.2023.06.004
Free Energy Perturbation Calculations of Mutation Effects on SARS-CoV-2 RBD::ACE2 Binding Affinity
J Mol Biol. 2023 Jun 22:168187. doi: 10.1016/j.jmb.2023.168187. Online ahead of print.
ABSTRACT
The strength of binding between human angiotensin converting enzyme 2 (ACE2) and the receptor binding domain (RBD) of viral spike protein plays a role in the transmissibility of the SARS-CoV-2 virus. In this study we focus on a subset of RBD mutations that have been frequently observed in infected individuals and probe binding affinity changes to ACE2 using surface plasmon resonance (SPR) measurements and free energy perturbation (FEP) calculations. Our SPR results are largely in accord with previous studies but discrepancies do arise due to differences in experimental methods and to protocol differences even when a single method is used. Overall, we find that FEP performance is superior to that of other computational approaches examined as determined by agreement with experiment and, in particular, by its ability to identify stabilizing mutations. Moreover, the calculations successfully predict the observed cooperative stabilization of binding by the Q498R N501Y double mutant present in Omicron variants and offer a physical explanation for the underlying mechanism. Overall, our results suggest that despite the significant computational cost, FEP calculations may offer an effective strategy to understand the effects of interfacial mutations on protein-protein binding affinities and, hence, in a variety of practical applications such as the optimization of neutralizing antibodies.
PMID:37355034 | DOI:10.1016/j.jmb.2023.168187
Quantifying metal-binding specificity of CcNikZ-II from Clostridium carboxidivorans in the presence of competing metal ions
Anal Biochem. 2023 Jun 22:115182. doi: 10.1016/j.ab.2023.115182. Online ahead of print.
ABSTRACT
Many proteins bind transition metal ions as cofactors to carry out their biological functions. Despite binding affinities for divalent transition metal ions being predominantly dictated by the Irving-Williams series for wild-type proteins, in vivo metal ion binding specificity is ensured by intracellular mechanisms that regulate free metal ion concentrations. However, a growing area of biotechnology research considers the use of metal-binding proteins in vitro to purify specific metal ions from wastewater, where specificity is dictated by the protein's metal binding affinities. A goal of metalloprotein engineering is to modulate these affinities to improve a protein's specificity towards a particular metal; however, the quantitative relationship between the affinities and the equilibrium metal-bound protein fractions depends on the underlying binding mechanisms. Here we demonstrate a high-throughput intrinsic tryptophan fluorescence quenching method to validate binding models in multi-metal solutions for CcNikZ-II, a nickel-binding protein from Clostridium carboxidivorans. Using our validated models, we quantify the relationship between binding affinity and specificity in different classes of metal-binding models for CcNikZ-II. We further illustrate the potential relevance of data-informed models to predicting engineering targets for improved specificity.
PMID:37355028 | DOI:10.1016/j.ab.2023.115182
It is time to move: Heat-induced translocation events
Curr Opin Plant Biol. 2023 Jun 22;75:102406. doi: 10.1016/j.pbi.2023.102406. Online ahead of print.
ABSTRACT
Climate change-induced temperature fluctuations impact agricultural productivity through short-term intense heat waves or long-term heat stress. Plants have evolved sophisticated strategies to deal with heat stress. Understanding perception and transduction of heat signals from outside to inside cells is essential to improve plant thermotolerance. In this review, we will focus on translocation of molecules and proteins associated with signal transduction to understand how plant cells decode signals from the environment to trigger a suitable response.
PMID:37354735 | DOI:10.1016/j.pbi.2023.102406
ISRES+: An improved evolutionary strategy for function minimization to estimate the free parameters of systems biology models
Bioinformatics. 2023 Jun 24:btad403. doi: 10.1093/bioinformatics/btad403. Online ahead of print.
ABSTRACT
MOTIVATION: Mathematical models in systems biology help generate hypotheses, guide experimental design, and infer the dynamics of gene regulatory networks. These models are characterized by phenomenological or mechanistic parameters, which are typically hard to measure. Therefore, efficient parameter estimation is central to model development. Global optimization techniques, such as evolutionary algorithms (EA), are applied to estimate model parameters by inverse modeling, i.e., calibrating models by minimizing a function that evaluates a measure of the error between model predictions and experimental data. EAs estimate model parameters "fittest individuals" by generating a large population of individuals using strategies like recombination and mutation over multiple "generations". Typically, only a few individuals from each generation are used to create new individuals in the next generation. Improved Evolutionary Strategy by Stochastic Ranking (ISRES), proposed by Runnarson and Yao, is one such EA that is widely used in systems biology to estimate parameters. ISRES uses information at most from a pair of individuals in any generation to create a new population to minimize the error. In this paper we propose an efficient evolutionary strategy, ISRES+, which builds on ISRES by combining information from all individuals across the population and across all generations to develop a better understanding of the fitness landscape.
RESULTS: ISRES+ uses the additional information generated by the algorithm during evolution to approximate the local neighborhood around the best-fit individual using linear least squares fits in one and two dimensions, enabling efficient parameter estimation. ISRES+ outperforms ISRES and results in fitter individuals with a tighter distribution over multiple runs, such that a typical run of ISRES+ estimates parameters with a higher goodness-of-fit compared to ISRES.
AVAILABILITY: Algorithm and implementation: Github - https://github.com/gtreeves/isres-plus-bandodkar-2022.
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
PMID:37354523 | DOI:10.1093/bioinformatics/btad403
Neisseria montereyensis sp. nov., Isolated from Oropharynx of California Sea Lion (Zalophus californianus): Genomic, Phylogenetic, and Phenotypic Study
Curr Microbiol. 2023 Jun 24;80(8):253. doi: 10.1007/s00284-023-03380-3.
ABSTRACT
A novel Neisseria strain, designated CSL10203-ORH2T, was isolated from the oropharynx of a wild California sea lion (Zalophus californianus) that was admitted to The Marine Mammal Center in California, USA. The strain was originally cultured from an oropharyngeal swab on BD Phenylethyl Alcohol (PEA) agar with 5% sheep blood under aerobic conditions. Phylogenetic analyses based on 16S rRNA, rplF, and rpoB gene sequences and the core genome sequences indicated that the strain was most closely related to only N. zalophi CSL 7565T. The average nucleotide identity and digital DNA-DNA hybridization values between strain CSL10203-ORH2T and the closely related species N. zalophi CSL 7565T were 89.84 and 39.70%, respectively, which were significantly lower than the accepted species-defined thresholds for describing novel prokaryotic species at the genomic level. Both type strains were phenotypically similar but can be easily and unambiguously distinguished between each other by the analysis of their housekeeping genes, e.g., rpoB, gyrB, or argF. The major fatty acids in both type strains were C12:0, C16:0, C16:1-c9, and C18:1-c11. Based on the genomic, phenotypic, and phylogenetic properties, the novel strain represents a novel species of the genus Neisseria, for which the name Neisseria montereyensis sp. nov. with the type strain CSL10203-ORH2T (= DSM 114706T = CCUG 76428T = NCTC 14721T) is proposed. The genome G + C content is 45.84% and the complete draft genome size is 2,310,535 bp.
PMID:37354372 | DOI:10.1007/s00284-023-03380-3
Phthalate diester occurrence in marine feed and food (Mediterranean Sea)
Environ Sci Pollut Res Int. 2023 Jun 24. doi: 10.1007/s11356-023-28361-8. Online ahead of print.
ABSTRACT
Organic contaminants such as diesters of phthalic acid (PAEs) can be conveyed by microplastics in aquatic environment and constitute a relevant risk to marine organisms and humans that consume them. A method was developed for the identification and quantitative detection of 6 dimethyl phthalate (DMP), di-ethyl phthalate (DEP), di-n-butyl phthalate (DNBP), butyl benzyl phthalate (BBP), di-2-ethylesyl phthalate (DHEP), and di-n-octyl phthalate (DnOP). PAEs were then quantified in mesozooplankton, mollusk bivalves, and fish from the north-western Mediterranean Sea. Among all PAEs, DEHP was found in all zooplankton samples, in 30% of fish samples, and in 10% of bivalve samples. DBP was instead recovered in only 4% of samples (plankton and fish).
PMID:37353702 | DOI:10.1007/s11356-023-28361-8
Synergy between imputed genetic pathway and clinical information for predicting recurrence in early stage non-small cell lung cancer
J Biomed Inform. 2023 Jun 21:104424. doi: 10.1016/j.jbi.2023.104424. Online ahead of print.
ABSTRACT
OBJECTIVE: Lung cancer exhibits unpredictable recurrence in low-stage tumors and variable responses to different therapeutic interventions. Predicting relapse in early-stage lung cancer can facilitate precision medicine and improve patient survivability. While existing machine learning models rely on clinical data, incorporating genomic information could enhance their efficiency. This study aims to impute and integrate specific types of genomic data with clinical data to improve the accuracy of machine learning models for predicting relapse in early-stage, non-small cell lung cancer patients.
METHODS: The study utilized a publicly available TCGA lung cancer cohort and imputed genetic pathway scores into the Spanish Lung Cancer Group (SLCG) data, specifically in 1348 early-stage patients. Initially, tumor recurrence was predicted without imputed pathway scores. Subsequently, the SLCG data were augmented with pathway scores imputed from TCGA. The integrative approach aimed to enhance relapse risk prediction performance.
RESULTS: The integrative approach achieved improved relapse risk prediction with the following evaluation metrics: an area under the precision-recall curve (PR-AUC) score of 0.75, an area under the ROC (ROC-AUC) score of 0.80, an F1 score of 0.61, and a Precision of 0.80. The prediction explanation model SHAP (SHapley Additive exPlanations) was employed to explain the machine learning model's predictions.
CONCLUSION: We conclude that our explainable predictive model is a promising tool for oncologists that addresses an unmet clinical need of post-treatment patient stratification based on the relapse risk while also improving the predictive power by incorporating proxy genomic data not available for specific patients.
PMID:37352900 | DOI:10.1016/j.jbi.2023.104424
Genetic regulators of sputum mucin concentration and their associations with COPD phenotypes
PLoS Genet. 2023 Jun 23;19(6):e1010445. doi: 10.1371/journal.pgen.1010445. Online ahead of print.
ABSTRACT
Hyper-secretion and/or hyper-concentration of mucus is a defining feature of multiple obstructive lung diseases, including chronic obstructive pulmonary disease (COPD). Mucus itself is composed of a mixture of water, ions, salt and proteins, of which the gel-forming mucins, MUC5AC and MUC5B, are the most abundant. Recent studies have linked the concentrations of these proteins in sputum to COPD phenotypes, including chronic bronchitis (CB) and acute exacerbations (AE). We sought to determine whether common genetic variants influence sputum mucin concentrations and whether these variants are also associated with COPD phenotypes, specifically CB and AE. We performed a GWAS to identify quantitative trait loci for sputum mucin protein concentration (pQTL) in the Sub-Populations and InteRmediate Outcome Measures in COPD Study (SPIROMICS, n = 708 for total mucin, n = 215 for MUC5AC, MUC5B). Subsequently, we tested for associations of mucin pQTL with CB and AE using regression modeling (n = 822-1300). Replication analysis was conducted using data from COPDGene (n = 5740) and by examining results from the UK Biobank. We identified one genome-wide significant pQTL for MUC5AC (rs75401036) and two for MUC5B (rs140324259, rs10001928). The strongest association for MUC5B, with rs140324259 on chromosome 11, explained 14% of variation in sputum MUC5B. Despite being associated with lower MUC5B, the C allele of rs140324259 conferred increased risk of CB (odds ratio (OR) = 1.42; 95% confidence interval (CI): 1.10-1.80) as well as AE ascertained over three years of follow up (OR = 1.41; 95% CI: 1.02-1.94). Associations between rs140324259 and CB or AE did not replicate in COPDGene. However, in the UK Biobank, rs140324259 was associated with phenotypes that define CB, namely chronic mucus production and cough, again with the C allele conferring increased risk. We conclude that sputum MUC5AC and MUC5B concentrations are associated with common genetic variants, and the top locus for MUC5B may influence COPD phenotypes, in particular CB.
PMID:37352370 | DOI:10.1371/journal.pgen.1010445
A malaria parasite phospholipase facilitates efficient asexual blood stage egress
PLoS Pathog. 2023 Jun 23;19(6):e1011449. doi: 10.1371/journal.ppat.1011449. Online ahead of print.
ABSTRACT
Malaria parasite release (egress) from host red blood cells involves parasite-mediated membrane poration and rupture, thought to involve membrane-lytic effector molecules such as perforin-like proteins and/or phospholipases. With the aim of identifying these effectors, we disrupted the expression of two Plasmodium falciparum perforin-like proteins simultaneously and showed that they have no essential roles during blood stage egress. Proteomic profiling of parasite proteins discharged into the parasitophorous vacuole (PV) just prior to egress detected the presence in the PV of a lecithin:cholesterol acyltransferase (LCAT; PF3D7_0629300). Conditional ablation of LCAT resulted in abnormal egress and a reduced replication rate. Lipidomic profiles of LCAT-null parasites showed drastic changes in several phosphatidylserine and acylphosphatidylglycerol species during egress. We thus show that, in addition to its previously demonstrated role in liver stage merozoite egress, LCAT is required to facilitate efficient egress in asexual blood stage malaria parasites.
PMID:37352369 | DOI:10.1371/journal.ppat.1011449
Analysis of high-dimensional metabolomics data with complex temporal dynamics using RM-ASCA
PLoS Comput Biol. 2023 Jun 23;19(6):e1011221. doi: 10.1371/journal.pcbi.1011221. Online ahead of print.
ABSTRACT
The intricate dependency structure of biological "omics" data, particularly those originating from longitudinal intervention studies with frequently sampled repeated measurements renders the analysis of such data challenging. The high-dimensionality, inter-relatedness of multiple outcomes, and heterogeneity in the studied systems all add to the difficulty in deriving meaningful information. In addition, the subtle differences in dynamics often deemed meaningful in nutritional intervention studies can be particularly challenging to quantify. In this work we demonstrate the use of quantitative longitudinal models within the repeated-measures ANOVA simultaneous component analysis+ (RM-ASCA+) framework to capture the dynamics in frequently sampled longitudinal data with multivariate outcomes. We illustrate the use of linear mixed models with polynomial and spline basis expansion of the time variable within RM-ASCA+ in order to quantify non-linear dynamics in a simulation study as well as in a metabolomics data set. We show that the proposed approach presents a convenient and interpretable way to systematically quantify and summarize multivariate outcomes in longitudinal studies while accounting for proper within subject dependency structures.
PMID:37352364 | DOI:10.1371/journal.pcbi.1011221
Whole-body gene expression atlas of an adult metazoan
Sci Adv. 2023 Jun 23;9(25):eadg0506. doi: 10.1126/sciadv.adg0506. Epub 2023 Jun 23.
ABSTRACT
Gene activity defines cell identity, drives intercellular communication, and underlies the functioning of multicellular organisms. We present the single-cell resolution atlas of gene activity of a fertile adult metazoan: Caenorhabditis elegans. This compendium comprises 180 distinct cell types and 19,657 expressed genes. We predict 7541 transcription factor expression profile associations likely responsible for defining cellular identity. We predict thousands of intercellular interactions across the C. elegans body and the ligand-receptor pairs that mediate them, some of which we experimentally validate. We identify 172 genes that show consistent expression across cell types, are involved in basic and essential functions, and are conserved across phyla; therefore, we present them as experimentally validated housekeeping genes. We developed the WormSeq application to explore these data. In addition to the integrated gene-to-systems biology, we present genome-scale single-cell resolution testable hypotheses that we anticipate will advance our understanding of the molecular mechanisms, underlying the functioning of a multicellular organism and the perturbations that lead to its malfunction.
PMID:37352352 | DOI:10.1126/sciadv.adg0506
The transcriptomic landscape of normal and ineffective erythropoiesis at single-cell resolution
Blood Adv. 2023 Jun 23:bloodadvances.2023010382. doi: 10.1182/bloodadvances.2023010382. Online ahead of print.
ABSTRACT
The anemias of myelodysplastic syndrome (MDS) and Diamond Blackfan anemia (DBA) are generally macrocytic, always reflect ineffective erythropoiesis, yet result from diverse genetic mutations. To delineate shared mechanisms that lead to cell death, we studied the fate of single erythroid marrow cells from individuals with DBA and MDS-5q. We defined an unhealthy (vs. healthy) differentiation trajectory using transcriptional pseudotime and cell surface proteins. The pseudotime trajectories diverge immediately after cells upregulate transferrin receptor (CD71), import iron, and initiate heme synthesis, although cell death occurs much later. Cells destined to die highly express heme responsive genes, including ribosomal protein and globin genes, while surviving cells downregulate heme synthesis and upregulate DNA damage response, hypoxia and HIF1 pathways. Surprisingly, 24±12% of cells from control subjects follow the unhealthy trajectory, implying that heme might serve as a rheostat directing cells to live or die. When heme synthesis was inhibited with succinylacetone, more DBA cells followed the healthy trajectory and survived. We also noted high numbers of messages with retained introns that increased as erythroid cells matured, confirmed the rapid cycling of CFU-E, and demonstrated that cell cycle timing is an invariant property of differentiation stage. Including unspliced RNA in pseudotime determinations allowed us to reliably align independent datasets and accurately query stage-specific transcriptomic changes. MDS-5q (unlike DBA) results from somatic mutation, so many normal (unmutated) erythroid cells persist. By independently tracking erythroid differentiation of cells with and without chromosome 5q deletions, we gained insight into why 5q+ cells cannot expand to prevent anemia.
PMID:37352261 | DOI:10.1182/bloodadvances.2023010382
Researching COVID to Enhance Recovery (RECOVER) adult study protocol: Rationale, objectives, and design
PLoS One. 2023 Jun 23;18(6):e0286297. doi: 10.1371/journal.pone.0286297. eCollection 2023.
ABSTRACT
IMPORTANCE: SARS-CoV-2 infection can result in ongoing, relapsing, or new symptoms or other health effects after the acute phase of infection; termed post-acute sequelae of SARS-CoV-2 infection (PASC), or long COVID. The characteristics, prevalence, trajectory and mechanisms of PASC are ill-defined. The objectives of the Researching COVID to Enhance Recovery (RECOVER) Multi-site Observational Study of PASC in Adults (RECOVER-Adult) are to: (1) characterize PASC prevalence; (2) characterize the symptoms, organ dysfunction, natural history, and distinct phenotypes of PASC; (3) identify demographic, social and clinical risk factors for PASC onset and recovery; and (4) define the biological mechanisms underlying PASC pathogenesis.
METHODS: RECOVER-Adult is a combined prospective/retrospective cohort currently planned to enroll 14,880 adults aged ≥18 years. Eligible participants either must meet WHO criteria for suspected, probable, or confirmed infection; or must have evidence of no prior infection. Recruitment occurs at 86 sites in 33 U.S. states, Washington, DC and Puerto Rico, via facility- and community-based outreach. Participants complete quarterly questionnaires about symptoms, social determinants, vaccination status, and interim SARS-CoV-2 infections. In addition, participants contribute biospecimens and undergo physical and laboratory examinations at approximately 0, 90 and 180 days from infection or negative test date, and yearly thereafter. Some participants undergo additional testing based on specific criteria or random sampling. Patient representatives provide input on all study processes. The primary study outcome is onset of PASC, measured by signs and symptoms. A paradigm for identifying PASC cases will be defined and updated using supervised and unsupervised learning approaches with cross-validation. Logistic regression and proportional hazards regression will be conducted to investigate associations between risk factors, onset, and resolution of PASC symptoms.
DISCUSSION: RECOVER-Adult is the first national, prospective, longitudinal cohort of PASC among US adults. Results of this study are intended to inform public health, spur clinical trials, and expand treatment options.
REGISTRATION: NCT05172024.
PMID:37352211 | DOI:10.1371/journal.pone.0286297
Protein phase separation in plant membrane biology: more than just a compartmentalization strategy
Plant Cell. 2023 Jun 23:koad177. doi: 10.1093/plcell/koad177. Online ahead of print.
ABSTRACT
The formation of biomolecular condensates through phase separation is an important strategy to compartmentalize cellular functions. While it is now well established that condensates exist throughout eukaryotic cells, how condensates assemble and function on lipid membranes is only beginning to be understood. In this perspective, we highlight work from plant, animal, and yeast model systems showing that condensates assemble on many endomembrane surfaces to carry out diverse functions. In vesicle trafficking, condensation has reported roles in the formation of endocytic vesicles and autophagosomes, and in the inactivation of secretory COPII vesicles. We briefly discuss how membranes and membrane lipids regulate the formation and function of membrane-associated condensates. This includes how membranes act as surfaces for condensate assembly, with lipids mediating the nucleation of condensates during endocytosis and other processes. Additionally, membrane-condensate interactions give rise to the biophysical property of 'wetting', which has functional importance in shaping autophagosomal and vacuolar membranes. We also speculate on the existence of membrane-associated condensates during cell polarity in plants, and discuss how condensation may help to establish functional plasma membrane domains. Lastly, we provide advice on relevant in vitro and in vivo approaches and techniques to study membrane-associated phase separation.
PMID:37352127 | DOI:10.1093/plcell/koad177