Functional Enrichment Analysis & Candidate Gene Ranking

Anil Jegga Biomedical Informatics

Contact Information: Anil Jegga Biomedical Informatics Room # 232, S Building 10th Floor CCHMC Homepage: http://anil.cchmc.org Tel: 513-636-0261 E-mail: anil.jegga@cchmc.org

Slides and Example data sets available for download at: http://anil.cchmc.org/dhc.html

Workshop Evaluation: Please provide your valuable feedback on the evaluation sheet provided along with the hand-outs

- This workshop is about the analysis of transcriptome (identifying enriched biological processes, etc.) and ranking or prioritizing candidate genes. It <u>does not</u> cover microarray data analysis.
- Contact Huan Xu (<u>huan.xu@cchmc.org</u> for GeneSpring related questions or microarray data analysis.

All the applications/servers/databases used in this workshop are free for academic-use. Applications that are not free for use (e.g., Ingenuity Pathway Analysis, etc.) are not covered here. However, we have licensed access to use some of these and please contact us if you are interested in using them.

What are we going to cover today? **1. Gene List Functional Enrichment** Analysis

- 2. Multiple Gene Lists Functional **Enrichment Analysis**
- 3. Prioritizing or Ranking Candidate Genes
 - **Based on functional annotations**
 - Based on network connectivity

ToppGene Suite: http://toppgene.cchmc.org **ToppCluster:** http://toppcluster.cchmc.org

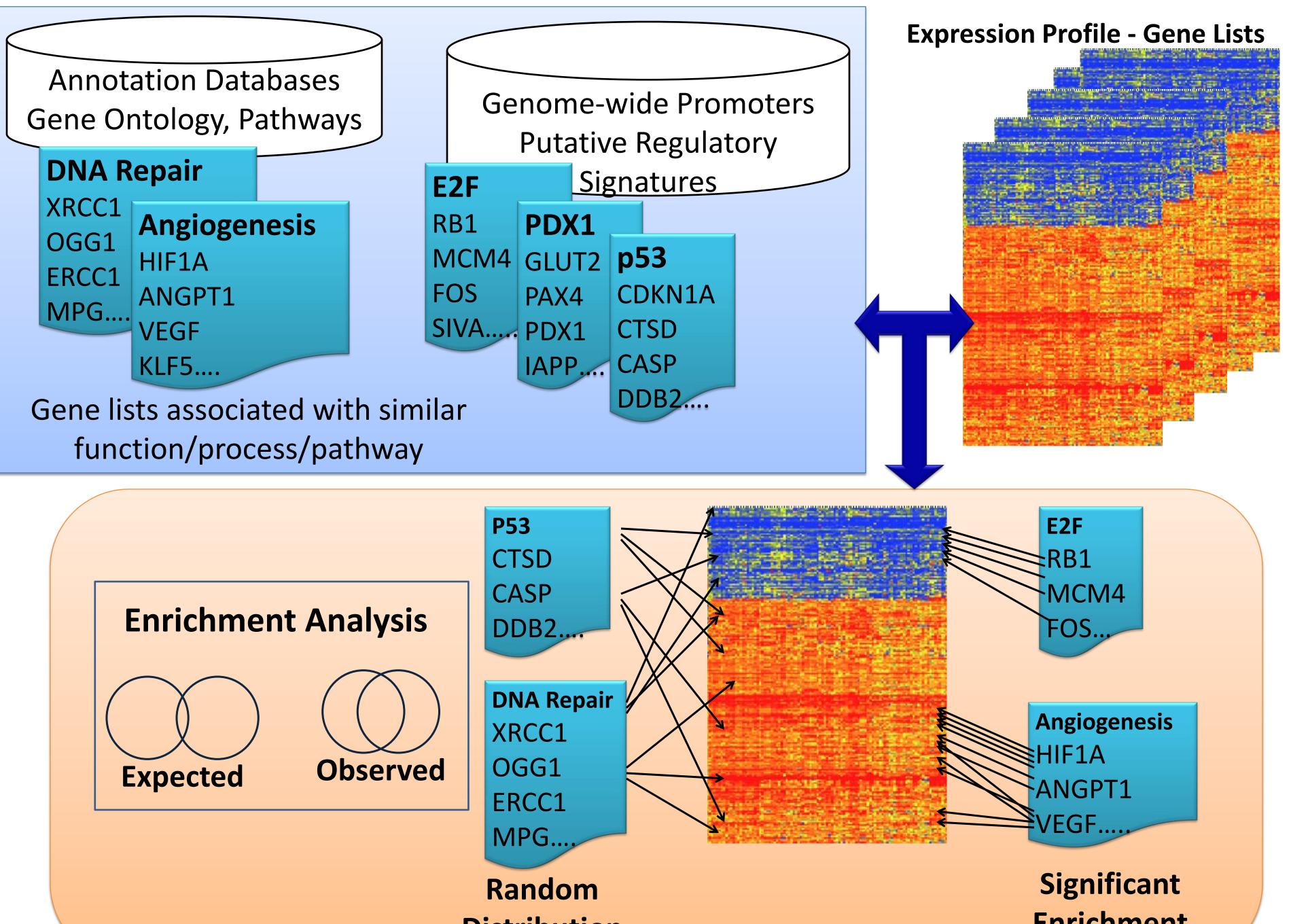
Related Publications (for methodology- and validation-related details)

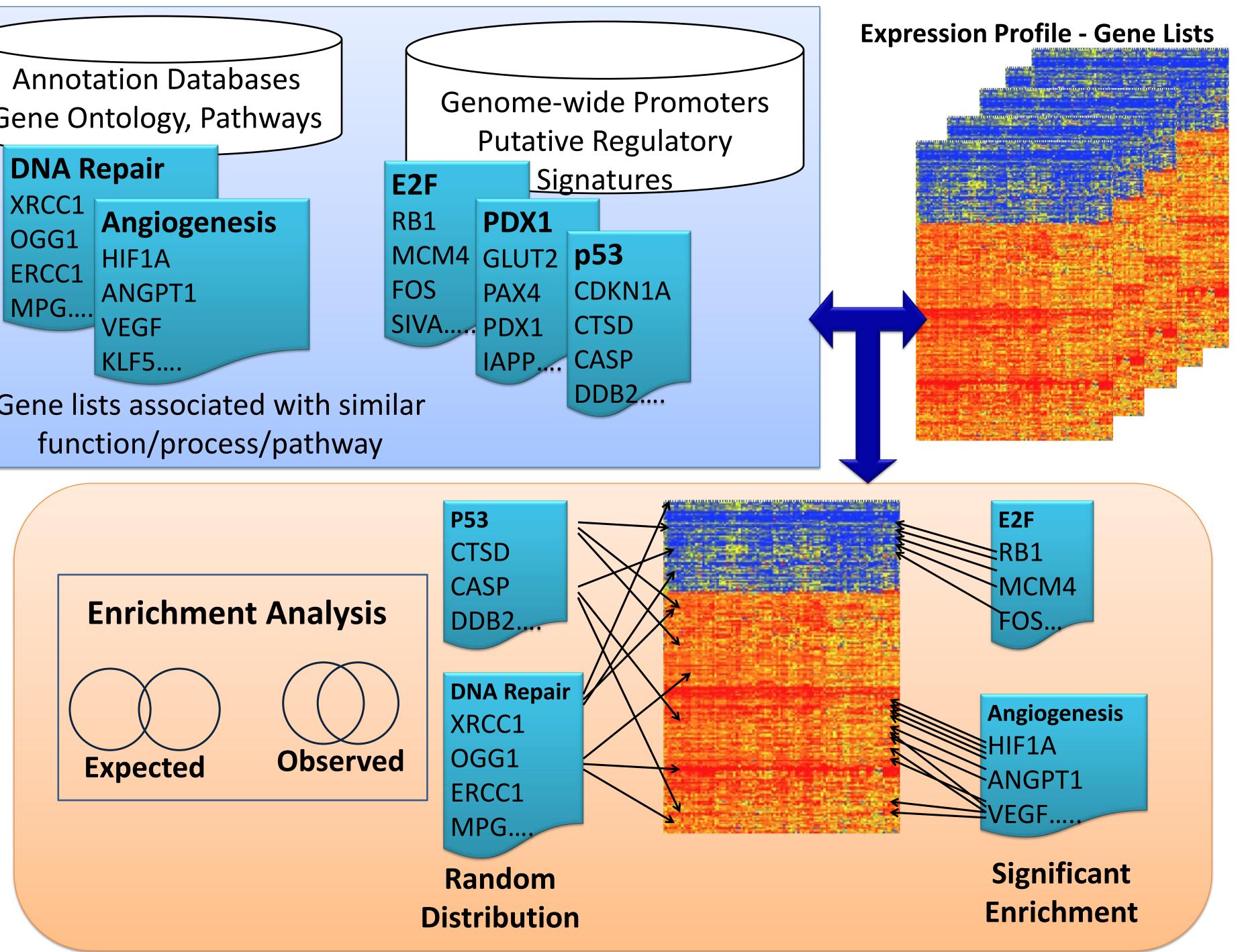
ToppGene Suite

- 1. Chen J, Xu H, Aronow BJ, Jegga AG. 2007. Improved human disease candidate gene prioritization using mouse phenotype. BMC Bioinformatics 8:392.
- 2. Chen J, Aronow BJ, Jegga AG. 2009. Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinformatics 10:73.
- 3. Chen J, Bardes EE, Aronow BJ, Jegga AG 2009. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Research doi: 10.1093/nar/gkp427.

ToppCluster

1. Kaimal V, Bardes E, Jegga AG, Aronow BJ. 2010. ToppCluster: a multiple gene list feature analyzer for comparative enrichment clustering and network-based dissection of biological systems. Nucleic Acids Research (in press).


I have a list of co-expressed mRNAs (Transcriptome).... Now what?


- 1. Identify putative shared regulatory elements
- Known transcription factor binding sites (TFBS)
 - Conserved
 - Non-conserved
- Unknown TFBS or Novel motifs
 - Conserved
 - Non-conserved
- MicroRNAs

- Gene Ontology
- Pathways
- Phenotype/Disease
 - Association
- Protein Domains
- **Protein Interactions**
- Expression in other
- Drug targets

2. Identify the underlying **biological theme**

- tissues/experiments
- Literature co-citation...

I have a list of co-expressed mRNAs (Transcriptome).... I want to find the shared cis-elements – Known and Novel Known transcription factor binding sites (TFBS) Conserved Each of these applications 1. support different forms of input. oPOSSUM Very few support probeset IDs. Dire **Red Font:** Input sequence 2. Non-conserved required; Do not support gene symbols, gene IDs, or accession Pscan numbers. The advantage is you MatInspector (*Licensed) can use them for scanning Unknown TFBS or Novel motifs sequences from any species. *Licensed software: We have 3. Conserved access to the licensed version. oPOSSUM Weeder-H **Covered in the last workshop (Sept.** 2009). Non-conserved MEME Will not be covered today. Training material is available on-line. Weeder

I have a list of co-expressed mRNAs (Transcriptome).... **Identify the underlying biological theme**

What are my genes "enriched" for?

- Gene Ontology
- Pathways
- Phenotype/Disease Association
- Protein Domains
- TFBS and microRNA
- Protein Interactions
- Expression in other tissues/experiments
- Drug targets
- Literature co-citation...

ToppGene Suite (http://toppgene.cchmc.org)

- Home
- Links
- Database details
- Supplementary
- Help
- Publications
- Terms of Use
- Contacts

Supported by:

Computational Medicine Center

ToppGene Suite

A one-stop portal for gene list enrichment analysis and candidate gene prioritization based on functional annotations and protein interactions network

• **ToppFun:** Transcriptome, ontology, phenotype, proteome, and pharmacome annotations based gene list functional enrichment analysis.

Detect functional enrichment of your gene list based on Transcriptome, Proteome, Regulome (TFBS and miRNA), Ontologies (GO, Pathway), Phenotype (human disease and mouse phenotype), Pharmacome (Drug-Gene associations), literature co-citation, and other features.

ToppGene: Candidate gene prioritization

Prioritize or rank candidate genes based on functional similarity to training gene list.

ToppNet: Relative importance of candidate genes in networks.

Prioritize or rank candidate genes based on topological features in protein-protein interaction network.

ToppGenet: Prioritization of neighboring genes in protein-protein interaction network.

Identify and prioritize the neighboring genes of the seeds in protein-protein interaction network based on functional similarity to the "seed" list (ToppGene) or topological features in protein-protein interaction network (ToppNet).

1. Free for use, no log-in required. 2. Web-based, no need to install anything (except for applications to visualize or analyze networks) 3. Validated and published

ToppGene Suite (http://toppgene.cchmc.org) - ToppFun

ToppFun: Transcriptome, ontology, phenotype, proteome, and pharmacome annotations based gene list functional enrichment analysis

Entry Type:	Entrez ID	~				
Example gene sets:	HGNC Symbol Entre: (click on "HGNC Symbol" or "B	z ID Entrez ID" to use the example traini	ng and test set of genes)			
Training Gene Set:	259	~	Input Gene L	.ist (81 / 97)		
	5265					
	350					_
	335		Entered	Human Symbol	Gene ID	^
	335		259	AMBP	259	
	1558		5265	SERPINA1	5265	
	1571		350	APOH	350	Ξ
	229		335	APOA1	335	
	462		1558	CYP2C8	1558	
	125		1571	CYP2E1	1571	
	3240		229	ALDOB	229	
	5105		462	SERPINC1	462	
	5265		125	ADH1B	125	
	3273		3240	HP	3240	
	2244		5105	PCK1	5105	
	2158		3273	HRG	3273	
	5053		2244	FGB	2244	
	125		2158	F9	2158	
	1356		5053	PAH	5053	
	3827		1356	СР	1356	
	383	~	3827	KNG1	3827	
		×2	383	ARG1	383	
			5004	ORM1	5004	
	Clear	Submit Query	2168	FABP1	2168	
1			325	APCS	325	*
				Genes Not Found		
s variety of inp	outs		-	ntered	Status	

Select your gene identifier type, paste your sets below or select example set, then submit

2. Supports symbol correction

- 3. Eliminates any duplicates
- 4. Drawback: Supports human and mouse genes only

Entorod		Status
Entered		Status
	Duplicated	

ToppGene Suite (http://toppgene.cchmc.org) - <u>ToppFun</u></u></u>

Calculations

Feature	Correction	p-Value c	utoff	Gene Lin	nits
🗹 All	Bonferroni 💌	0.05 💌	1	$\leq n \leq$	1500
GO: Molecular Function	Bonferroni 🔽	0.05 🔽	1	≤n≤	1500
🗹 GO: Biological Process	Bonferroni 🔽	0.05 🔽	1	$\leq n \leq$	1500
🗹 GO: Cellular Component	Bonferroni 💌	0.05 🔽	1	≤n≤	1500
🗹 Human Phenotype	Bonferroni 💌	0.05 💌	1	≤n≤	1500
🗹 Mouse Phenotype	Bonferroni 🔽	0.05 🔽	1	≤n≤	1500
🗹 Domain	Bonferroni 💌	0.05 🔽	1	≤n≤	1500
🗹 Pathway	Bonferroni 💌	0.05 💌	1	≤n≤	1500
🗹 Pubmed	Bonferroni 🔽	0.05 💌	1	≤n≤	1500
Interaction	Bonferroni 💌	0.05 💌	1	≤n≤	1500
🗹 Cytoband	Bonferroni 💌	0.05 💌	1	≤n≤	1500
🗹 TFBS	Bonferroni 💌	0.05 🔽	1	≤n≤	1500
🗹 Gene Family	Bonferroni 🔽	0.05 🔽	1	≤n≤	1500
Coexpression	Bonferroni 🔽	0.05 🔽	1	≤n≤	1500
🗹 Computational	Bonferroni 💌	0.05 💌	1	≤n≤	1500
🗹 MicroRNA	Bonferroni 🔽	0.05 💌	1	$\leq n \leq$	1500
🗹 Drug	Bonferroni 🔽	0.05 💌	1	≤ <i>n</i> ≤	1500
🗹 Disease	Bonferroni 🔽	0.05 💌	1	≤n≤	1500

Home

Modify Query

Submit

- 1. Gene list analyzed for as many as 17 features!
- Single-stop enrichment analysis server for both regulatory elements (TFBSs and miRNA) and biological themes
- Back-end has an exhaustive, normalized data resources compiled and integrated
- Bonferroni correction is "too stringent"; FDR with 0.05 is preferable.
- TFBS are based on conserved cis-elements and motifs within ±2kb region of TSS in human, mouse, rat, and dog.
- miRNA-targets are based on TargetScan, PicTar and miRrecords/Tarbase.

ToppGene Suite (http://toppgene.cchmc.org)

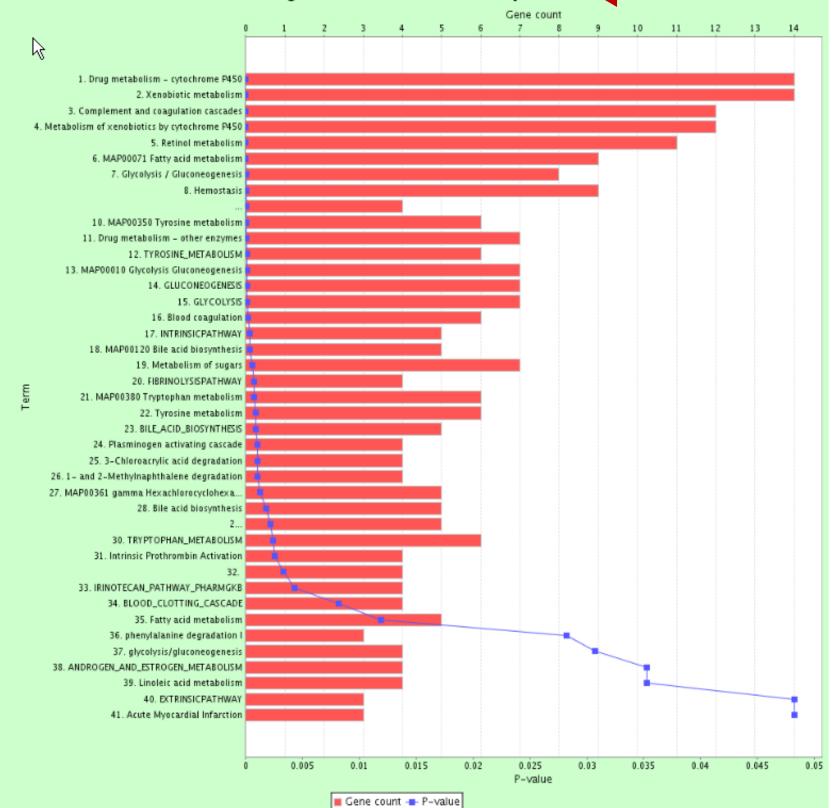
GO Biologia	al Process		Human Phe	notype		Mouse Phenotype		
Annotations: Genes:			Annotations: Genes:					6,203 5,590 Updated Aug 25, 2009
GO Cellular	Component	Opualeu Aug 20, 2005			opualed Sep 10, 2005			opualeu Aug 23, 2003
Annotations: Genes:		2,335 16,728 Updated Aug 26, 2009						atabase
GO Molecul	ar Function						2. Ex	khaustiv
Annotations: Genes:		8,583 15,948 Updated Aug 26, 2009					i	notatio
Pathways			Domains			Pubmed		
Annotations: Aug 25, 2009 Jun 15, 2009 May 10, 2009 Aug 25, 2009 Genes: Interactions	BioCyc CGAP BioCarta GenMAPP KEGG pathway MSigDB PantherDB Pathway Ontology Reactome SigmaAldrich Signalling Transduction	164 314 67 202 431 150 306 25 2 KE 11 6,697	Genes: Cytoband	Gene3D InterPro PROSITE Pfam ProDom SMART	285 4,859 1,351 2,774 385 569 12,430	Annotations: Genes: TFBS		221,282 22,176 Updated Aug 25, 2009
Annotations: Genes:	BIND BioGRID HPRD					Annotations: Genes:		615 9,770
miRNA			Gene Famil	ies		Coexpression		
Annotations: Genes:	MSigDB PicTar TargetScan				151 6,098	Annotations: Genes:	Body Map mSigDB	1,203 23 1,180 12,694
Computatio	nal Gene Set		Drugs			Disease		
Annotations: Genes:		427 4,712	Annotations: Aug 28, 2009 Aug 25, 2009 Aug 25, 2009 Genes:	CTD Drug Bank Stitch	4,977 2,009 6,155	Annotations: Aug 28, 2009 Genes:	CTD GWAS OMIM	3,789 1,006 291 2,492 4,385
Master Gen	e Info File							
For All Annotatio	ons	35,449 Updated Aug 28, 2009						

6	,203
5	,590
Updated Aug 25, 2	009

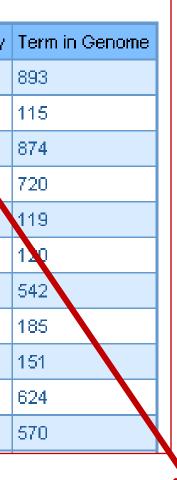
e updated regularly ve collection of ons

ToppGene Suite (http://toppgene.cchmc.org) - <u>ToppFun</u></u></u>

			Results	Input F
			Results	
				Number of ga
Go To Start Page				Number of ga
Input Parameters [Show Detail]	¢			
Training Results [Show AI] [Download AI] [Spars	a Note			
1: GO: Molecular Function [Display Chart] [Show Detail]				
2: GO: Biological Process [Display Chart] [Show Detail]				Correction ar
3: GO: Cellular Component [Display Chart] [Show Denil]				
4: Human Phenotype [Display Chart] [Show Detail]				
5: Mouse Phenotype [Display Chart] [Show Detail]				
6: Domain [Display Chart] [Show Detail]				
7: Pathway (Display Chart) (Show Detail)				Pondom com
8: Pubmed [Display Chart] [Show Detail]				Random sam Minimun feati
9: Interaction (Display Chart) (Show Detail)				Analysis tool
10: Cytoband [Display Chart] [Show Detail]				Analysis finis
11: TFBS [Display Chart] [Show Detail]	2: 1	GO: Biologic	al Process [Display Chart] [Hide Detail]	·
TT. TT DO [Display char] [show betail]		ID	Name	
12: Gene Family [Display Chart] [Show Detail]	1	GO:0009605	response to external stimulus	
13: Coexpression [Display Chart] [Show Detail]	2	GO:000756g	blood coagulation	
	3	GO:0006629	lipid metabolic process	
14: Computational [Display Chart] [Show Detail]	4		cellular lipid metabolic process	
15: MicroRNA [Display Chart] [Show Detail]	5	GO:0050817	_	
	6	GO:0007599		
16: Drug [Display Chart] [Show Detail]	7		response to wounding	
17: Disease [Display Chart] [Show Detail]	8		wound healing	
u	9		regulation of body fluid levels	
			oxidation reduction	
	11	GO:0019752	carboxylic acid metabolic process	


81							
0							
category	Correction	Cutoff	Min	Max			
GO: Molecular Function	Bonferroni	0.05	1	1500			
GO: Biological Process	Bonferroni	0.05	1	1500			
GO: Cellular Component	Bonferroni	0.05	1	1500			
Human Phenotype	Bonferroni	0.05	1	1500			
Mouse Phenotype	Bonferroni	0.05	1	1500			
Domain	Bonferroni	0.05	1	1500			
Pathway	Bonferroni	0.05	1	1500			
Pubmed	Bonferroni	0.05	1	1500			
Interaction	Bonferroni	0.05	1	1500			
Cytoband	Bonferroni	0.05	1	1500			
TFBS	Bonferroni	0.05	1	1500			
Gene Family	Bonferroni	0.05	1	1500			
Coexpression	Bonferroni	0.05	1	1500			
Computational	Bonferroni	0.05	1	1500			
MicroRNA	Bonferroni	0.05	1	1500			
Drug	Bonferroni	0.05	1	1500			
Disease	Bonferroni	0.05	1	1500			
0							
2							
2 seconds							
Sun Sep 27 16:45:06 ED	T 2009						
	category GO: Molecular Function GO: Eiological Process GO: Cellular Component Human Phenotype Domain Pathway Pubmed Interaction Cytoband TFBS Gene Family Coexpression Computational MicroRNA Drug Disease	OcategoryCorrectionGO: Molecular FunctionBonferroniGO: Biological ProcessBonferroniGO: Cellular ComponentBonferroniHuman PhenotypeBonferroniMouse PhenotypeBonferroniDomainBonferroniPathwayBonferroniInteractionBonferroniGone FamilyBonferroniComputationalBonferroniMicroRNABonferroniDrugBonferroniDiseaseBonferroniOSonferroni2Sonferroni	OcategoryCorrectionCutoffGO: Molecular FunctionBonferroni0.05GO: Biological ProcessBonferroni0.05GO: Cellular ComponentBonferroni0.05Human PhenotypeBonferroni0.05Mouse PhenotypeBonferroni0.05DomainBonferroni0.05PathwayBonferroni0.05PubmedBonferroni0.05InteractionBonferroni0.05CytobandBonferroni0.05Gene FamilyBonferroni0.05ComputationalBonferroni0.05MicroRNABonferroni0.05DiseaseBonferroni0.050222< seconds	OcategoryCorrectionCutoffMinGO: Molecular FunctionBonferroni0.051GO: Biological ProcessBonferroni0.051GO: Cellular ComponentBonferroni0.051Human PhenotypeBonferroni0.051Mouse PhenotypeBonferroni0.051DomainBonferroni0.051PubmedBonferroni0.051InteractionBonferroni0.051CytobandBonferroni0.051Gene FamilyBonferroni0.051CoexpressionBonferroni0.051MicroRNABonferroni0.051DiseaseBonferroni0.051O2222secondsSonferroni0.05			

_			
Source	P-value	Term in Query	Term in Genome
	0	27	893
	0	12	115
	0	25	874
	0	23	720
	0	12	119
	0	12	120
	0	20	542
	0	13	185
	0	12	151
	0	19	624
	0	18	570


ToppGene Suite (http://toppgene.cchmc.org) - ToppFun

2:	2: GO: Biological Process [Display Chart] [Hide Detail]							
	ID	Name	Source	P-value	Term in Query			
1	GO:0009605	response to external stimulus		0	27			
2	GO:000754	blood coagulation		0	12			
З	GO:0006629	lipid metabolic process		0	25			
4	GO:0044255	cellular lipid metabolic process		0	23			
5	GO:0050817	coagulation		0	12			
6	GO:0007599	hemostasis		0	12			
7	GO:0009611	response to wounding		0	20			
8	GO:0042060	wound healing		0	13			
9	GO:0050878	regulation of body fluid levels		0	12			
1	0 GO:0055114	oxidation reduction		0	19			
1	1 GO:0019752	carboxylic acid metabolic process		0	18			

Significant Terms For: Pathway

response to external stimulus; GO:0009605								
	Entrez Gene ID	Gene Symbol	Gene Name	Original Symbol				
1	126	ADH1 C	alcohol dehydrogenase 1C (class I), gamma polypeptide	126				
2	335	APOA1	apolipoprotein A-I	335				
3	350	АРОН	apolipoprotein H (beta-2-glycoprotein I)	350				
4	2158	F9	coagulation factor IX	2158				
5	5950	RBP4	retinol binding protein 4, plasma	5950				
6	197	AHSG	alpha-2-HS-glycoprotein	197				
7	2243	FGA	fibrinogen alpha chain	2243				
8	213	ALB	albumin	213				
9	2244	FGB	fibrinogen beta chain	2244				
10	629	CFB	complement factor B	629				
11	3158	HMGCS2	3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 (mitochondrial)	3158				
12	5444	PON1	paraoxonase 1	5444				
13	1361	CPB2	carboxypeptidase B2 (plasma)	1361				
14	3078	CFHR1	complement factor H-related 1	3078				
15	5265	SERPINA1	serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 1	5265				
16	3827	KNG1	kininogen 1	3827				
17	325	APCS	amyloid P component, serum	325				
18	2538	G6PC	glucose-6-phosphatase, catalytic subunit	2538				
19	4153	MBL2	mannose-binding lectin (protein C) 2, soluble (opsonic defect)	4153				
20	735	С9	complement component 9	735				
21	462	SERPINC1	serpin peptidase inhibitor, clade C (antithrombin), member 1	462				
22	3273	HRG	histidine-rich glycoprotein	3273				
23	5340	PLG	plasminogen	5340				
24	5004	ORM1	orosomucoid 1	5004				
25	316	AOX1	aldehyde oxidase 1	316				
26	3053	SERPIND1	serpin peptidase inhibitor, clade D (heparin cofactor), member 1	3053				
27	1356	СР	ceruloplasmin (ferroxidase)	1356				

ToppGene Suite (http://toppgene.cchmc.org) - ToppFun

🖹 ToppGene Result Page		÷							
Number of genes in training set:	81								_
Number of genes in test set:	0								
	categ	огу	Correction	Cutoff	Min	Max			
	GO: Molecula	r Function	Bonferroni	0.05	1	1500			
	GO: Biologica	I Process	Bonferroni	0.05	1	1500			
	GO: Cellular C	Component	Bonferroni	0.05	1	1500			
	Human Pheno	ntype	Bonferroni	0.05	1	1500			
	Mouse Pheno	type	Bonferroni	0.05	1	1500			
	Domain		Bonferroni	0.05	1	1500			
	Pathway		Bonferroni	0.05	1	1500			
Correction and Cutoff:	Pubmed		Bonferroni	0.05	1	1500		Enter name of	ľ
conection and cuton.	Interaction		Bonferroni	0.05	1	1500		Save in:	
	Cytoband		Bonferroni	0.05	1	1500		odve iri.	•
	TFBS		Bonferroni	0.05	1	1500			1
	Gene Family		Bonferroni	0.05	1	1500		3	
	Coexpression	۱	Bonferroni	0.05	1	1500		My Recent	
	Computationa	I	Bonferroni	0.05	1	1500		Documents	
	MicroRNA		Bonferroni	0.05	1	1500			1
	Drug		Bonferroni	0.05	1	1500			
	Disease		Bonferroni	0.05	1	1500		Desktop	
Random sampling size in analysis:	0							D'OSKOP	
Minimun feature count in test set: 2									
Analysis took:	2 seconds	seconds							
Analysis finished at:	Sun Sep 27 1	6:45:06 ED	T 2009					My Documents	

Training Results [Show All] [Download All] [Sparse Matrix]

- 1: GO: Molecular Function [Display Chart] [Show Detail]
- 2: GO: Biological Process [Display Chart] [Show Detail]
- 3: GO: Cellular Component [Display Chart] [Show Detail]
- 4: Human Phenotype [Display Chart] [Show Detail]
- 5: Mouse Phenotype [Display Chart] [Show Detail]
- 6: Domain [Display Chart] [Show Detail]
- 7: Pathway [Display Chart] [Show Detail]
- 8: Pubmed [Display Chart] [Show Detail]

Enter name of t	file to save to	
Save in:	🞯 Desktop	
My Recent Documents Desktop My Documents My Computer	 Document2 TOB1_p53 Refrig-Bulb miRNApromoter Anil My Computer Imp_Dates Bioinfo_Worksho Unused Desktop Disease CVs p53mhwin songs New Folder Photos Misc 	op-2009
	File name:	LiverGenes_T
My Network	Save as type:	Text Docume

				? 🗙
¥	G	ð 🖻	-	
Computer My Network Places My Computer My Documents				
_ToppFun.txt		~]	Save
nent		~]	Cancel

Download Example Data Sets for Exercises From http://anil.cchmc.org/dhc.html

Two Excel Files:

1. GeneLists.xls: Has two worksheets

- a. Tissue GeneLists: Has a list of overexpressed genes in some of the digestive system tissues
- b. miRNA-Targets Validated: Has a list of validated target genes for some of the microRNAs

2. CandidateGenes.xls: Has two worksheets

- a. abnormal_dig_sys_morph_genes: Has a list of genes associated with the phenotype abnormal digestive system morphology in mouse
- b. miRNA_Putatitve_Targets: Has a list of predicted targets of some of the miRNAs from TargetScan (version 5.0)

Exercise 1: Use the different gene lists from the downloaded file ("GeneLists.xls") and find out:

Note: The "GeneLists.xls" file has two worksheets and within each worksheet there are several gene lists based on tissue-specificity or being microRNA targets (validated)

- a. How many of the liver-overexpressed genes are associated with lipid metabolic process?
- b. Are there any enriched TFBSs for liver overexpressed genes?
- c. What are the enriched miRNAs in the colon-cecum overexpressed genes?
- d. What gene families are enriched in esophagus overexpressed genes?
- e. In which other regions are stomach (cardiac) genes overexpressed?
- What biological process are miR-1 target genes enriched f. for?

What if I want to compare several gene lists at a time? **ToppCluster (http://toppcluster.cchmc.org)**


🖉 🌱 Cincinnati

A multiple gene list feature enrichment analyzer for the dissection of biological systems

Navigation	Paste input list Load Sample Data	Genes
Main	Symbols are HGNC Symbol 🛛 🗸	ALDH8A1
 Alternative Entry Methods 	Cluster Name Kidney	LOC340094
		LOC134147
Information	remove	SLC36A2
		DZIP1
 Disclaimer Documentation 		EHHADH
 Supplementary 		BTC
(- cappionional)		TMEM12
		LOC388588
ToppGene		DNASE1L3
• Database Info		KLHDC7A
• Links		BBOX1
		HOXD10
		GLDC
		AQP2
		WDR72
		KCNK5
		VNN1
		LOC441748
		LOC348174
		GATN
		EMX1
		DKFZP586D0919
		EMX2
		UNC5CL
		BTBD5
		HNF4G
		LOC285733
		PPARGC1A
		DHDH
	Symbols are HGNC Symbol	СУРЗА4
	Cluster Name HGNC Symbol	ALDH8A1
	HGNC Symbol and Synonyms	JUB
	remove Entrez ID	СУРЗА5
	Ensembl ID	A2M
	RefSeq	СУРЗА7
	Uniprot	AQP9
		MASP2
		EHHADH
		CYP2D6
		TMEM12
		DE325

luster

Options							٦ ا	
Feature	Correction	p-Valu cutof			Gene Lir	nits		
🗹 All	Bonferroni 🔽	0.05 📘	e -	1	$\leq n \leq$	1500		
🗹 GO: Molecular Function	Bonferroni 🔽	0.05 📘	/	1	$\leq n \leq$	1500		
🗹 GO: Biological Process 👘	Bonferroni 💌	0.05 📘		1	$\leq n \leq$	1500		
🗹 GO: Cellular Component	Bonferroni 💌	0.05 📘	/	1	$\leq n \leq$	1500		Network
🗹 Human Phenotype	Bonferroni 💌	0.05 📘		1	$\leq n \leq$	1500		
🗹 Mouse Phenotype	Bonferroni 🔽	0.05 📘	/	1	$\leq n \leq$	1500		Interacti
🗹 Domain	Bonferroni 💌	0.05 📘	•	1	$\leq n \leq$	1500		Comm
🗹 Pathway	Bonferroni 💌	0.05 📘	/	1	$\leq n \leq$	1500		Genef
🗹 Pubmed	Bonferroni 💌	0.05 💽	2	1	$\leq n \leq$	1500		Tab S
Interaction	Bonferroni 🔽	0.05 📘		1	$\leq n \leq$	1500		HTML
🗹 Cytoband	Bonferroni 🔽	0.05 📘	-	1	$\leq n \leq$	1500		Netwo
🗹 TFBS	Bonferroni 🔽	0.05 📘	/	1	$\leq n \leq$	1500		Batch
🗹 Gene Family	Bonferroni 💌	0.05 📘		1	$\leq n \leq$	1500		_
🗹 Coexpression	Bonferroni 🔽	0.05 📘	-	1	$\leq n \leq$	1500		
Computational	Bonferroni 💌	0.05 📘		1	$\leq n \leq$	1500		Tab S
MicroRNA	Bonferroni 💌	0.05 📘	/	1	$\leq n \leq$	1500		Cluste
🗹 Drug	Bonferroni 🔽	0.05 💽		1	$\leq n \leq$	1500		PDFH
Dicopco	Bonferroni 🔽	0.05 🔊	/	1	< n <	1500		
Chose Toppcluster output fo	rmat: Network	Genera	tor		*	r		

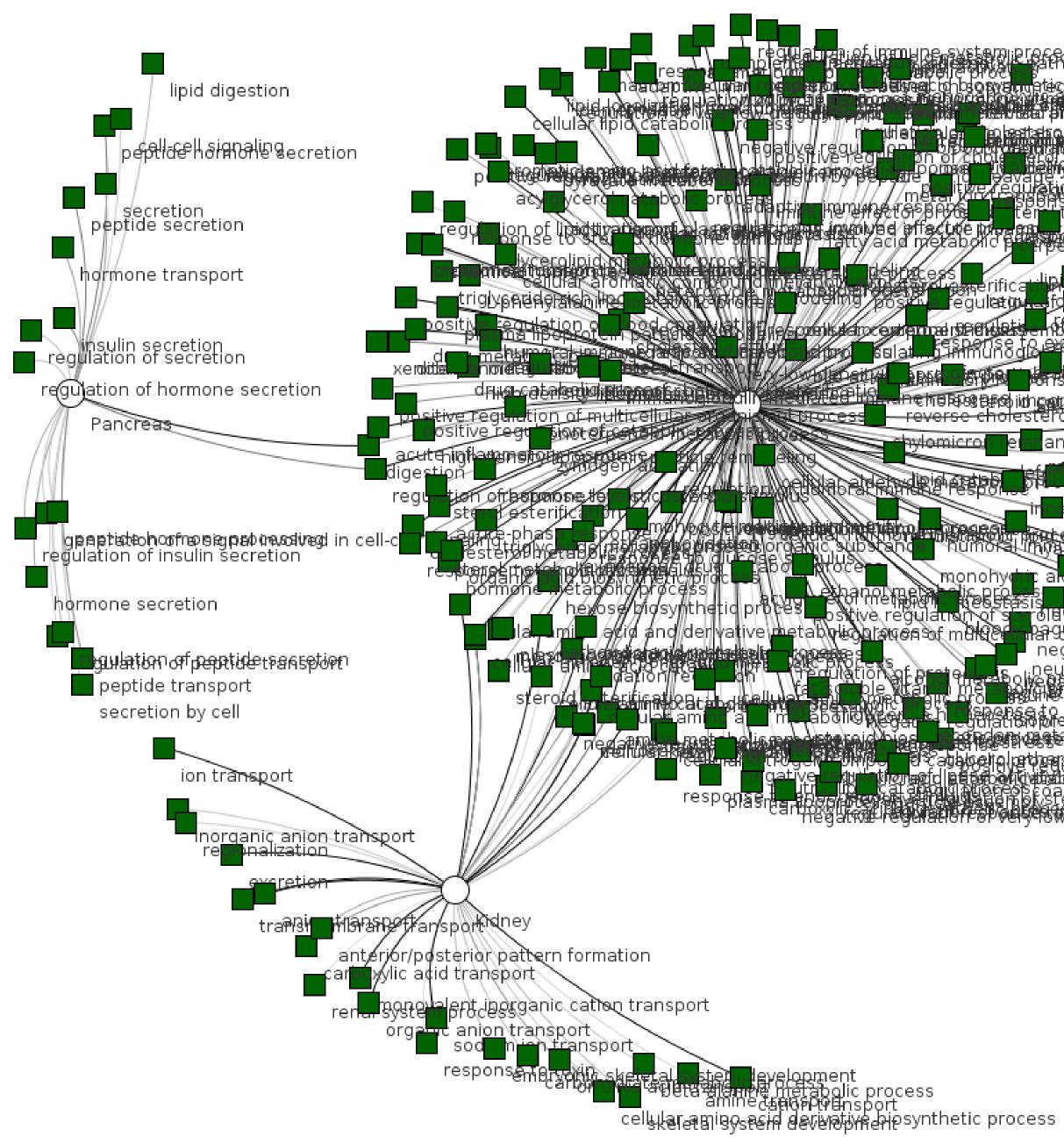
-Gene Sets–	
-------------	--

303	Kidney known - 59 unknowr	ר ז	^	2	Liver 79 known - 30 unkr	iown	^	1	Pancreas 34 known - 46 unkn	own	^
Original	Human Symbol	Entrez ID	≡	Original CYP3A4	Human Symbol CYP3A4	Entrez ID 1576		Original APOBEC2	Human Symbol APOBEC2	Entrez ID 10930	
ALDH8A1	ALDH8A1	64577		ALDH8A1	ALDH8A1	64577		EDN3	EDN3	1908	
_OC340094	LOC340094	340094		JUB	JUB	84962		SYT5	SYT5	6861	
SLC36A2	SLC36A2	153201		CYP3A5	CYP3A5	1577		SLC44A4	SLC44A4	80736	-
DZIP1	DZIP1	22873		A2M	A2M	2		C14orf50	C14orf50	145376	
EHHADH	EHHADH	1962		CYP3A7	CYP3A7	1551		CDH22	CDH22	64405	
втс	BTC	685		AQP9	AQP9	366		TTR	TTR	7276	
_OC388588	LOC388588	388588		MASP2	MASP2	10747		ERO1LB	ERO1LB	56605	
DNASE1L3	DNASE1L3	1776		EHHADH	EHHADH	1962		FBXO27	FBXO27	126433	
KLHDC7A	KLHDC7A	127707		CYP2D6	CYP2D6	1565		GPR44	GPR44	11251	
BBOX1	BBOX1	8424		RFXAP	REXAP	5994		PPP1R1A	PPP1R1A	5502	
HOXD10	HOXD10	3236		DNASE1L3	DNASE1L3	1776		GP2	GP2	2813	
GLDC	GLDC	2731		HEMGN	HEMGN	55363		CPA2	CPA2	1358	
<u>40P2</u>	AOP2	359		ACTP1	ACTD1	105				5010	

Generator

ive

na Separated Values Pattern Format (GCT) Separated Values Table

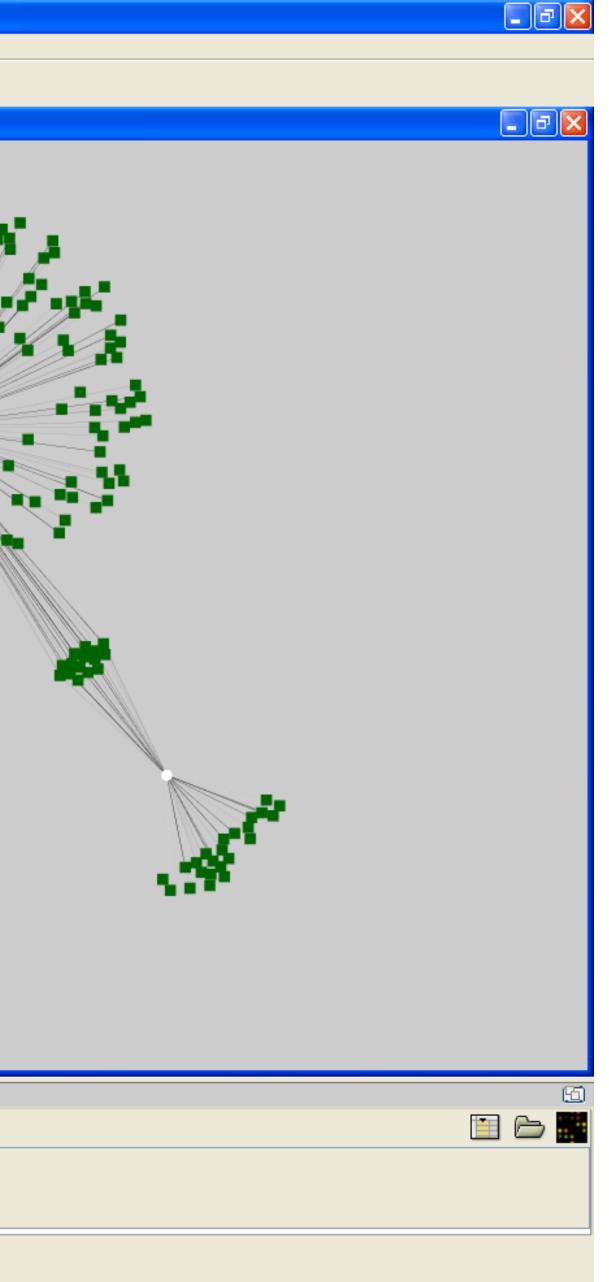

ork Generator

na Separated Values Separated Values ered Data (Zipped) Heatmap

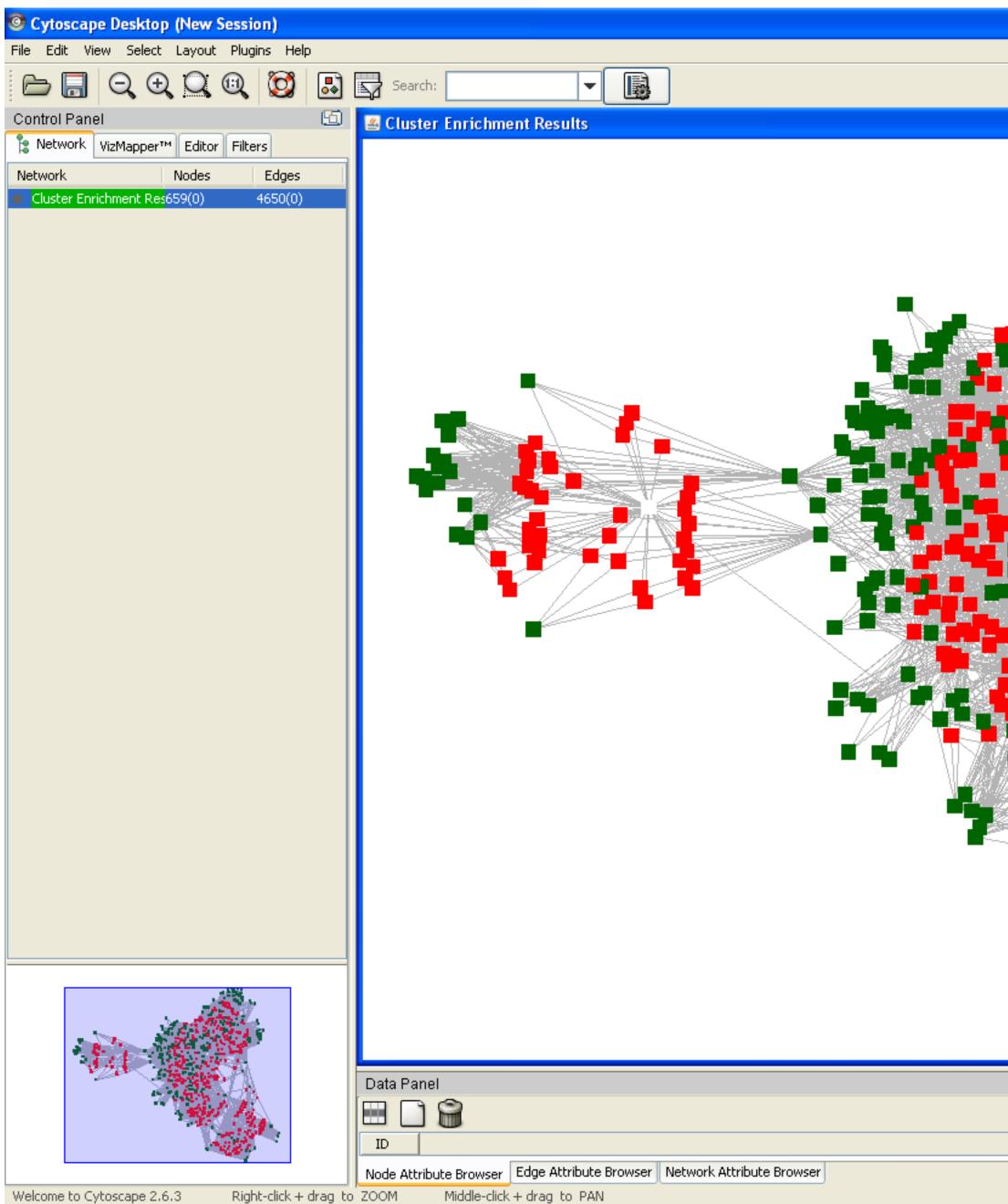
Processing Salivary_Glands	Navigate Jump To	😓 Back to Start 🛛 🗖 Highlight genes 🛛 Clear 🔹 Selec	ork Generator t nodes to be included in the click next	e network Next >	
	Category ID	Title (or Source)	🛛 Kidney_lo	gP Liver_logP Pancreas_log	P Kidney_GeneSet
	GO: Molecy ar GO:0048037	GO: Molecular Function cofactor binding	V 3.8132	pValues Values	ACADSB AGXT2 ALDH6A1 CHDH DDC DMGD
Navigate	Function				EHHADH FMO1 GCSH GLDC GPT HAO2 HNF4 MIOX MOSC2 NOX4 OGDHL PAH
	GO: Molecular GO:0004252 Function	serine-type endopeptidase activity		☑ 10.0000 ☑ 3.3520	
Jump To Jump To GO: Molecular Function GO: Biological Process GO: Cellular Component	GO: Molecular GO:0005215 Function	transporter activity	✓ 10.0000	0 🗹 3.0795	ABCC6 AQP2 ATP6V0A4 ATP6V0D2 ATP6V10 CLCNKB CLDN16 CUBN FXYD2 FXYD4 HCN3 KCNJ1 KCNJ15 KCNJ16 KCNK5 LOC153328 OSTBETA PDZK1 RBP5 SCNN1G SLC10A2 SLC12A1 SLC12A3 SLC13A1 SLC13A2 SLC1 SLC16A12 SLC16A7 SLC16A9 SLC17A1 SLC17A3 SLC1A1 SLC22A2 SLC22A6 SLC22 SLC22A8 SLC23A1 SLC2A3 SLC26A7 SLC2 SLC28A1 SLC2A2 SLC2A9 SLC30A2 SLC344 SLC36A2 SLC3A1 SLC4A4 SLC4A9 SLC5A13 SLC5A12 SLC5A2 SLC5A8 SLC6A13 SLC6A3 SLC6A3 SLC7A13 SLC7A9 SLC04C1 TRPM6
Human Phenotype Mouse Phenotype	GO: Molecular GO:0017171 Function	serine hydrolase activity		☑ 10.0000 ☑ 2.7787	
Domain	GO: Molecular GO:0031406 Function	carboxylic acid binding	✓ 2.1541	☑ 10.0000	DMGDH DPYS FOLR3 FTCD GCSH GLDC HNF NR1H4 PAH PCK1 SLC1A1
Pathway Pubmed Interaction	GO: Molecular GO:0016491 Function	oxidoreductase activity	✓ 2.0183	☑ 10.0000	ACADSB ADH6 ALDH6A1 ALDH8A1 BBOX1 CYP17A1 CYP27B1 CYP4V2 DAO DHDH DIC DMGDH EHHADH FMO1 GLDC HAO2 HGD H MIOX MOSC2 NDUFC1 NOX4 OGDHL PAH F PRODH2
Cytoband TFBS	GO: Molecular GO:0005496 Function	steroid binding	✓ 1.5055	10.0000	AGXT2 CALB1 DDC GLDC GPT HNF4A HNF4 MOSC2 NR1H4
Coexpression	GO: Molecular GO:0001871 Function	pattern binding		☑ 10.0000	
Computational Drug Disease	GO: Molecular GO:0008324 Function	cation transmembrane transporter activity	✓ 10.0000)	ATP6V0A4 ATP6V0D2 ATP6V1G3 CLDN16 F HCN3 KCNJ1 KCNJ15 KCNJ16 KCNK5 SCN SLC10A2 SLC12A1 SLC12A3 SLC13A1 SLC SLC13A3 SLC17A3 SLC1A1 SLC22A2 SLC2 SLC23A1 SLC28A1 SLC2A2 SLC2A9 SLC30 SLC36A2 SLC4A4 SLC5A11 SLC5A2 SLC64 SLC6A19 SLC6A3 TRPM6
MicroRNA	GO: Molecular GO:0016705 Function	oxidoreductase activity, acting on paired donors, incorporation or reduction of molecular oxygen	with 🔽	☑ 10.0000	

Network Generator	
Warning: because of the network size, some options like layout, preview and PNG have been limited or hidden.	
Summary	
2126 checked boxes 2016 nodes in an ABSTRACTED network. 2600 nodes in a GENE LEVEL network.	
_ Method	
 ABSTRACTED A Feature to Cluster network where the score is used as the edge weight GENE LEVEL A gene-based network where each gene connects from a Cluster to a Feature. Method Options 	
Create a Category node linked to all features of that category	
 File Format XGMML An XML based format compatible with Cytoscape. (more information) TEXT A Simple Text Format. GEXF An XML based format compatible with Gephi. (more information) 	
Begin	
Network Generator	
Summary	
279 checked boxes 265 nodes in an ABSTRACTED network. 660 nodes in a GENE LEVEL network.	
Method	
 ABSTRACTED A Feature to Cluster network where the score is used as the edge weight GENE LEVEL A gene-based network where each gene connects from a Cluster to a Feature. Method Options 	
Create a Category node linked to all features of that category	
 Layout Algorithm Kamada-Kawai. Fruchterman-Reingold. Spring. Circle. Meyer's Self-Organizing. 	
 File Format XGMML An XML based format compatible with Cytoscape. (more information) PNG A raster graphic format. (more information) TEXT A Simple Text Format. GEXF An XML based format compatible with Gephi. (more information) 	
Begin Preview	

ntor	
size, some options like layout, preview and PNG have been limited or hidden.	
zwork. Pork.	
ster network where the score is used as the edge weight work where each gene connects from a Cluster to a Feature.	
to all features of that category	
ompatible with Cytoscape. (more information)	
npatible with Gephi. (more information)	
Network Generator Summary 279 checked boxes 265 nodes in an ABSTRACTED network. 660 nodes in a GENE LEVEL network. Method Method ABSTRACTED A Feature to Cluster network where the score is used as the edge weight	
GENE LEVEL A gene-based network where each gene connects from a Cluster to a Feature. Method Options Create a Category node linked to all features of that category	
 Layout Algorithm Kamada-Kawai. Fruchterman-Reingold. Spring. Circle. Meyer's Self-Organizing. 	
 File Format XGMML An XML based format compatible with Cytoscape. (more information) PNG A raster graphic format. (more information) TEXT A Simple Text Format. GEXF An XML based format compatible with Gephi. (more information) 	
Begin Preview	


SYSTEMULE REFERENCE
in boosyst. wetec antiquestion of immune receptors built from immunc have built from immunc services process
alen en estate ali cranscerta Nel Solar en estate al secondaria e Secondaria estate al secondaria estate al secondaria estate al secondaria estate al secondaria estate al second
资源 · · · · · · · · · · · · · · · · · · ·
litive regulationation instabolisgunations Selente to wounding Voint termitransport
the provide response right activation
negative regulation of very-low-density lipoprot
egulation of the standard the
and the second of the diated immunity
espense to estimate the were low-density lipoprotein particle rer minunogle the manual interaction by peptide bo
a terrent of the second of the second s
The second as a se
micro Termant clearance
A cotosi si alla logi of defense response
in atigration in the second state of the secon
numoral invalidation of fibrinolysis
monohydring ales in stakere inderetare i te stake i te
elic pro se erol transport
trens of starting atives and the starting of starting to the second starting of starting o
negative regulation of multicellular organismal process
neutral lipid metabolic process neutral lipid metabolic process c and lipid lipid sequation of coagulation c and lipid lipid sequation catabolic process
spanse to nutrient evels
augusticity and a second of the second of th
leferon dubligers process
linger of detrements process in the second second second second
den er very ten densky ipoprocent particle erearance

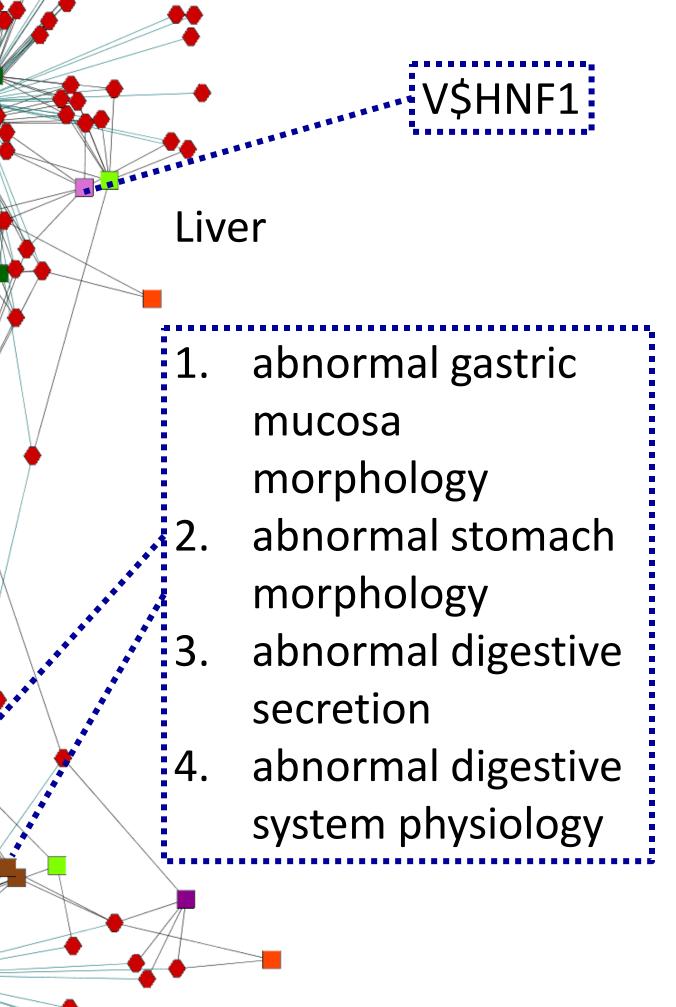
Network Generator Summary 279 checked boxes 265 nodes in an ABSTRACTED network. 660 nodes in a GENE LEVEL network. Method Image: Streacted A Feature to Cluster network where the score is used	ed as the edge weight
 GENE LEVEL A gene-based network where each gene connects fr Method Options Create a Category node linked to all features of that category 	Opening data.xgmml
 Layout Algorithm Kamada-Kawai. Fruchterman-Reingold. Spring. Circle. Meyer's Self-Organizing. File Format XGMML An XML based format compatible with Cytoscape. (more in PNG A raster graphic format. (more information) TEXT A Simple Text Format. GEXF An XML based format compatible with Gephi. (more informatic 	
Cytoscape (http://cyto Gephi (http://gephi.or	computer and the downloaded


files should be imported into these applications

Cytoscape Network (Abstract View)

0				
Cytoscape Desktor				
	Layout Plugins Help			
	ζ 🔍 🔍 🔯	•	Search:	
Control Panel		6	Cluster Enrichment Results	
tail: Network VizMapper™	[™] Editor Filters	_		
Current Visual Style				
Cluster Enrichment Re:	suits s 🎽 😿 🔹	J		۰.
Defaults		\equiv		
				1 77/
Source		- II		
pourog	Targe	et		
		-		
Visual Mapping Brow	ser			
≜ ↓ 🔠 💷				
😑 Edge Visual Mapping		<u>^</u>		
🗄 Edge Color	vizmap:Cluster Enrich			
😑 Node Visual Mapping				
🗄 Node Color	vizmap:Cluster Enrich			ſ
🗄 Node Label	ID			
🗄 Node Shape	vizmap:Cluster Enrich			
Unused Properties				
Edge Font Face	Double-Click to create			
Edge Font Size	Double-Click to create			
Edge Label	Double-Click to create			
Edge Label Color	Double-Click to create			
Edge Label Opacity	Double-Click to create			
Edge Line Style	Double-Click to create			
Edge Line Width	Double-Click to create			
Edge Opacity	Double-Click to create			
Edge Source Arrow C	Double-Click to create			
Edge Source Arrow O	Double-Click to create			
Edge Source Arrow Sh	Double-Click to create			
	Double-Click to create		Data Panel	
	Double-Click to create			
	Double-Click to create			
Edge Tooltip	Double-Click to create		regulation of hormone levels digestion	
Node Border Color	Double-Click to create	•		
Welcome to Cytoscape 2,0	6.3 Right-click + d		Node Attribute Browser Edge Attribute Browser Network Attribute Browser to ZOOM Middle-click + drag to PAN	

Cytoscape Network (GeneLevel View)


_ 7 🛛 Ð 🔟 🗁 🎬

_ 7 🛛

Cytoscape Network (GeneLevel View)

EHF COL15A1 LOC100130100 IGHA1 LTF IGKC IGL@ FAM129A ATP8B1 IGLC2 Network View – Shared and specific genes and annotations between different gene lists Cytoscape (http://cytoscape.org) installation required

Salivary Gland

Stomach

Exercise 2: Use the different gene lists from the downloaded file ("GeneLists.xls") and find out: Note: The "GeneLists.xls" file has two worksheets and within each worksheet there are several gene lists based on tissue-specificity or being microRNA targets (validated)

- a. What are the shared and specific biological processes between stomach and salivary glands?
- b. Are there any enriched miRNAs for stomach? If so, which other tissues are enriched for this miRNA?
- c. What are the functional similarities and differences between the 3 regions of the stomach (cardiac, fundus, and pylorus)?

ToppGene Suite (http://toppgene.cchmc.org) I have a list of 200 over-expressed genes and I want to prioritize them for experimental validation (apart from using the fold change as a parameter).....

ToppGene Suite

A one-stop portal for gene list enrichment analysis and candidate gene prioritization based on functional annotations and protein interactions network

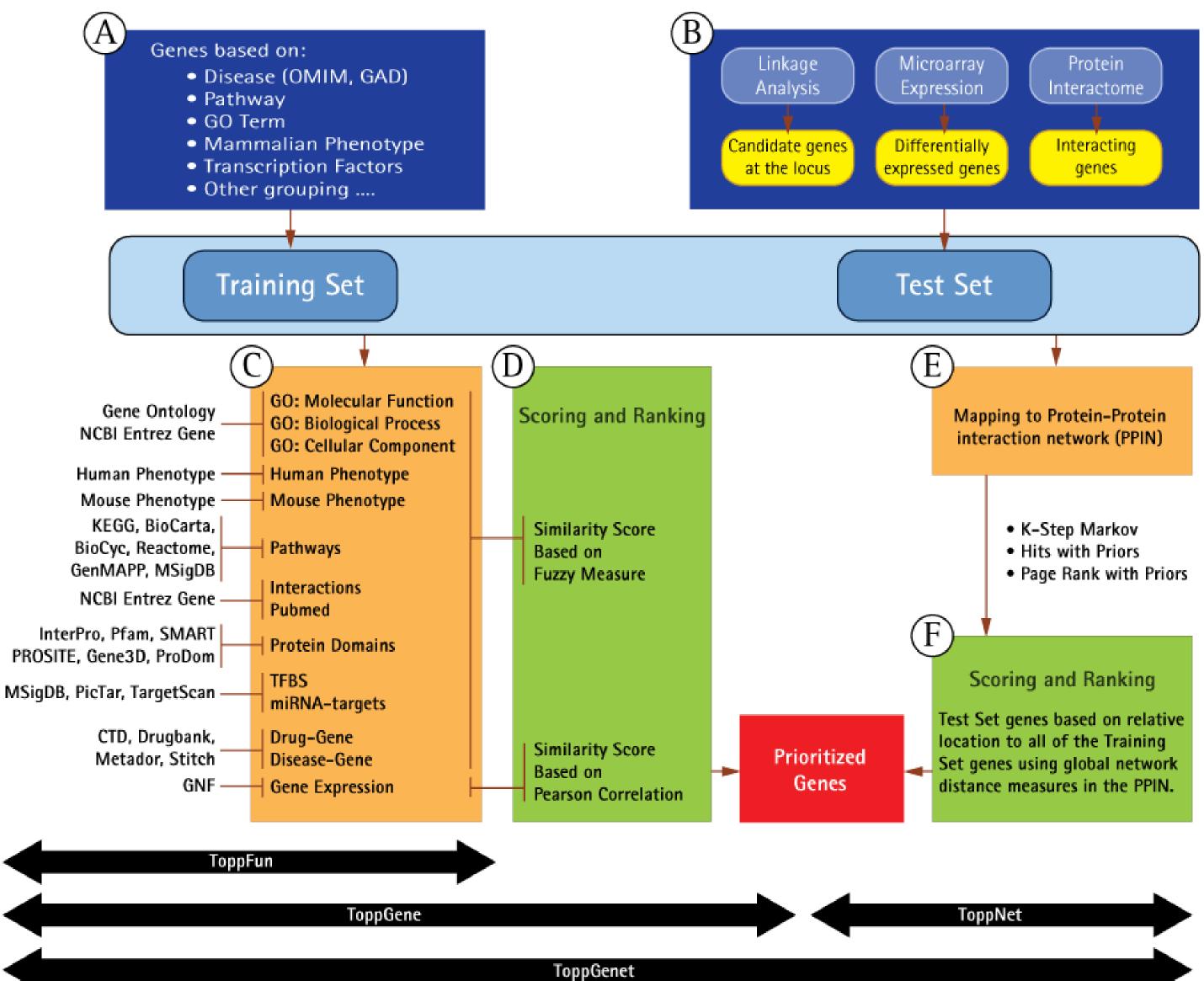
• **ToppFun:** Transcriptome, ontology, phenotype, proteome, and pharmacome annotations based gene list functional enrichment analysis.

Detect functional enrichment of your gene list based on Transcriptome, Proteome, Regulome (TFBS and miRNA), Ontologies (GO, Pathway), Phenotype (human disease and mouse phenotype), Pharmacome (Drug-Gene associations), literature co-citation, and other features.

낪

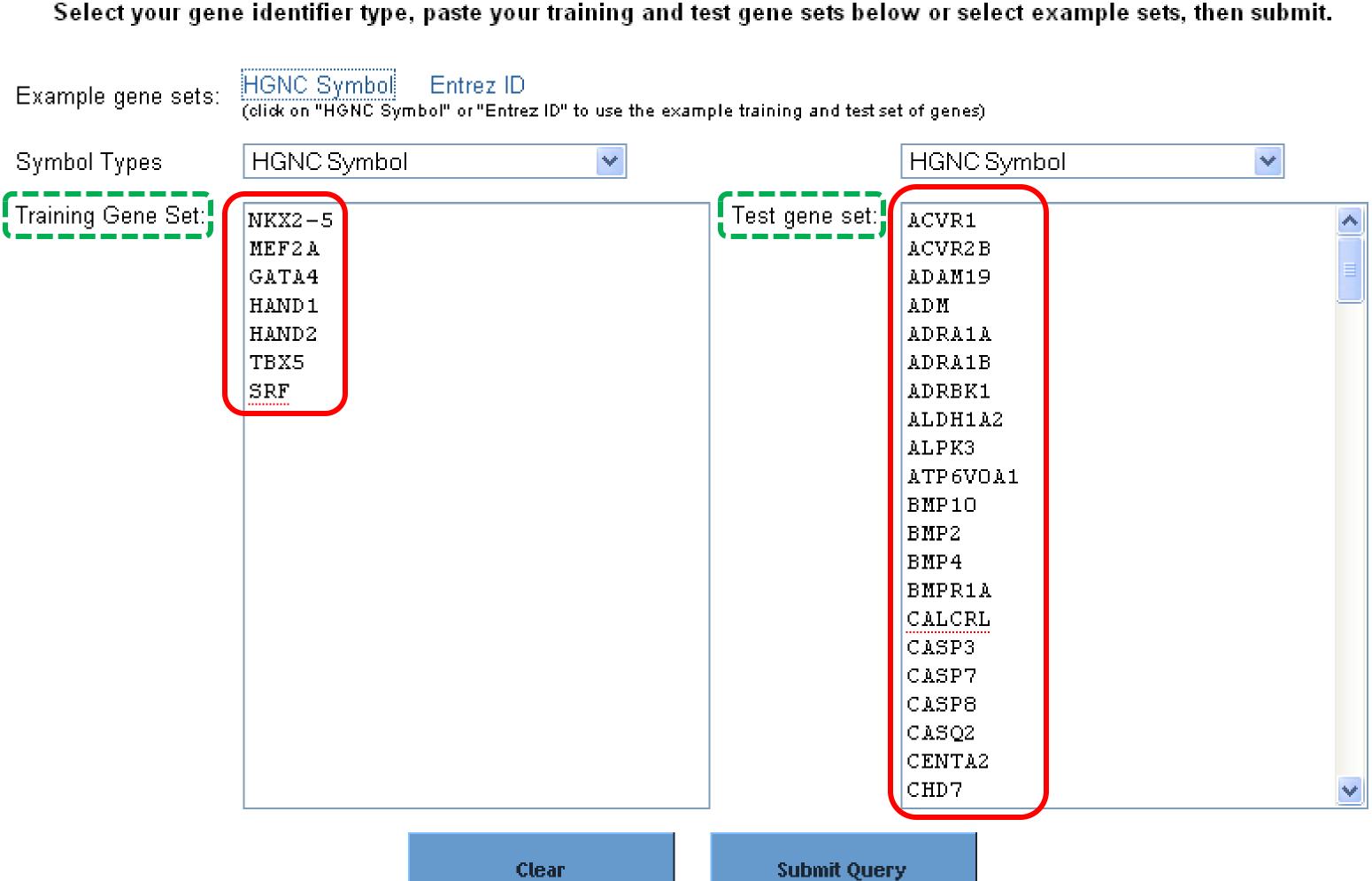
ToppGene: Candidate gene prioritization

Prioritize or rank candidate genes based on functional similarity to training gene list.


ToppNet: Relative importance of candidate genes in networks.

Prioritize or rank candidate genes based on topological features in protein-protein interaction network.

ToppGenet: Prioritization of neighboring genes in protein-protein interaction network.


Identify and prioritize the neighboring genes of the seeds in protein-protein interaction network based on functional similarity to the "seed" list (ToppGene) or topological features in protein-protein interaction network (ToppNet).

ToppGene Suite (http://toppgene.cchmc.org) - <u>ToppGene</u></u> I have a list of 200 over-expressed genes and I want to prioritize them for experimental validation (apart from using the fold change as a parameter).....

ToppGene Suite (http://toppgene.cchmc.org) - <u>ToppGene</u></u>

ToppGene: Candidate gene prioritization

ToppGene Suite (http://toppgene.cchmc.org) - ToppGene

	Training s	et (7 / 7)			Test set (1/	46 / 158)		
	Entered	Human Symbol	Gene	e ID	Entered	Human Symbol	Gene ID	^
	NKX2-5	NKX2-5	1482		ACVR1	ACVR1	90	
	MEF2A	MEF2A	4205		ACVR2B	ACVR2B	93	
	GATA4	GATA4	2626		ADAM19	ADAM19	8728	
	HAND1	HAND1	9421		ADM	ADM	133	
	HAND2	HAND2	9464		ADRA1A	ADRA1A	148	
	TBX5	TBX5	6910		ADRA1B	ADRA1B	147	
	SRF	SRF	6722		ADRBK1	ADRBK1	156	
					ALDH1A2	ALDH1A2	8854	
				_	ALPK3	ALPK3	57538	
					ATP6V0A1	ATP6V0A1	535	
36	estions				BMP10	BMP10	27302	
					BMP2	BMP2	650	
01	mains 2 Hun	nan Synonym			BMP4	BMP4	652	
	entoining 1 L	Junon Cunonum			BMPR1A	BMPR1A	657	
N	ginaning i r	Human Synonym			CALCRL	CALCRL	10203	
ı'n	ha 1, 45kDa	Human Synonym			CASP3	CASP3	836	
	•				CASP7	CASP7	840	
/D	ionym				CASP8	CASP8	841	
IC	ity 13 (colo	n carcinoma) (Hspi	70		CASQ2	CASQ2	845	
		n caronionia) (riopi	0		CHD7	CHD7	55636	
ורו	onym				CITED2	CITED2	10370	*
				1				

Entered	Suggestions
CENTA2	ADAP2 - ArfGAP with dual PH domains 2 Human Synonym
CMYA1	🗹 XIRP1 - xin actin-binding repeat 🎝 ntaining 1 Human Synonym
GJA7	GJC1 - gap junction protein, gamma 1, 45kDa Human Synonym
HOP	🗹 HOPX - HOP homeobox Human Synonym
	ST13 - suppression of tumorigenicity 13 (colon carcinoma) (Hsp70 interacting protein) Human Synonym
	STIP1 - stress-induced-phosphoprotein 1 Human Synonym
PPARBP	MED1 - mediator complex subunit 1 Human Synonym
	RBPJ Duplicated
Update	Check All

lgnored

Entered	Status
CENTA2	Not Found
CMYA1	Not Found
GATA4	In Training Set
GJA7	Not Found
HAND1	In Training Set
HAND2	In Training Set
HOP	Not Found
NKX2-5	In Training Set
PPARBP	Not Found
RBPSUN	Not Found
SRF	In Training Set
TBX5	In Training Set
	Find alternatives for missing symbols

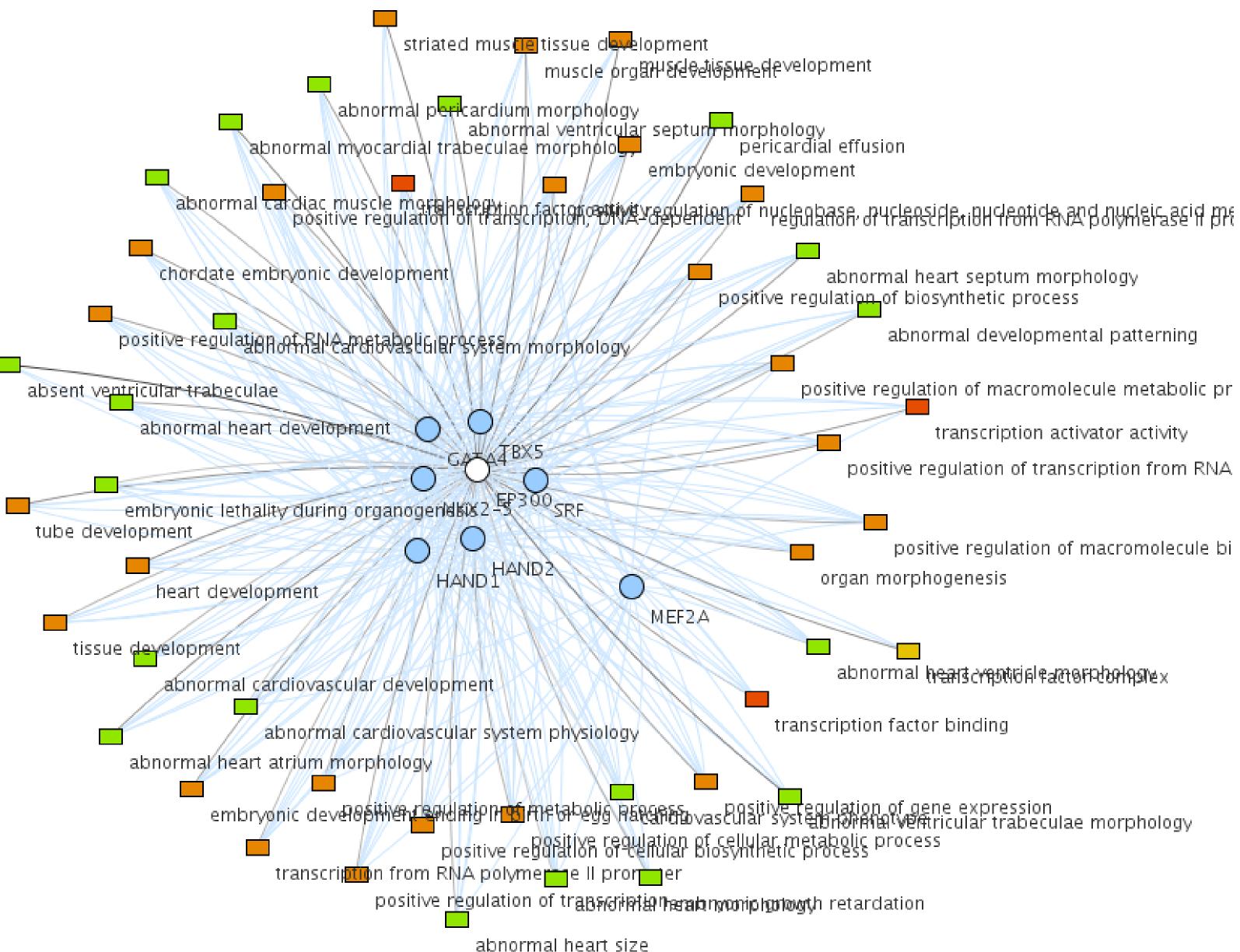
ToppGene Suite (http://toppgene.cchmc.org) - <u>ToppGene</u>

Training parameters	Feature	Correction	p-Value cutoff	
	🗹 All	Bonferroni 💌	0.05 💌	1
	🗹 GO: Molecular Function	Bonferroni 💌	0.05 💌	1
	🗹 GO: Biological Process	Bonferroni 💌	0.05 💌	1
	🗹 GO: Cellular Component	Bonferroni 🔽	0.05 💌	1
	🗹 Human Phenotype	Bonferroni 🔽	0.05 💌	1
	🗹 Mouse Phenotype	Bonferroni 🔽	0.05 💌	1
	🗹 Domain	Bonferroni 🔽	0.05 💌	1
	🗹 Pathway	Bonferroni 💌	0.05 💌	1
	🗹 Pubmed	Bonferroni 💌	0.05 💌	1
	Interaction	Bonferroni 💌	0.05 💌	1
	🗹 Cytoband	Bonferroni 💌	0.05 💌	1
	V TFBS	Bonferroni 💌	0.05 💌	1
	🗹 Gene Family	Bonferroni 💌	0.05 🔽	1
	Coexpression	Bonferroni 💌	0.05 💌	1
	Computational	Bonferroni 💌	0.05 🔽	1
	🗹 MicroRNA	Bonferroni 💌	0.05 💌	1
	🗹 Drug	Bonferroni 💌	0.05 💌	1
	🗹 Disease	Bonferroni 💌	0.05 💌	1
·	ndom sampling size: 1500 (63 n. feature count: 2 🔽	% of genome) 🎦	✓	
Hom	e Modify Qu	ery	Start prioritizati	ion

Gene Limits									
	$\leq n \leq$	1500							
	$\leq n \leq$	1500							
	$\leq n \leq$	1500							
	$\leq n \leq$	1500							
	$\leq n \leq$	1500							
	$\leq n \leq$	1500							
	$\leq n \leq$	1500							
	$\leq n \leq$	1500							
	$\leq n \leq$	1500							
	$\leq n \leq$	1500							
	$\leq n \leq$	1500							
	$\leq n \leq$	1500							
	$\leq n \leq$	1500							
	$\leq n \leq$	1500							
	$\leq n \leq$	1500							
	$\leq n \leq$	1500							
	$\leq n \leq$	1500							
	$\leq n \leq$	1500							

ToppGene is processing your query

Estimating p-Values
To see the training results before the test set is complete, click here.


ToppGene Suite (http://toppgene.cchmc.org) - <u>ToppGene</u></u>

Rank	Gene Symbol	Gene ID	GO: Mo Func			ological cess		ellular onent		nan otype	Mous Phenot		Doma	in	Pati	nway	Pubn	ned	Interac	tion	Су	toband
	Symbol	10	Score	p∀alue	Score	pValue	Score	p∀alue	Score	pValue	Score	pValue	Score	p∀alue	Score	p∀alue	Score	p∀alue	Score	pValue	Score	p∀alue
1	EP300	2033	0.7136999	0.0235641	0.9999726	0.0029455	0.4305814	0.001	0	0.5	0.9999881	0.005			0	0.5049834	0.8410056	0.001	0.7991753	0.001	0	0.5004907
2	T <u></u> €AD1	7003	0.5804123	0.0309278	0.997771	0.0103093	0.4305814	0.001	0	0.5	0.9989337	0.035	0	0.5			0.7993714	0.001	0.7160863	0.001	0	0.5004907
3	HIF1A	3091	0.9391513	0.0029455	1	0.001	0.4305814	0.001			0.9997067	0.02	0.8885697	0.001	0	0.5049834	0	0.4995093	0	0.505	0	0.5004907
4	CTNNB1	1499	0.7136999	0.0235641	1	0.001	0.4305814	0.001	0	0.5	0.9529218	0.06			0.6371253	0.001	0	0.4995093	0	0.505	0	0.5004907
5	TBX20	57057	0.5804123	0.0309278	0.9999964	0.0014728	0	0.5022091			0.9999902	0.005	0	0.5			0	0.4995093			0	0.5004907
6	ZFPM2	23414	0.6308709	0.0250368	0.9999978	0.001	0	0.5022091	0	0.5	1	0.001	0	0.5			0	0.4995093			0	0.5004907
7	BMP4	652	0	0.5493373	1	0.001	0	0.5022091	0	0.5	0.9999435	0.01	0	0.5	0.6478057	0.001	0.7993714	0.001	0	0.505	0	0.5004907
8	TBX1	6899	0.9660807	0.001	0.999997	0.001	0	0.5022091	0	0.5	0.9996966	0.02	0	0.5			0	0.4995093			0	0.5004907
9	TBX2	6909	0.5418852	0.0397644	0.9943991	0.0162003	0.4305814	0.001			0.9993508	0.035	0	0.5	0	0.5049834	0	0.4995093			0	0.5004907
10	TGFB2	7042	0.8603852	0.005891	1	0.001	0	0.5022091			0.9999998	0.005	0	0.5	0.3937178	0.0033223	0	0.4995093	0	0.505	0	0.5004907

1	Rank	Gene Symbol
	(1	EP300
	2	TEAD1
	3	HIF1A
	4	CTNNB1
	5	TBX20
	6	ZFPM2
	7	BMP4
	8	TBX1
	9	TBX2
	10	TGFB2

Average score	Overali P-value
0.3417445	0.0000003
0.3015437	0.0000058
0.3041435	0.0000062
0.2489552	0.0000788
0.3207447	0.0000893
0.2749466	0.000112
0.229808	0.0001787
0.2395215	0.0002528
0.2566618	0.0002615
0.2503156	0.0002619
0.3307561	0.0002975

ToppGene Suite (http://toppgene.cchmc.org) - <u>ToppGene</u> Why is a test set gene ranked higher?

pericardial effusion

abnormal heart septum morphology positive regulation of biosynthetic process abnormal developmental patterning positive regulation of macromolecule metabolic pr transcription activator activity positive regulation of transcription from RNA positive regulation of macromolecule bi organ morphogenesis abnormal เกรลาระพรภายอ่างสายสายเล่าจะเบอร์เล่าเป็นสาย

transcription factor binding

ToppGene Suite (http://toppgene.cchmc.org) - ToppNet I have a list of 200 over-expressed genes and I want to prioritize them for

experimental validation (apart from using the fold change as a parameter).....

ToppGene Suite

A one-stop portal for gene list enrichment analysis and candidate gene prioritization based on functional annotations and protein interactions network

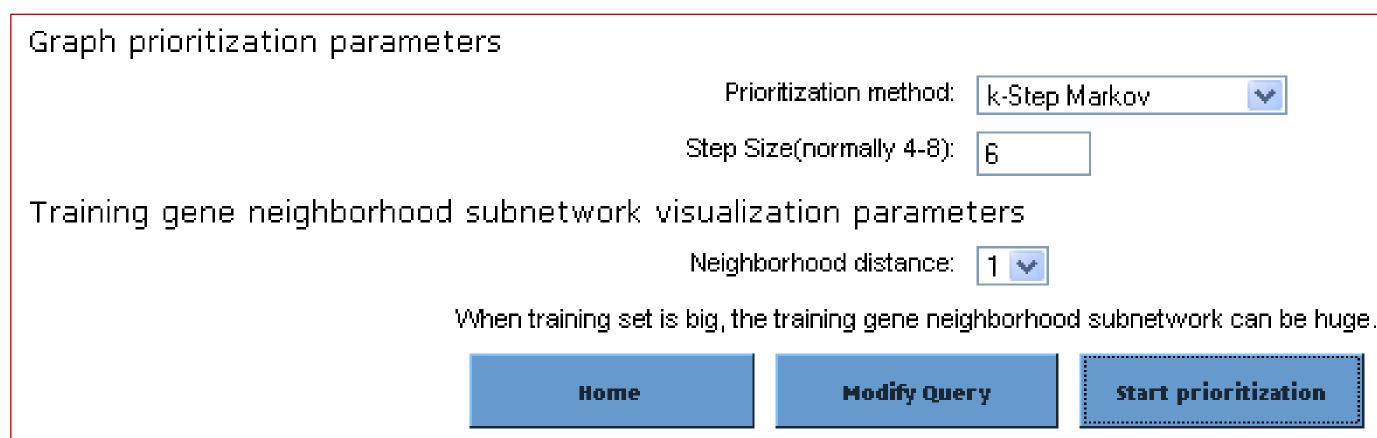
• **ToppFun:** Transcriptome, ontology, phenotype, proteome, and pharmacome annotations based gene list functional enrichment analysis.

Detect functional enrichment of your gene list based on Transcriptome, Proteome, Regulome (TFBS and miRNA), Ontologies (GO, Pathway), Phenotype (human disease and mouse phenotype), Pharmacome (Drug-Gene associations), literature co-citation, and other features.

k

• ToppGene: Candidate gene prioritization

Prioritize or rank candidate genes based on functional similarity to training gene list.

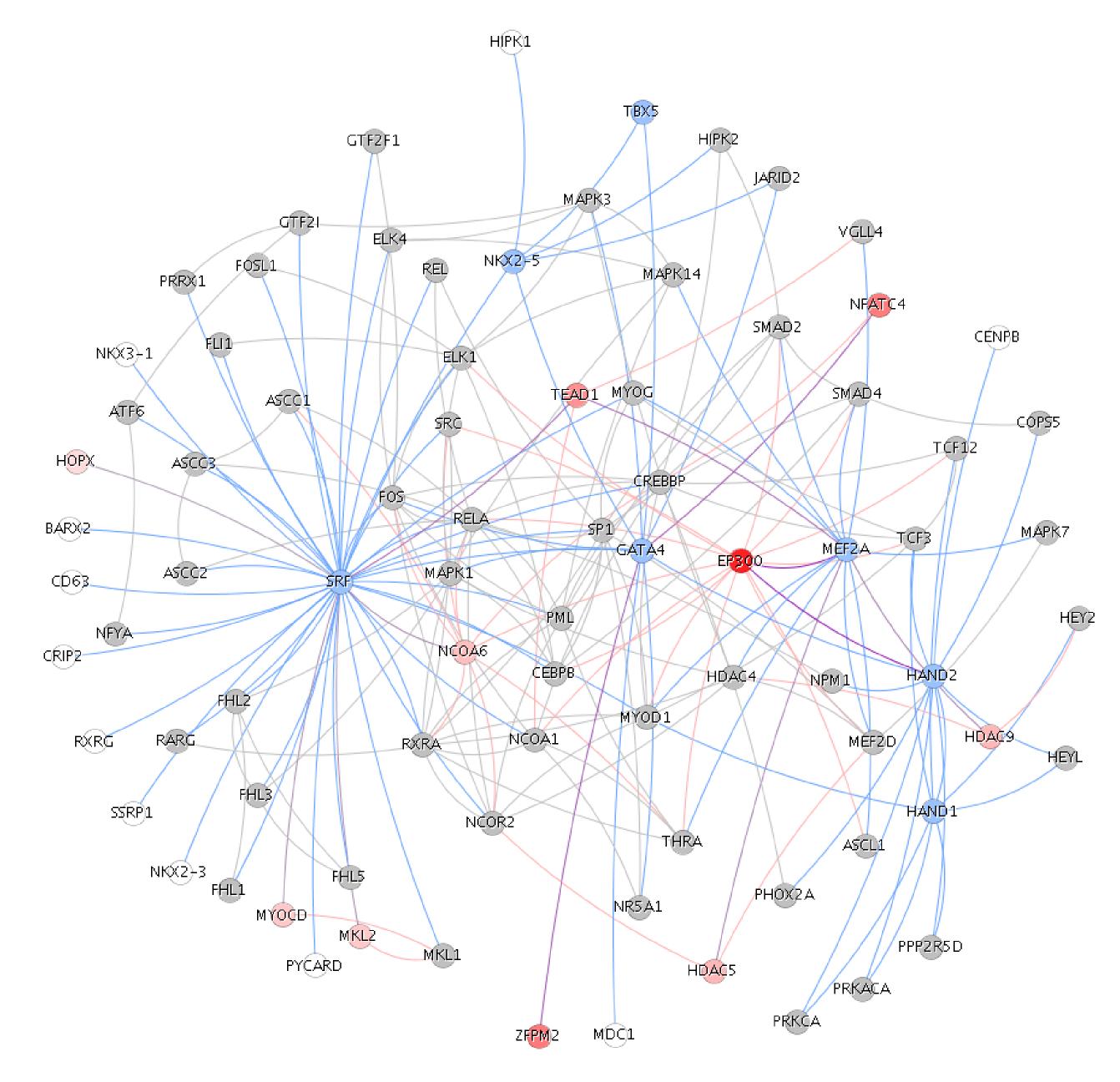

ToppNet: Relative importance of candidate genes in networks.

Prioritize or rank candidate genes based on topological features in protein-protein interaction network.

• ToppGenet: Prioritization of neighboring genes in protein-protein interaction network

Identify and prioritize the neighboring genes of the seeds in protein-protein interaction network based on functional similarity to the "seed" list (ToppGene) or topological features in protein-protein interaction network (ToppNet).

ToppGene Suite (http://toppgene.cchmc.org) - ToppNet



Test Genes	Hide All			
Rank	ID	Name	Interactant count	Score
1	2033	EP300	129	0.008192
2	23414	ZFPM2	4	0.004724
3	4776	NFATC4	4	0.004615
4	7003	TEAD1	9	0.003739
5	9734	HDAC9	20	0.002319
6	10014	HDAC5	33	0.002317
7	23054	NCOA6	49	0.001991
8	93649	MYOCD	2	0.0016
9	57496	MKL2	2	0.0016
10	1499	CTNNB1	138	0.001546

¥

Start prioritization

ToppGene Suite (http://toppgene.cchmc.org) - ToppNet



Exercise 3: Prioritize the 721 genes ("CandidateGenes.xls") using "stomach genes" from the "GeneLists.xls". a. What are the top 10 ranked genes using

- **ToppGene and ToppNet?**
- b. What is the rank of TFF3 in ToppGene-based prioritization and why is it ranked among the top in ToppGene prioritization? What is its rank in **ToppNet?**

Are there any other tools similar to these?

DAVID (http://david.abcc.ncifcrf.gov) <u>Database for Annotation, Visualization and Integrated Discovery</u>

Shortcut to DAVID Tools

Functional Annotation

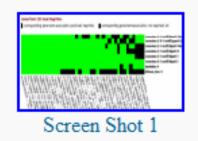
Gene-annotation enrichment analysis, functional annotation clustering BioCarta & KEGG pathway mapping, genedisease association, homologue match, ID translation, literature match and more

Gene Functional Classification

Provide a rapid means to reduce large lists of genes into functionally related groups of genes to help unravel the biological content captured by high throughput technologies. More

Convert list of gene ID/accessions to others of your choice with the most comprehensive gene ID mapping repository. The ambiguous accessions in the list can also be determined

semi-automatically. More


Display gene names for a given gene list; Search functionally related genes within your list or not in your list; Deep links to enriched detailed information. More

Welcome to DAVID Bioinformatics Resources 2003 - 2007

17:

The Database for Annotati (DAVID) 2007 is the fifth programs of DAVID 2006 comprehensive set of functi understand biological mean gene list, DAVID tools are

- Identify enriched biol
- Discover enriched fur
- Cluster redundant and
- Visualize genes on Bi
- Display related many
- Search for other func
- List interacting protei
- Explore gene names i
- Link gene-disease as
- Highlight protein func
- Redirect to related lit
- Convert gene identife
- And more

$\mathbf{\overline{\mathbf{Y}}}$

- X
- Cluster redundant annotation terms ☑.
- $\mathbf{\Sigma}$
- Y
- Y
- List interacting proteins $\mathbf{\overline{\mathbf{Y}}}$
- Explore gene names in batch
- Link gene-disease associations Y
- Y
- Redirect to related literatures X
- ☑
- And more

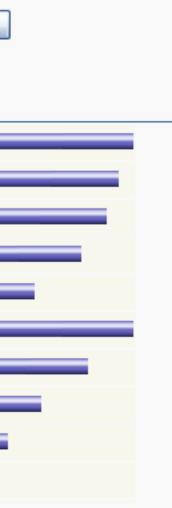
What's Special in DAVID 2007?

Identify enriched biological themes, particularly GO terms Discover enriched functional-related gene groups

Visualize genes on BioCarta & KEGG pathway maps

Display related many-genes-to-many-terms on 2-D view.

Search for other functionally related genes not in the list


Highlight protein functional domains and motifs

Convert gene identifiers from one type to another.

DAVID (http://david.abcc.ncifcrf.gov)

Upload List Background	Annotation Summary	Re	sul	ts			
							<u>Help and Tool Manual</u>
Upload Gene List	Current Gene List: demolist1			171	DAVID IDs		
	Current Background: Homo sapi	iens		Chec	ck Defaults 🗹	Clear All	
<u>Demolist 1</u> <u>Demolist 2</u>	 Main Accessions (0 selected) Other Accessions (0 selected) 						
Upload Help	Gene Ontology (3 selected)						
	GOTERM_BP_1	79%	136	Chart			
Step 1: Enter Gene List	GOTERM_BP_2	76%	131	Chart			
A: Paste a list	GOTERM_BP_3	74%	127	Chart			
	GOTERM_BP_4	69%	119	Chart			
	GOTERM_BP_5	60%	104	Chart			-
	GOTERM_BP_ALL	79%	136	Chart			
Clear	GOTERM_CC_1	70%	121	Chart			
Or	GOTERM_CC_2	61%	106	Chart			-
B:Choose From a File	GOTERM_CC_3	55%	95	Chart			
Browse	GOTERM_CC_4	50%	86	Chart			
	GOTERM_CC_5	38%	65	Chart	2D View		
Step 2: Select Identifier	GOTERM_CC_ALL	70%	121	Chart		-term association posit	tively reported Correspond
AFFY ID	GOTERM_MF_1	75%	129	Chart	<u>E Download File</u> <u>Vie</u>	<u>WEDIOI</u>	
	GOTERM_MF_2	69%	119	Chart	■ Options Rerun Using Options	S	
	GOTERM_MF_3	60%	103	Chart			epi pro glu
Step 3: List Type	GOTERM_MF_4	56%	97	Chart			spe tun leci
Gene List 🧿	GOTERM_MF_5	45%	78	Chart			pdz imr
Background 🔘	GOTERM_MF_ALL	75%	129	Chart			imr imr v-e
	Protein Domains (3 selected)						3-h ara
Step 4: Submit List	 Pathways (3 selected) General Annotations (0 selected) 						my cyt
Submit List	 Functional Categories (3 selected) 	1					niti cyt
	Protein Interactions (0 selected)						her her
	Literature (0 selected)				त्र ल ब ू ू ू ज न त न न न न न न न न न न न न न न न न न	୫୦ ଫିନିନିନିଙ୍ଚିଚିଚିଚି ୧	her ଜୁଞ୍ଚୁତ୍ରୁଜ୍ତୁର୍ମ୍ମ୍
	Disease (1 selected)				Hernoguo Hernoguo Hered ion-bin Holo de du da oxido redu da oxido redu da oxido redu da oxido redu da oxido redu da netal ion-bin metal ion-bin	02/900 tran 02/900 tran 02/900 tran 02/900 tran 02/90004518191 5F50004518191 5F5000451819 02/900 carri 610bin carri 610bin carri	iron ion bind iron ion bind heme bind heme bind heme bind heteroterran oxlysterran chroterran chroterran heteroterran heteroterran
	GENETIC_ASSOCIATION_DB		13%	23	chung chung	<u> </u>	iron ion binding netalloprotein heme binding heme binding heme binding heme binding heterotetramer oxNgen binding heterotetramer oxNgen binding
	OMIM_DISEASE		18%	32	e activity e activity e activity e activity		
	Combined View for Selected An	notati	ion		r metabol ron (hem .Y	Iron (heme distal	, di vitt
					n %	me dist	
	Functional Annotation Clusterin	ng			, axial ligand)	e type i proximal ligar i distal ligand)	
					6) (q)	. ⁶	

Help and Tool Manual

ositively reported Corresponding gene-term association not reported yet

<u>Help</u>

epilepsy, progressive myoclonus type 2a, lafora disease (lafo... protein phosphatase 1, regulatory subunit 3d glutamate decarboxylase 2 (pancreatic islets and brain, 65k... spectrin, beta, erythrocytic (includes spherocytosis, clinical ty... tumor protein p53 (li-fraumeni syndro... lectin, galactoside-binding, soluble, 3 (galectin 3) pdz and lim domain 5 immunoglobulin heavy constant gamma 1 (g1m marker) immunoglobulin heavy locus immunoglobulin kappa variable 1d-13 v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma derive 3-hydroxyanthranilate 3,4-dioxygen... arachidonate 15-lipoxygenase myeloperoxidase cytochrome p450, family 4, subfamily a, polypeptid... nitric oxide synthase 2a (inducible, hepatocyt... cytochrome p450, family 3, subfamily a, polypepti... hemoglobin, beta hemoglobin, delta

hemoglobin, alpha 1

DAVID (http://david.abcc.ncifcrf.gov)

Shortcut to DAVID Tools

Start Analysis

Home

Functional Annotation

Gene-annotation enrichment analysis, functional annotation clustering BioCarta & KEGG pathway mapping, genedisease association, homologue match, ID

translation, literature match and more

Gene Functional Classification

Provide a rapid means to reduce large lists of genes into functionally related groups of genes to help unravel the biological content captured by high throughput technologies. More

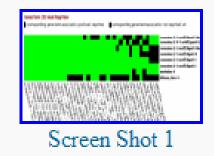
Gene ID Conversion

convert list of gene 1D/accessions to others of your choice with the most comprehensive gene ID mapping repository. The ambiguous accessions in the list can also be determined

semi-automatically. More

Gene Name Batch Viewer new!

Display gene names for a given gene list; Search functionally related genes within your list or not in your list; Deep links to enriched

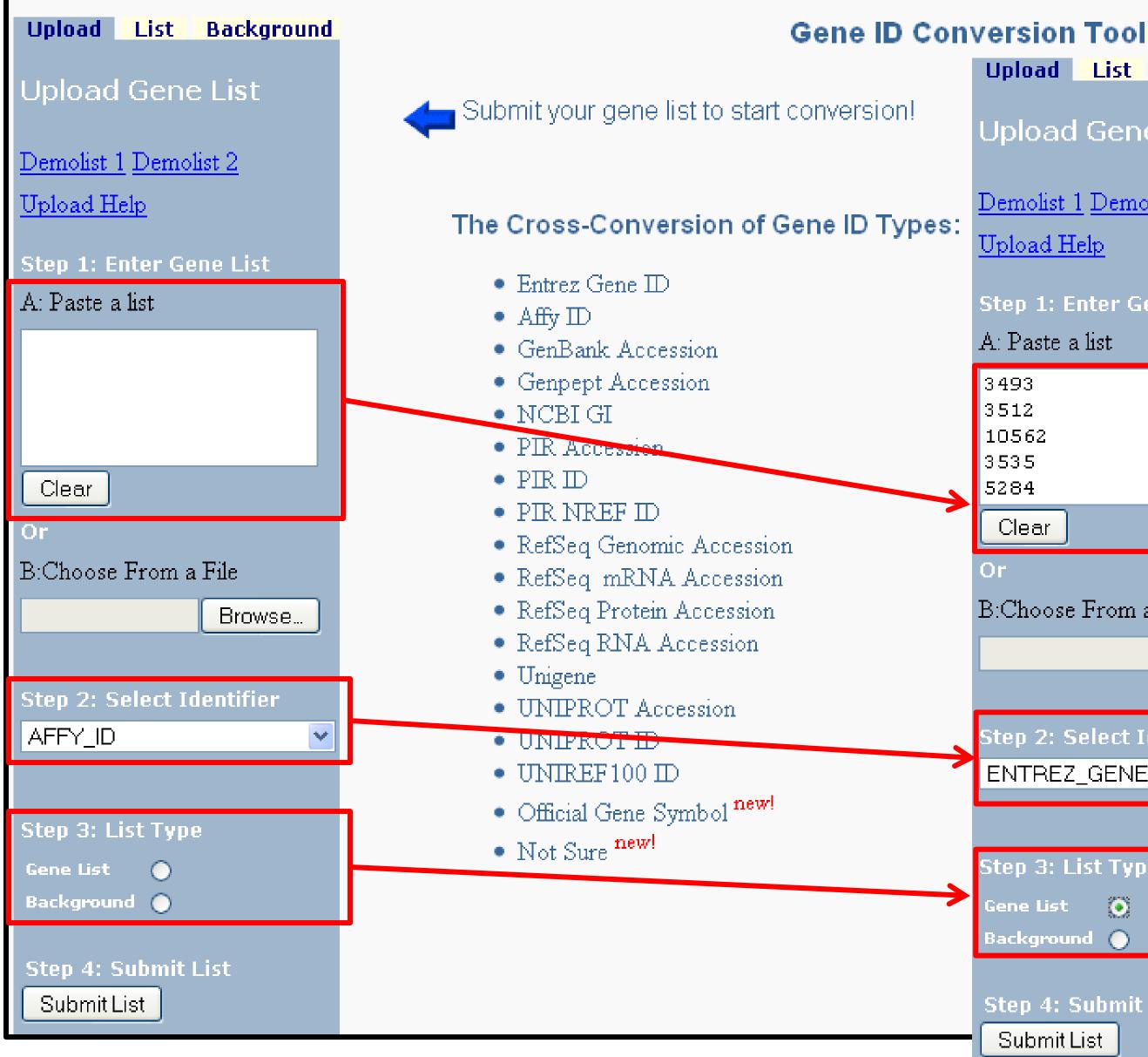

detailed information. More

Welcome to DAVID Bioinformatics Resources 2003 - 2007

What's Special in DAVID 2007?

The Database for Annotation (DAVID) 2007 is the fifth programs of DAVID 2006 comprehensive set of funct understand biological mean gene list, DAVID tools are

- Identify enriched biol
- Discover enriched fu
- Cluster redundant an
- Visualize genes on Bi X
- Display related many X
- Search for other func
- List interacting protei
- Explore gene names \mathbf{Y}
- Link gene-disease as
- Highlight protein func
- Redirect to related lit $\mathbf{\overline{\mathbf{x}}}$
- Convert gene identife
- And more


- Identify enriched biological themes, particularly GO terms Discover enriched functional-related gene groups Cluster redundant annotation terms Visualize genes on BioCarta & KEGG pathway maps Display related many-genes-to-many-terms on 2-D view. Search for other functionally related genes not in the list List interacting proteins Explore gene names in batch Link gene-disease associations Highlight protein functional domains and motifs Redirect to related literatures Convert gene identifers from one type to another.

- \mathbf{Z} $\mathbf{\overline{\mathbf{x}}}$ X $\mathbf{\overline{\mathbf{x}}}$ $\mathbf{\overline{x}}$ X Y Y Y Y Y **X**

- And more

DAVID Bioinformatics Resources 2007 National Institute of Allergy and Infectious Diseases (NIAID), NIH						
Shortcut to DAVID Tools	Technical Center	Downloads & APIs	Term of Service	Why DAVID?	About Us	

DAVID (http://david.abcc.ncifcrf.gov) **Convert NCBI Entrez Gene IDs to RefSeq Accession Numbers**

Upload Gene List

Demolist 1 Demolist 2

Upload Help

Step 1: Enter Gene List

A: Paste a list

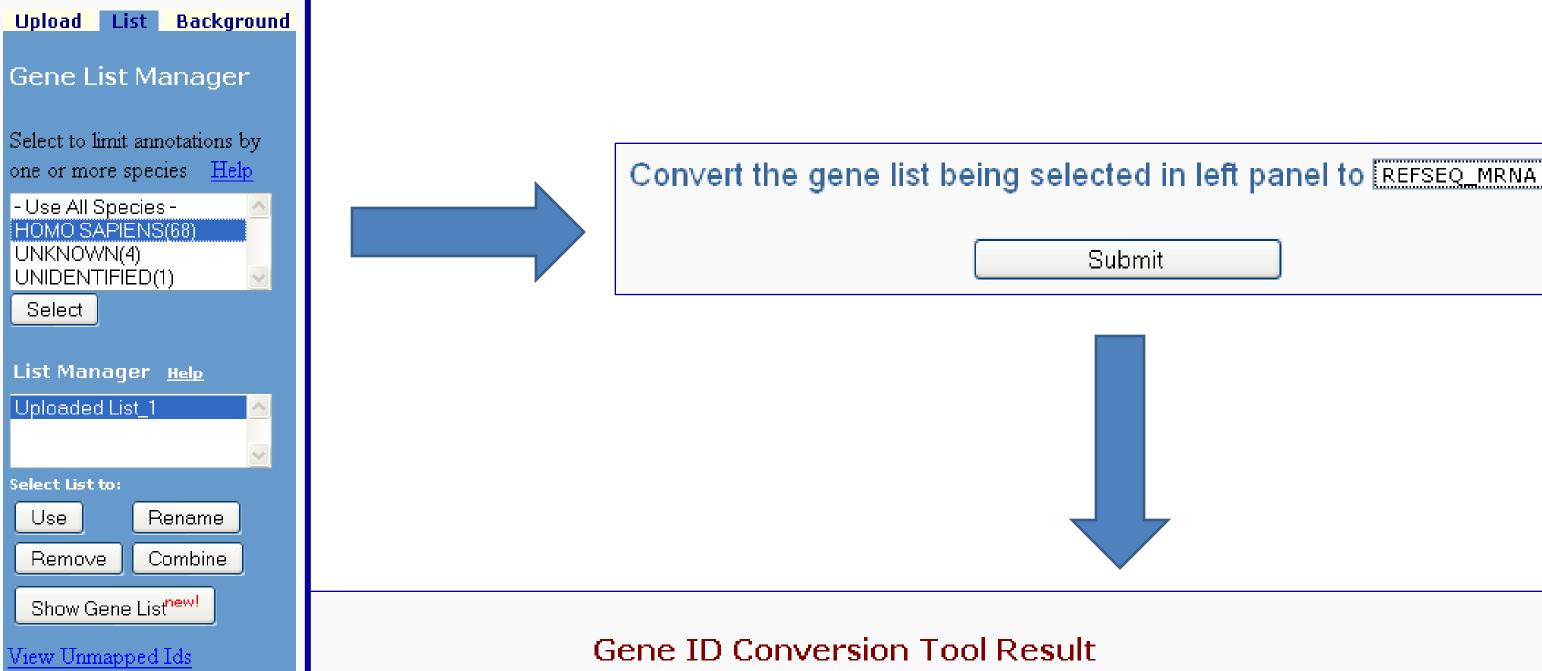
3	~
2	-
62	
5	
4	~
ear	

B:Choose From a File

Browse...

Step 2: Select Identifier ENTREZ_GENE_ID

3: List	Туре	
List	•	


Background 🔵

Step 4: Submit List

Submit List

us how you like the tool chnical notes of the tool Contact us for questions

DAVID (http://david.abcc.ncifcrf.gov)

Gene Accession Conversion Statistics Help				Right-click to Do	vnload the result	<u>Help</u>
Gene Access	sion conversion status	ucs <u>neip</u>	Submit	Converted List t	o DAVID as a Ge	ne List
Conversion Su	ummary		From	То	Species	David
ID Count	In DAVID DB	Conversion	202	<u>NM 001624</u>	HOMO SAPIENS	ABSEI
<u>60</u> 8 IDs	Yes Yes	Successful None	72	<u>NM 001613</u>	HOMO SAPIENS	ACTIN
0 IDs	No	None	72	<u>NM 001615</u>	HOMO SAPIENS	ACTIN
0 IDs Total Unique	Ambiguous	Pending	27299	<u>NM 014479</u>	HOMO SAPIENS	ADAM
			125	<u>NM 000667</u>	HOMO SAPIENS	ALCO
Summary of # ID Count	Ambiguous Gene ID Possible Source	s Convert All	125	<u>NM 000668</u>	HOMO SAPIENS	ALCO
			126	<u>NM 000669</u>	HOMO SAPIENS	ALCO
All Possible S Ambiguous IC	ources For Ambigu	ous IDs Convert	126	<u>NM 000668</u>	HOMO SAPIENS	ALCO
			125	<u>NM 000669</u>	HOMO SAPIENS	ALCO

¥

Submit Converted List to DAVID as a Background

id Gene Name

ENT IN MELANOMA 1

IN, ALPHA 2, SMOOTH MUSCLE, AORTA

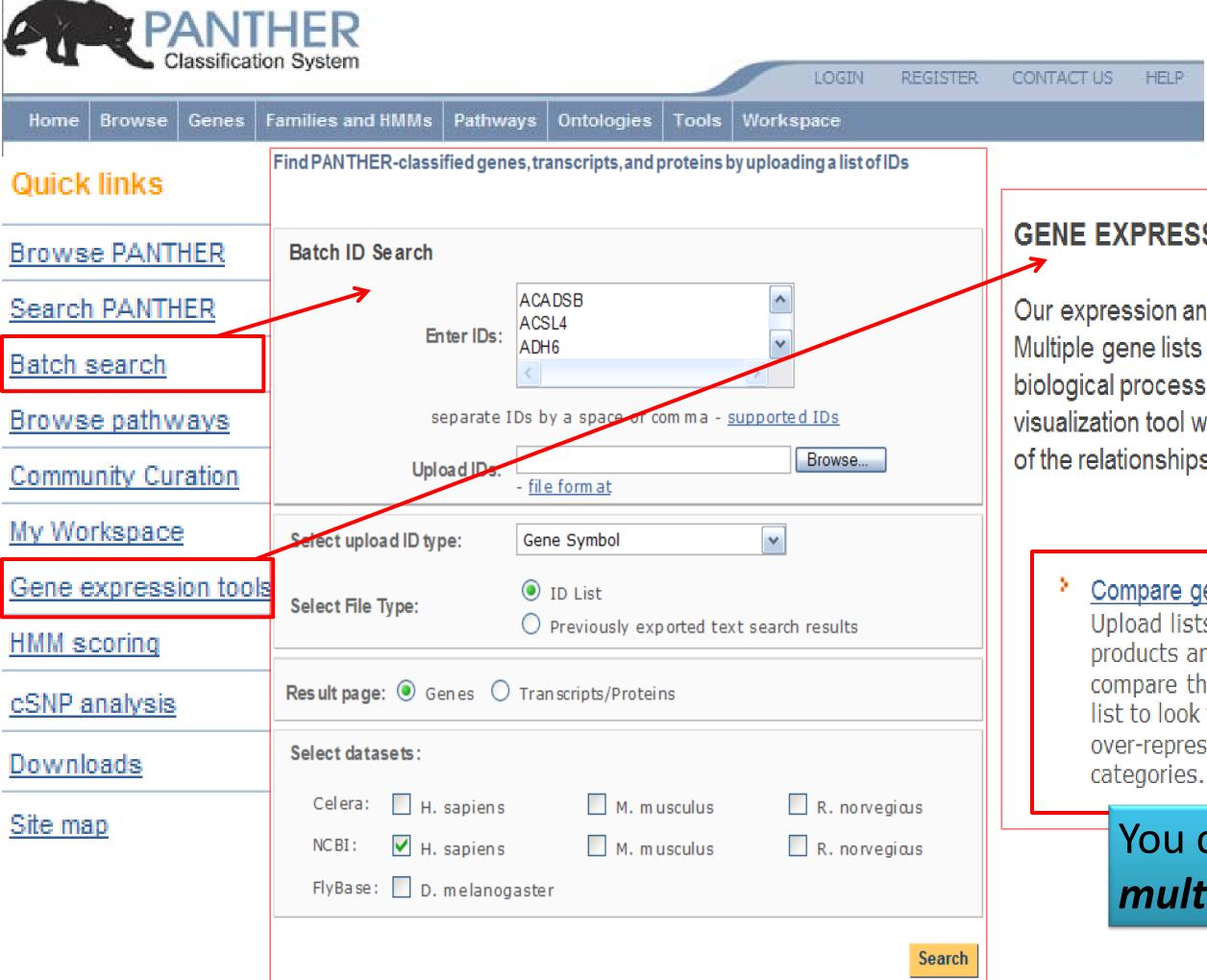
IN, ALPHA 2, SMOOTH MUSCLE, AORTA

M-LIKE, DECYSIN 1

DHOL DEHYDROGENASE 1A (CLASS I), ALPHA POLYPEPTIDE

DHOL DEHYDROGENASE 1A (CLASS I), ALPHA POLYPEPTIDE

OHOL DEHYDROGENASE 1A (CLASS I), ALPHA POLYPEPTIDE


DHOL DEHYDROGENASE 1A (CLASS I), ALPHA POLYPEPTIDE

DHOL DEHYDROGENASE 1A (CLASS I), ALPHA POLYPEPTIDE

Exercise 4: Convert affymetrix probeset IDs to gene symbols **Exercise 5:** What are the enriched pathways and diseases for this gene set? Compare your results with ToppGene.

From the same example data set ("GeneLists.xls"), use the probe set IDs (1st column) and extract their RefSeq accession numbers

PANTHER (http://www.pantherdb.org/) Protein ANalysis THrough Evolutionary Relationships

GENE EXPRESSION DATA ANALYSIS

Our expression analysis tools can be used for microarray data intrepretation. Multiple gene lists can be mapped to PANTHER molecular function and biological process categories, as well as to biological pathways. Our pathway visualization tool will display your experimental results on detailed diagrams of the relationships between genes/proteins in known pathways.

are	gene	lists	(?

Upload lists of genes or gene products and statistically compare them to a reference list to look for under- and over-represented functional categories.

> You can compare *multiple* lists!

 Analyze a list of genes with expression values
 Upload a list of genes and their corresponding foldchange values from a differential expression experiment.

Compare Classifications of Lists ③

Map lists of genes to a PANTHER ontology.For pathways, you can then view the gene expression values overlaid on top of a pathway diagram, where genes will be colored differently for different clusters of genes.

Use the binomial statistics tool to compare classifications of multiple clusters of lists to a reference list to statistically determine over- or under- representation of PANTHER classification categories. Each list is compared to the reference list using the binomial test (Cho & Campbell, TIGs 2000) for each molecular function, biological process, or pathway term in PANTHER.

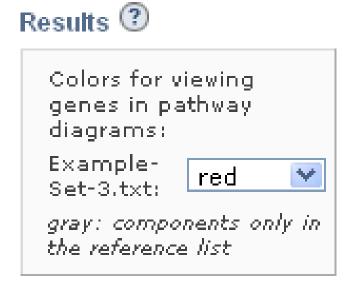
Steps: 1. Select list(s) to analyze 2. Select reference list	1. Select list(s) to analyze For example, each selected list may be a cluster of co-expressed genes under a particular set of conditions. 2. Select For example, each selected list may be a cluster of co-expressed genes under a particular set of conditions.						
	 2. Select Reference List For example, the reference list may be the set of all genes in the experiment, or the set of all genes in the genome being analyzed. Select reference list default: NCBI: H. sapiens genes 						
	Search options PANTHER Ontology: ● Pathways ● Biological Process ● Molecular Function ✓ Use the Bonferroni correction for multiple testing ③						
			 5-Hydroxytryptamine biosynthesis(P04371) 5-Hydroxytryptamine degredation(P04372) 5-arachidonylglycerol_biosynthesis(P05726) 5HT1 type receptor mediated signaling pathelistic structures in the structure of the				
NCBI: H. sapiens genes(REF)		FetalLiverSpecific.txt	 Androgen/estrogene/progesterone biosynthe Angiogenesis(P00005) 				
			 Apoptosis signaling pathway(P00006) Ascorbate degradation(P02729) Asparagine and aspartate biosynthesis(P027 Axon guidance mediated by Slit/Robo(P00009) Axon guidance mediated by netrin(P00009) Axon guidance mediated by semaphorins(P00 B cell activation(P00010) Beta1 adrenergic receptor signaling pathway Beta2 adrenergic receptor signaling pathway Beta3 adrenergic receptor signaling pathway Blood coagulation(P00011) Bupropion_degradation(P05729) Cadherin signaling pathway(P00012) Carnitine metabolism(P02733) Cell cycle(P00013) Cholesterol biosynthesis(P00014) Circadian clock system(P00015) 				
FetalBrainSpecific.txt		AdultHeartSpecific.txt	Cobalamin biosynthesis(P02735) Cortocotropin releasing factor receptor signa				

tor signaling pathway(P04380)

athway(P04377) pathway(P04378) athway(P04379)

is(P02730) (P00008) 00009) orins(P00007)

osynthesis(P02727)


athway(P00002) pathway(P00003) (P00004)

athway(P02723) thesis(P00001)

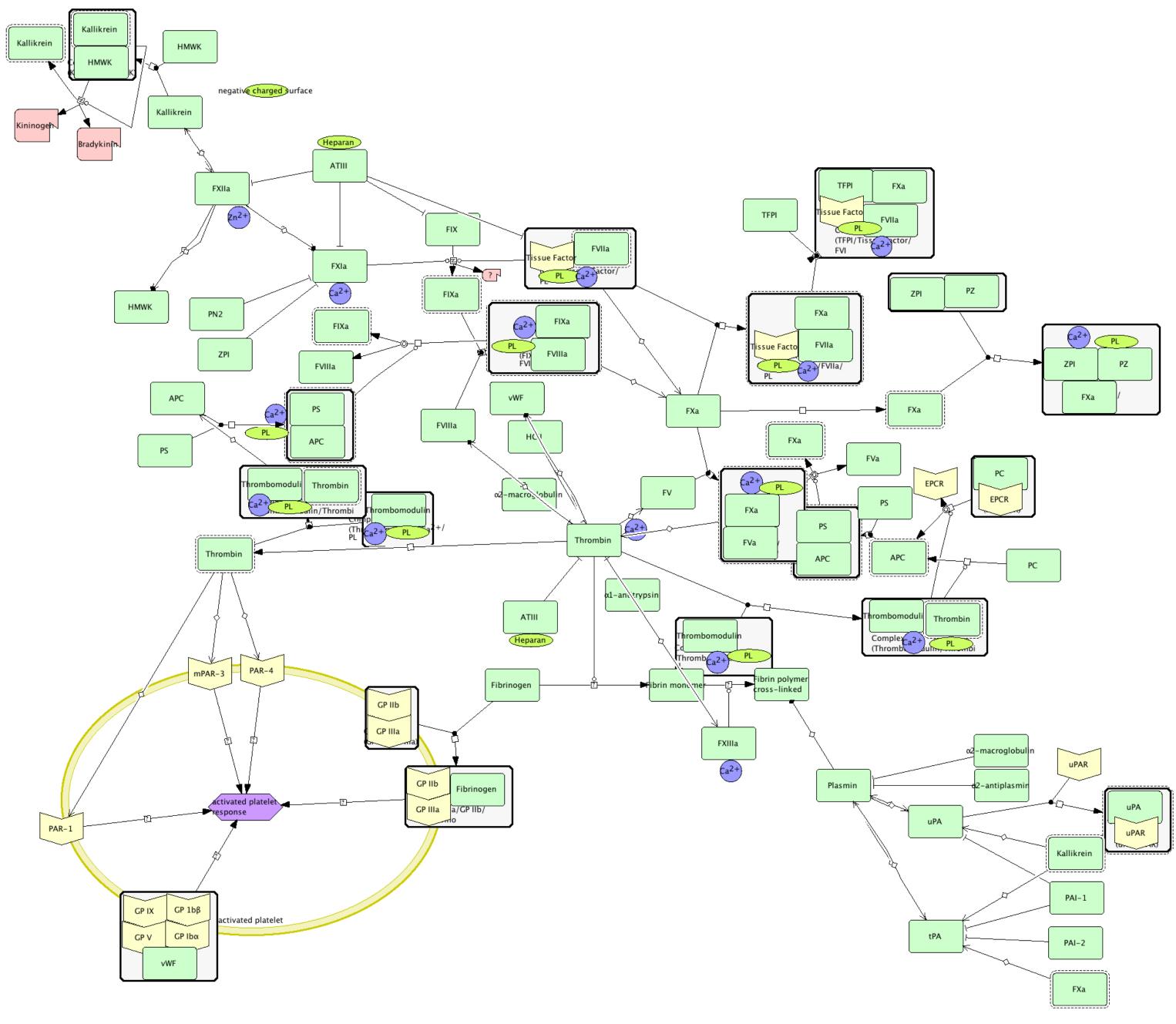
)4372) P05726) ng pathway(P04373) ng pathway(P04374) ng pathway(P04375) ng pathway(P04376)

PANTHER (http://www.pantherdb.org/) **Protein ANalysis THrough Evolutionary Relationships**

	ŀ	ľ
	L	
j		

Click on pathway name to see genes highlighted on pathway diagram

E ast	n a st	
CX.	port	results


View: Bar Chart of Gene Count

	NCBI: H. sapiens genes (REF)	Example-Set-3.txt		<u>3.txt</u>	
Pathways	<u>#</u>	<u>#</u>	expected	$\pm l$ -	A <u>P value</u>
Blood coagulation	<u>55</u>	8	.29	+	1.38E-07
Plasminogen activating cascade	21	4	.11	+	9.37E-04

¥

	Reference list	Example-Set-3.txt
Mapped IDs:	<u>25431</u>	<u>135</u>
Unmapped IDs:	<u>0</u>	<u>15</u>

PANTHER (http://www.pantherdb.org/)

Gene Prioritization Tools												
	Text (coocurrance)	Text (functional mining)	PPIs	Functional Annotations	Pathways	Expression	Sequence	Phenotype	Conservation/ Homology	Regulation	Disease	Drugs/Chemical
SUSPECT				Х		X	X					
ToppGene	Х		X	X	X	X	X	X		X	X	Х
PolySearch		Х	X	Х	X							X
MimMiner		Х	X	X			X	X				
PhenoPred			Χ	X			X	X				
PGMapper		Х										
Endeavour		Х	X	X	X	X	X			X	X	
G2D	Х		X	Х			X					
ТОМ				Х		X						
SNPs3D		Х	X	X	X		X	X				
GenTrepid		Х	X		X		X					
GeneWanderer			X									
Bitola		Х										
CANDID		Х	X			X	X		X		X	
aGeneApart		Х										
GeneProspector		X										
PosMed	X	X	X	X				X				Х
GeneDistiller	Х		X	Х	X	X		X				

Adapted from Gene Prioritization Portal: http://homes.esat.kuleuven.be/~bioiuser/gpp/index.php

RESOURCES - URLs: Summary

Application/Resource					
ToppGene	http://toppgene.cch				
ToppCluster	http://toppcluster.co				
DAVID	http://david.abcc.nc				
PANTHER	http://www.panthero				

URL

nmc.org

chmc.org

cifcrf.gov

db.org

Exercises - Summary

- **1. Exercise 1**: Use the gene list from the downloaded file ("GeneLists.xls") and find out:
 - How many of the liver-overexpressed genes are associated with lipid metabolic process?
 - Are there any enriched TFBSs for liver overexpressed genes?
 - What are the enriched miRNAs in the colon-cecum overexpressed genes?
 - What gene families are enriched in esophagus overexpressed genes?
 - In which other regions are stomach (cardiac) genes overexpressed?
 - What biological process are miR-1 target genes enriched for?
- **2. Exercise 2:** Use the different gene lists from the downloaded file ("GeneLists.xls") and find out:
 - What are the shared and specific biological processes between stomach and salivary glands?
 - Are there any enriched miRNAs for stomach? If so, which other tissues are enriched for this miRNA?
 - What are the functional similarities and differences between the 3 regions of the stomach (cardiac, fundus, and pylorus)?
- **3. Exercise 3**: Prioritize the 721 genes ("CandidateGenes") using "stomach genes" from the "GeneLists.xls".
 - What are the top 10 ranked genes using ToppGene and ToppNet? \bullet
 - What is the rank of TFF3 and why is it ranked amongst the top? What is its rank in ToppNet?
- **4. Exercise 4:** Convert affymetrix probeset IDs to gene symbols
- 5. Exercise 5: What are the enriched pathways and diseases for this gene set? Compare your results with ToppGene.

For additional exercises, see http://anil.cchmc.org/dhc.html