

Functional annotation of genetic variants Functional enrichment ii. Candidate gene prioritization

Anil Jegga **Biomedical Informatics** Slides: <u>http://anil.cchmc.org/grn</u>

MG-8011 Sept 14, 2015

Lectures, Tutorials, & Workshops

Functional annotation of genetic variants- 2015:

- Description: This lecture is delivered as part of the "Advanced Fundamentals of Human Genetics" course (see details below) and will focus on computational approaches for functional enrichment of genes and gene lists and disease candidate gene prioritization. This 1-hour lecture mainly aims to give an overview of databases and servers/tools which can assist in functional interpretaion of variants.
- Course Title: Advanced Fundamentals of Human Genetics
- Course Number: MG 8011
- Course Directors: Drs. Lisa Martin, Ge Zhang and Bill Nichols
- Lecture/Topic Title: Functional annotation of genetic variant
 - Presenter: Anil Jegga, Associate Professor, Division of Biomedical Informatics, CCHMC
 - Date: September 14, 2015 Time: 11:00 AM 12:00 Noon
 - Location: Cincinnati Childrens Hospital and Medical Center

• Download the presentation: pdf

http://anil.cchmc.org/grn

I have a list of co-expressed mRNAs (Transcriptome).... **Identify the underlying biological theme**

- What are my genes "enriched" for?
- Gene Ontology
- Pathways
- Phenotype/Disease Association
- Protein Domains
- TFBS and microRNA
- Protein Interactions
- Expression in other tissues/experiments
- Drug targets
- Literature co-citation...

ToppGene Suite (http://toppgene.cchmc.org)

ToppGene

- Home
- Links
- Database details
- Supplementary
- Help
- Publications
- Terms of Use
- Contacts

Supported by:

Computational Medicine Center

ToppGene Suite

A one-stop portal for gene list enrichment analysis and candidate gene prioritization based on functional annotations and protein interactions network

• **ToppFun:** Transcriptome, ontology, phenotype, proteome, and pharmacome annotations based gene list functional enrichment analysis

Detect functional enrichment of your gene list based on Transcriptome, Proteome, Regulome (TFBS and miRNA), Ontologies (GO, Pathway), Phenotype (human disease and mouse phenotype), Pharmacome (Drug-Gene associations), literature co-citation, and other features.

ToppGene: Candidate gene prioritization

Prioritize or rank candidate genes based on functional similarity to training gene list.

ToppNet: Relative importance of candidate genes in networks.

Prioritize or rank candidate genes based on topological features in protein-protein interaction network.

ToppGenet: Prioritization of neighboring genes in protein-protein interaction network.

Identify and prioritize the neighboring genes of the seeds in protein-protein interaction network based on functional similarity to the "seed" list (ToppGene) or topological features in protein-protein interaction network (ToppNet).

1. Free for use, no log-in required. 2. Web-based, no need to install anything (except for applications to visualize or analyze networks) 3. Validated and published

ToppGene Suite (http://toppgene.cchmc.org) - <u>ToppFun</u></u></u>

ToppFun: Transcriptome, ontology, phenotype, proteome, and pharmacome annotations based gene list functional enrichment analysis

Entry Type:	Entrez ID	~			
Example gene sets:	HGNC Symbol Entre (click on "HGNC Symbol" or '	ez ID 'Entrez ID" to use the example train	ng and test set of genes)		
Training Gene Set:	259	~	Input Gene L	.ist (81 / 97)	
	5265				
	350				
	335		Entered	Human Symbol	Gene ID
	335		259	AMBP	259
	1558		5265	SERPINA1	5265
	1571		350	APOH	350
	229		335	APOA1	335
	462		1558	CYP2C8	1558
	125		1571	CYP2E1	1571
	3240		229	ALDOB	229
	5105		462	SERPINC1	462
	5265		125	ADH1B	125
	3273		3240	HP	3240
	2244		5105	PCK1	5105
	2158		3273	HRG	3273
	5053		2244	FGB	2244
	125		2158	F9	2158
	1356		5053	PAH	5053
	3827		1356	СР	1356
	383	~	3827	KNG1	3827
		Name (383	ARG1	383
			5004	ORM1	5004
	Clear	Submit Query	2168	FABP1	2168
			325	APCS	325

1. Supports variety of inputs 2. Supports symbol correction 3. Eliminates any duplicates 4. Drawback: Supports human and mouse genes only

Entered		Status
	Duplicated	

ToppGene Suite (http://toppgene.cchmc.org) - ToppFun

		E a standa	0	- 1/-1		0				
		Feature	Correction	p-Val	ue cutoff	G	ene Li	mits		
	•	All	FDR ~	0.05	¥	1	≤ n ≤	2000		
	✓	GO: Molecular Function	FDR ~	0.05	~	1	≤ n ≤	2000		
	✓	GO: Biological Process	FDR ~	0.05	~	1	≤ n ≤	2000		
	✓	GO: Cellular Component	FDR 🗸	0.05	~	1	≤ n ≤	2000		
	✓	Human Phenotype	FDR 🗸	0.05	~	1	≤ <i>n</i> ≤	2000		
	✓	Mouse Phenotype	FDR ~	0.05	~	1	≤ <i>n</i> ≤	2000		
►	✓	Domain	FDR ~	0.05	~	1	≤ <i>n</i> ≤	2000		
►	✓	Pathway	FDR v	0.05	~	1	≤ <i>n</i> ≤	2000		
►	✓	Pubmed	FDR 🗸	0.05	~	1	≤ <i>n</i> ≤	2000		
	✓	Interaction	FDR 🗸	0.05	~	1	≤ n ≤	2000		
	✓	Cytoband	FDR v	0.05	~	1	≤ n ≤	2000		
	✓	Transcription Factor Binding Site	FDR v	0.05	~	1	≤ <i>n</i> ≤	2000		
	✓	Gene Family	FDR 🗸	0.05	~	1	≤ n ≤	2000		
	✓	Coexpression	FDR 🗸	0.05	~	1	≤ <i>n</i> ≤	2000		
	✓	Coexpression Atlas	FDR ~	0.05	~	1	≤ <i>n</i> ≤	2000		
►	✓	Computational	FDR ~	0.05	~	1	≤ <i>n</i> ≤	2000		
►	✓	MicroRNA	FDR ~	0.05	~	1	≤ <i>n</i> ≤	2000		
►	✓	Drug	FDR	0.05	~	1	≤ <i>n</i> ≤	2000		
▼	✓	Disease	FDR 🗸	0.05	~	1	≤ <i>n</i> ≤	2000		
		Clinical Variations								
		✓ GWAS								
	Group results within a category by source.									

L		0	P		٦	6
	L	U	L	L	Ц	C

Modify Query

- Gene list analyzed for as many as 18 features!
- 2. Single-stop enrichment analysis server for both regulatory elements (TFBSs and miRNA) and biological themes
- Back-end has an exhaustive, normalized data resources compiled and integrated
- Bonferroni correction is "too stringent"; FDR with 0.05 is preferable.
- 5. TFBS are based on conserved cis-elements and motifs within ±2kb region of TSS in human, mouse, rat, and dog.
- miRNA-targets are based on TargetScan, PicTar and miRrecords/Tarbase.

ToppGene Suite (http://toppgene.cchmc.org)

GO Biologica	I Process		Human Phenotype			Mous
Annotations:		13,313	Annotations:		7,271	Annotat
Genes:		18,482	Genes:		4,141	Genes:
	S	Updated Aug 31, 2015			Updated Dec 5, 2014	
GO Cellular C	component					
Annotations:		1,529				
Genes:		18,865				
GO Molecula	r Function	Updated Aug 31, 2015	1			
Annotations:		4 723)			
Genes:		18,326				
		Updated Aug 31, 2015				
Pathways			Domains			Pubm
Annotations:		3,633	Annotations:		15,281	Annotat
	BioSystems: BIOCYC	319		Gene3D	610	
	BioSystems: KEGG	362		InterPro	8,171	
	BioSystems: Pathway Interaction Database	186		PROSITE	1,566	Genes:
	BioSystems: REACTOME	1,400		Pfam	4,115	
	BioSystems: WikiPathways	229		ProDom	138	-
	GenMAPP	67		SMART	681	
	MSigDB C2: BioCarta	217	Genes:		16,924	
	MSigDB C2: SigmaAldrich	10				
	MSigDB C2: Signaling Gateway	8				- i
	MSigDB C2: Signaling Transduction KE	28				- 1
	MSigDB C2: SuperArray	1				. !
Eab 24 2015	PantnerDB Dethursu Octobergy	152				
16024,2013	Pathway Untology	321				
Conneci	SMPDB	333				- i
Genes.		10,507				
Interactions			Cytoband			TFBS
Annotations:		16,249	Annotations:		2,354	Annotat
Genes:		16,250 Updated May 13, 2015	Genes:		34,661	Genes:
miRNA			Gene Families			Coex
Annotations:		4,085	Annotations:		151	Annotat
	MSigDB	313	Genes:		6,751	
	MicroRNA.org	2,200				
	PITA	677				
	PicTar	178				
	TargetScan	249				
	miRTarbase	324				
	miRecords_TarBase	144				
Genes:		19,844				

se Phenotype		
tions:		9,074
:		7,992
		Updated Aug 31, 2015
nod		
neu		
tions:		662,625
	GeneRIF	391,321
	Pubmed	271,304
		31,489
		Undeted Ave 24, 2045

Database updated regularly Exhaustive collection of annotations

•		
tions:		615
		9,770
pres	sion	
tions:		9,016
	GeneSigDB	3,515
	MSigDB C2: Aristoteles University of Thessaloniki	5
	MSigDB C2: Broad Institute	2,962
	MSigDB C2: Columbia University	1
	MSigDB C2: Dana-Farber Cancer Institute	16
	MSigDB C2: Giannina Gaslini Institute	2
	MSigDB C2: Johns Hopkins University School of Medicine	5
	MSigDB C2: Laboratoire CarMeN	2
		_

ToppGene Suite (http://toppgene.cchmc.org) - <u>ToppFun</u></u></u>

				Input P
			Results	_
				Number of ger
Go To Start Page				Number of ger
Input Parameters [Show Detail]	3			-
Training Results [Show AI] [Download AI] [Spar	rse Matr	ix		-
1: GO: Molecular Function [Display Chart] [Show Detail]				
2: GO: Biological Process [Display Chart] [Show Detail]				Correction and
3: GO: Cellular Component [Display Chart] [Show Desil]				
4: Human Phenotype [Display Chart] [Show Detail]	\searrow			
5: Mouse Phenotype (Display Chart) (Show Detail)				
6: Domain [Display Chart] [Show Detail]				
7: Pathway (Display Chart) [Show Detail]				Deeders even
8: Pubmed (Display Chart) [Show Detail]				Minimun featu
9: Interaction (Display Chart) (Show Detail)				Analysis took:
10: Cytoband [Display Chart] [Show Detail]				Analysis finisł
11: TFBS [Display Chart] [Show Detail]	2: 1	GO: Biologic	al Process [Display Chart] [Hide Detail]	
			Name	
1 Z: Gene Family [Display Chart] [Show Detail]			response to external stimulus	
13: Coexpression [Display Chart] [Show Detail]	2	GO.0007520	linid petabolia presses	
14: Computational [pissue: chee] [chee] and	3	GO.000629	apiù metabolic process	
14. Computational (bisplay chart) (show betail)	4	GO:0044200	coagulation	
15: MicroRNA [Display Chart] [Show Detail]	6	GO:0000017	bernstasis	
16: Drug [Display Chart] [Show Detail]	7	GO:0009611	response to wounding	
	8	GO:0042060	wound healing	
17: DISEASE [Display Chart] [Show Detail]	9	GO:0050878	regulation of body fluid levels	
	10	GO:0055114	oxidation reduction	
	11	GO:0019752	carboxylic acid metabolic process	

enes in training set: $igkarrow$	81								
enes in test set:	0								
	category	Correction	Cutoff	Min	Max				
enes in training set: enes in test set: nd Cutoff: pling size in analysis: ure count in test set: k:	GO: Molecular Function	Bonferroni	0.05	1	1500				
	GO: Biological Process	Bonferroni	0.05	1	1500				
	GO: Cellular Component	Bonferroni	0.05	1	1500				
	Human Phenotype	Bonferroni	0.05	1	1500				
	Mouse Phenotype	Bonferroni	0.05	1	1500				
	Domain	Bonferroni	0.05	1	1500				
	Pathway	Bonferroni	0.05	1	1500				
- 1 (0, 1 - 22,	Pubmed	Bonferroni	0.05	1	1500				
na calon.	Interaction	Bonferroni	0.05	1	1500				
	Cytoband	Bonferroni	0.05	1	1500				
	TFBS	Bonferroni	0.05	1	1500				
	s in training set: 81 s in test set: 0 Correction Cutoff Min Max GO: Molecular Function Bonferroni 0.05 1 1500 GO: Biological Process Bonferroni 0.05 1 1500 GO: Cellular Component Bonferroni 0.05 1 1500 Human Phenotype Bonferroni 0.05 1 1500 Mouse Phenotype Bonferroni 0.05 1 1500 Domain Bonferroni 0.05 1 1500 Pathway Bonferroni 0.05 1 1500 Pubmed Bonferroni 0.05 1 1500 Pubmed Bonferroni 0.05 1 1500 Cytoband Bonferroni 0.05 1 1500 Gene Family Bonferroni 0.05 1 1500 Gene Family Bonferroni 0.05 1 1500 Computational Bonferroni 0.05 1 1500 Computational Bonferroni 0.05 1 1500 Gene Family Bonferroni 0.05 1 1500 Computational Bonferroni 0.05 1 1500 Drug Bonferroni 0.05 1 1500 Drug Bonferroni 0.05 1 1500 Disease Bonferroni 0.05 1 1500 Count in test set: 2 2 seconds d at: Sun Sep 27 16:45:06 EDT 2009	0.05	1	1500					
		1500							
		1500							
		1500							
	Disease	Bonferroni	0.05	1	1500				
pling size in analysis:	MicroRNA Bonferroni 0.05 1 Drug Bonferroni 0.05 1 Disease Bonferroni 0.05 1								
ure count in test set:	set: 0 category Correction Cutoff Min Min GO: Molecular Function Bonferroni 0.05 1 15 GO: Biological Process Bonferroni 0.05 1 15 GO: Cellular Component Bonferroni 0.05 1 15 GO: Cellular Component Bonferroni 0.05 1 15 Human Phenotype Bonferroni 0.05 1 15 Mouse Phenotype Bonferroni 0.05 1 15 Domain Bonferroni 0.05 1 15 Pathway Bonferroni 0.05 1 15 Pubmed Bonferroni 0.05 1 15 Cytoband Bonferroni 0.05 1 15 Gene Family Bonferroni 0.05 1 15 Gomputational Bonferroni 0.05 1 15 Disease Bonferroni 0.05 1 15 Disease <td></td>								
k:	2 seconds								
shed at:	No S1 O Correction Cutoff Min GO: Molecular Function Bonferroni 0.05 1 GO: Biological Process Bonferroni 0.05 1 GO: Cellular Component Bonferroni 0.05 1 Human Phenotype Bonferroni 0.05 1 Mouse Phenotype Bonferroni 0.05 1 Pathway Bonferroni 0.05 1 Pubmed Bonferroni 0.05 1 Interaction Bonferroni 0.05 1 Interaction Bonferroni 0.05 1 Gene Family Bonferroni 0.05 1 Goexpression Bonferroni 0.05 1 Outg Bonferroni 0.05 1 Outg Bonferroni 0.05 1 Interaction Bonferroni 0.05 1 Interaction Bonferroni 0.05 1 Gene Family Bonferroni 0.05 1 Interactional Bonferroni 0.05 1								

Source	P-value	Term in Query	Term in Genome
	0	27	893
	0	12	115
	0	25	874
	0	23	720
	0	12	119
	0	12	120
	0	20	542
	0	13	185
	0	12	151
	0	19	624
	0	18	570

ToppGene Suite (http://toppgene.cchmc.org) - ToppFun

2: GO: Biological Process [Display Chart] [Hide Detail] ID | Name Source P-value 27 1 GO:0009605 response to external stimulus 0 GO:00075 kg blood coagulation 2 Ū 12 3 GO:0006629 lipid metabolic process 25 0 GO:0044255 cellular lipid metabolic process 23 4 Ū 5 GO:0050817 coagulation 0 12 12 6 GO:0007599 hemostasis Ū 7 0 20 GO:0009611 response to wounding 13 8 GO:0042060 wound healing 0 GO:0050878 regulation of body fluid levels 9 12 Ū 19 10 GO:0055114 oxidation reduction 0 11 GO:0019752 carboxylic acid metabolic process 0 18

Significant Terms For: Pathway

	response to external stimulus; GO:00096						
	Entrez Gene ID	Gene Symbol	Gene Name	Original Symbol			
1	126	ADH1C	alcohol dehydrogenase 1C (class I), gamma polypeptide	126			
2	335	APOA1	apolipoprotein A-I	335			
3	350	АРОН	apolipoprotein H (beta-2-glycoprotein I)	350			
4	2158	F9	coagulation factor IX	2158			
5	5950	RBP4	retinol binding protein 4, plasma	5950			
6	197	AHSG	alpha-2-HS-glycoprotein	197			
7	2243	FGA	fibrinogen alpha chain	2243			
8	213	ALB	albumin	213			
9	2244	FGB	fibrinogen beta chain	2244			
10	629	CFB	complement factor B	629			
11	3158	HMGCS2	3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 (mitochondrial)	3158			
12	5444	PON1	paraoxonase 1	5444			
13	1361	CPB2	carboxypeptidase B2 (plasma)	1361			
14	3078	CFHR1	complement factor H-related 1	3078			
15	5265	SERPINA1	serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 1	5265			
16	3827	KNG1	kininogen 1	3827			
17	325	APCS	amyloid P component, serum	325			
18	2538	G6PC	glucose-6-phosphatase, catalytic subunit	2538			
19	4153	MBL2	mannose-binding lectin (protein C) 2, soluble (opsonic defect)	4153			
20	735	С9	complement component 9	735			
21	462	SERPINC1	serpin peptidase inhibitor, clade C (antithrombin), member 1	462			
22	3273	HRG	histidine-rich glycoprotein	3273			
23	5340	PLG	plasminogen	5340			
24	5004	ORM1	orosomucoid 1	5004			
25	316	AOX1	aldehyde oxidase 1	316			
26	3053	SERPIND1	serpin peptidase inhibitor, clade D (heparin cofactor), member 1	3053			
27	1356	СР	ceruloplasmin (ferroxidase)	1356			

ToppGene Suite (http://toppgene.cchmc.org) - ToppFun

Input Parameters [H	ide Detail				
Number of genes in training set:	7				
Number of genes in test set:	0				
	category	Correction	Cutoff	Min	Max
	GO: Molecular Function	FDR B&H	0.05	1	2000
	GO: Biological Process	FDR B&H	0.05	1	2000
	GO: Cellular Component	FDR B&H	0.05	1	2000
	Human Phenotype	FDR B&H	0.05	1	2000
	Mouse Phenotype	FDR B&H	0.05	1	2000
	Domain	FDR B&H	0.05	1	2000
	Pathway	FDR B&H	0.05	1	2000
	Pubmed	FDR B&H	0.05	1	2000
Correction and Cutoff:	Interaction	FDR B&H	0.05	1	2000
	Cytoband	FDR B&H	0.05	1	2000
	Transcription Factor Binding Site	FDR B&H	0.05	1	2000
	Gene Family	FDR B&H	0.05	1	2000
	Coexpression	FDR B&H	0.05	1	2000
	Coexpression Atlas	FDR B&H	0.05	1	2000
	Computational	FDR B&H	0.05	1	2000
	MicroRNA	FDR B&H	0.05	1	2000
	Drug	FDR B&H	0.05	1	2000
	Disease	FDR B&H	0.05	1	2000
Random sampling size in analysis:	0				
Minimun feature count in test set:	2				
Analysis took:	0 seconds				
Analysis finished at:	Sun Sep 13 12:16:08 EDT 2015				

Opening 63c64f93-a732-4102-ac82-57a787755244.txt 📕

You have	e chosen to open:	

💁 63c64f93-a732-4102-ac82-57a787755244.txt

which is: TXT file

from: https://toppgene.cchmc.org

What should Firefox do with this file?

Open with TextPad (default)

Save File

Do this automatically for files like this from now on.

Cancel

OK

2: GO: Biological Process [Display Chart] 831 annotations before applied cutoff / 18482 genes in category

	ID	Name	Source	pValue	FDR B&H	FDR B&Y	Bonferroni	Genes from Input	Genes in Annotation
1	GO:0003206	cardiac chamber morphogenesis		3.938E-13	2.575E-10	1.880E-9	3.272E-10	6	117
2	GO:0035051	cardiocyte differentiation		6.198E-13	2.575E-10	1.880E-9	5.151E-10	6	126
3	GO:0003205	cardiac chamber development		1.034E-12	2.864E-10	2.091E-9	8.591E-10	6	137
4	GO:0003211	cardiac ventricle formation		1.511E-12	3.139E-10	2.292E-9	1.256E-9	4	10
5	GO:0003207	cardiac chamber formation		3.561E-12	5.918E-10	4.321E-9	2.959E-9	4	12
Sh	low 45 more a	annotations							

3: GO: Cellular Component [Display Chart] 9 annotations before applied cutoff / 18865 genes in category

	ID	Name	Source	pValue	FDR B&H	FDR B&Y	Bonferroni	Genes from Input	Genes in Annotation
1	GO:0000790	nuclear chromatin		7.070E-7	6.363E-6	1.800E-5	6.363E-6	4	228
2	GO:0044454	nuclear chromosome part		3.642E-6	1.551E-5	4.387E-5	3.277E-5	4	344
3	GO:0000785	chromatin		5.753E-6	1.551E-5	4.387E-5	5.178E-5	4	386
4	GO:0000228	nuclear chromosome		6.892E-6	1.551E-5	4.387E-5	6.203E-5	4	404
Ę	GO:0044427	chromosomal part		4.748E-5	8.546E-5	2.418E-4	4.273E-4	4	659

Show 3 more a

4: Human Phenotype [Display Chart] 277 annotations before applied cutoff / 4141 genes in category

-									
	ID	Name	Source	pValue	FDR B&H	FDR B&Y	Bonferroni	Genes from Input	Genes in Annotation
	1 HP:0006705	Abnormality of the atrioventricular valves		5.536E-5	5.859E-3	3.634E-2	1.534E-2	3	101
	2 HP:0045017	Congenital malformation of the left heart		6.345E-5	5.859E-3	3.634E-2	1.758E-2	2	14
ſ	3 HP:0004383	Hypoplastic left heart		6.345E-5	5.859E-3	3.634E-2	1.758E-2	2	14
ſ	4 HP:0001961	Hypoplastic heart		9.474E-5	6.560E-3	4.069E-2	2.624E-2	2	17

Training Results Expand All Download All Sparse Matrix Display pValues and Scores as Scientific (4 significant digits) v Table row limit 50 v

ore applied cutoff / 18326 genes in category									
	Source	pValue	FDR B&H	FDR B&Y	Bonferroni	Genes from Input	Genes in Annotation		
		1.021E-11	3.118E-10	1.415E-9	5.308E-10	7	496		
		2.196E-11	3.118E-10	1.415E-9	1.142E-9	7	553		
		2.399E-11	3.118E-10	1.415E-9	1.247E-9	7	560		
		2.399E-11	3.118E-10	1.415E-9	1.247E-9	7	560		
ific DNA binding		1.214E-10	1.211E-9	5.495E-9	6.315E-9	6	298		

ToppGene Suite Usage - Stats

2,284

throughput genome-wide studies like linkage analysis and gene expression profiling, tend ... Cited by 125 Related articles All 15 versions Cite Save More

..., EE Bardes, <u>BJ Aronow, AG Jegga</u> - Nucleic acids research, 2009 - Oxford Univ Press Abstract ToppGene Suite (http://toppgene. cchmc. org; this web site is free and open to all users and does not require a login to access) is a one-stop portal for (i) gene list functional enrichment,(ii) candidate gene prioritization using either functional annotations or network ... Cited by 388 Related articles All 14 versions Cite Save

[HTML] Disease candidate gene identification and prioritization using protein interaction networks

J Chen, BJ Aronow, AG Jegga - BMC bioinformatics, 2009 - biomedcentral.com Background Although most of the current disease candidate gene identification and prioritization methods depend on functional annotations, the coverage of the gene functional annotations is a limiting factor. In the current study, we describe a candidate gene ... Cited by 206 Related articles All 24 versions Cite Save More

ToppGene Suite for gene list enrichment analysis and candidate gene prioritization

ToppGene Suite Usage – Top users (Aug 12, 2014- Sept 11, 2015)

Country ?			
	Sessions 🤊 🛛 🔟	% New Sessions ?	New Users ?
	34,770 % of Total: 100.00% (34,770)	30.30% Avg for View: 30.21% (0.29%)	10,535 % of Total: 100.29% (10,505)
1. 🔤 United States	15,323 (44.07%)	30.54%	4,679 (44.41%)
2. 📰 United Kingdom	2,591 (7.45%)	22.35%	579 (5.50%)
3. 🛅 China	2,230 (6.41%)	29.06%	648 (6.15%)
4. 🚺 Italy	2,151 (6.19%)	26.73%	575 (5.46%)
5. 🔤 India	1,755 (5.05%)	34.36%	603 (5.72%)
6. 🚍 Netherlands	1,235 (3.55%)	19.35%	239 (2.27%)
7. [•] Canada	1,094 (3.15%)	26.23%	287 (2.72%)
8. 🔳 Germany	1,094 (3.15%)	33.36%	365 (3.46%)
9. France	740 (2.13%)	40.81%	302 (2.87%)
10. 🚾 Spain	695 (2.00%)	23.88%	166 (1.58%)
11. 📕 Belgium	535 (1.54%)	19.63%	105 (1.00%)
12. 💌 Israel	449 (1.29%)	24.50%	110 (1.04%)
13. 🏣 Sweden	421 (1.21%)	26.84%	113 (1.07%)
14. 🔯 Brazil	408 (1.17%)	35.29%	144 (1.37%)
15. 💽 Japan	390 (1.12%)	33.33%	130 (1.23%)
16. 💽 South Korea	388 (1.12%)	50.26%	195 (1.85%)
17. 🧱 Australia	366 (1.05%)	40.71%	149 (1.41%)
18. 💌 Hong Kong	314 (0.90%)	19.43%	61 (0.58%)
19. 🚞 Austria	226 (0.65%)	12.39%	28 (0.27%)
20. 🖸 Switzerland	219 (0.63%)	31.96%	70 (0.66%)

Bounce Rate ?	Pages / Session ?	Avg. Session Duration
20.83% Avg for View: 20.83% (0.00%)	6.55 Avg for View: 6.55 (0.00%)	00:08:17 Avg for View: 00:08:17 (0.00%)
20.59%	6.95	00:07:56
14.78%	6.55	00:09:48
22.33%	5.96	00:10:19
19.39%	6.30	00:08:40
21.82%	6.01	00:08:09
11.74%	7.45	00:09:24
18.28%	5.76	00:07:53
23.22%	5.34	00:06:38
17.57%	7.39	00:09:13
15.54%	5.57	00:08:14
16.26%	6.25	00:09:30
17.82%	9.02	00:09:20
17.34%	7.91	00:09:43
19.12%	7.76	00:09:34
19.74%	7.68	00:10:39
27.84%	6.04	00:07:26
19.67%	6.34	00:06:02
12.10%	5.91	00:06:09
81.86%	2.13	00:02:57
13.24%	7.63	00:07:26

Are there any other tools similar to these?

DAVID (https://david.ncifcrf.gov) **Database for Annotation, Visualization and Integrated Discovery**

Shortcut to DAVID Tools

Functional Annotation

Gene-annotation enrichment analysis, functional annotation clustering , BioCarta & KEGG pathway mapping, gene-disease association, homologue match, ID translation, literature match and more

Gene Functional Classification

Provide a rapid means to reduce large lists of genes into functionally related groups of genes to help unravel the biological content captured by high throughput technologies. More

Gene ID Conversion

Convert list of gene ID/accessions to others of your choice with the most comprehensive gene ID mapping repository. The ambiguous accessions in the list can also be determined semi-automatically. More

Gene Name Batch Viewer

Display gene names for a given gene list; Search functionally related genes within your list or not in your list; Deep links to enriched detailed information. More

Recommending: A paper published in Nature Protocols describes step-by-step procedure to use DAVID!

Welcome to DAVID 6.7

2003 - 2015

The Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.7 is an update to the sixth version of our original web-accessible programs. DAVID now provides a comprehensive set of functional annotation tools for investigators to understand biological meaning behind large list of genes. For any given gene list, DAVID tools are able to:

Identify enriched biological themes, particularly GO terms

Discover enriched functional-related gene groups

Cluster redundant annotation terms

✓ Visualize genes on BioCarta & KEGG pathway maps

☑ Display related many-genes-to-many-terms on 2-D view.

Search for other functionally related genes not in the list

- List interacting proteins
- Explore gene names in batch
- Link gene-disease associations
- Highlight protein functional domains and motifs
- Redirect to related literatures
- Convert gene identifiers from one type to another.
- And more

Screen Shot 3

¥	Identi
term	s
$\mathbf{\mathbf{x}}$	Disco

maps

Display related many-genes-to-many-terms on 2-D Y

view.

- list
 - ¥

 - And more

https://david.ncifcrf.gov/home.jsp

Screen Shot 1

Screen Shot 2

ify enriched biological themes, particularly GO

over enriched functional-related gene groups Cluster redundant annotation terms Visualize genes on BioCarta & KEGG pathway

Search for other functionally related genes not in the

List interacting proteins Explore gene names in batch Link gene-disease associations Highlight protein functional domains and motifs Redirect to related literatures Convert gene identifiers from one type to another.

DAVID (https://david.ncifcrf.gov)

Upload List Background	Annotation Summary	Results	
oproud List Buchground			Help and Tool Manual
Upload Gene List	Current Gene List: demolist1	171 DAVID IDs	
opioda ocne List	Current Background: Homo sapie	IS Check Defaults 🗹 🛛 Clea	ir All
Demolist 1 Demolist 2	Main Accessions (0 selected)		
Demonst 1 Demonst 2	Other Accessions (0 selected)		
Upload Help	Gene Ontology (3 selected)		
	GOTERM_BP_1 7	% 136 Chart	
Step 1: Enter Gene List	GOTERM_BP_2	% 131 Chart	
A: Paste a list	GOTERM_BP_3 74	% 127 Chart	
	GOTERM_BP_4 69	% 119 Chart	
	GOTERM_BP_5 6	% 104 Chart	
	GOTERM_BP_ALL 7	% 136 Chart	
Clear	GOTERM_CC_1 7	% 121 Chart	
Or	GOTERM_CC_2 6	% 106 Chart	
B:Choose From a File	GOTERM_CC_3 5	% 95 Chart	
Browso	GOTERM_CC_4 5	% 86 Chart	-
	GOTERM_CC_5 3	% 65 Chart = 2D View	
Charles and the stilles	GOTERM_CC_ALL 7	% 121 Chart corresponding gene-term associat	ion positively reported
Step 2: Select Identifier	GOTERM_MF_1 7	% 129 Chart E Chart ViewEditor	
	GOTERM_MF_2 69	% 119 Chart Options Rerun Using Options	
	GOTERM_MF_3 6	% 103 Chart 🚃	epik proj
Step 3: List Type	GOTERM_MF_4 5	% 97 Chart =	sper sper turr
Gene List 💿	GOTERM_MF_5 4	% 78 Chart	lect pdz
Background 🔘	GOTERM_MF_ALL 7	% 129 Chart	inn inn
	Protein Domains (3 selected)		v-ei 3-h
Step 4: Submit List	Pathways (3 selected)		arao myo
SubmitList	General Annotations (0 selected)		cyto nib ^r
	Protein Interactions (0 selected)		e cyto hen
	 Literature (0 selected) 		hen hen
	Disease (1 selected)	mono skidojo none tako none tako no tako none tako none tako none tako none tako none	v v v de e v v v de e v v v de e v v v de v v v de e v v v de v v v v v v v v v v v v v v v v v v v
	GENETIC_ASSOCIATION_DB	13% 23 ox Vige du data and the second secon	Laters Laters
		18% 32	ind sport ind ind sport ind sport ind
		Le (tron (h) Ce (tron (h) Le (tron (h) Le (tron (h) Le (tron (h)	a divitiv
	Combined view for Selected Anno		ate t
	Functional Annotation Clustering	Aial lige	τ <u>υ</u> e
		nd) nd)	2

esponding gene-term association not reported yet

<u>Help</u>

epilepsy, progressive myoclonus type 2a, lafora disease (lafo... protein phosphatase 1, regulatory subunit 3d glutamate decarboxylase 2 (pancreatic islets and brain, 65k... spectrin, beta, erythrocytic (includes spherocytosis, clinical ty... tumor protein p53 (li-fraumeni syndro... lectin, galactoside-binding, soluble, 3 (galectin 3) pdz and lim domain 5 immunoglobulin heavy constant gamma 1 (g1m marker) immunoglobulin heavy locus immunoglobulin kappa variable 1d-13 v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma derive 3-hydroxyanthranilate 3,4-dioxygen... arachidonate 15-lipoxygenase myeloperoxidase cytochrome p450, family 4, subfamily a, polypeptid... nitric oxide synthase 2a (inducible, hepatocyt... cytochrome p450, family 3, subfamily a, polypepti... hemoglobin, beta hemoglobin, delta

hemoglobin, alpha 1

DAVID (https://david.ncifcrf.gov) **Database for Annotation, Visualization and Integrated Discovery**

Identify enriched biological themes, particularly GO

Solution Discover enriched functional-related gene groups Cluster redundant annotation terms Visualize genes on BioCarta & KEGG pathway

Display related many-genes-to-many-terms on 2-D

Search for other functionally related genes not in the

Link gene-disease associations Highlight protein functional domains and motifs Convert gene identifiers from one type to another.

DAVID (https://david.ncifcrf.gov) **Convert NCBI Entrez Gene IDs to RefSeq Accession Numbers**

|--|

Upload Gene List

Demolist 1 Demolist 2

Upload Help

Step 1: Enter Gene List

A: Paste a list

3		~
2		-
62		
5		
4		~
ear		

B:Choose From a File

Browse...

2: Select Identifier	
REZ_GENE_ID	

3: List	Туре
list	0

Step 4: Submit List

Submit List

us how you like the tool chnical notes of the tool Contact us for questions

DAVID (https://david.ncifcrf.gov)

Gene ID Conversion Tool Result

Conversion 3	Summary						
ID Count	In DAVID DB	Conversion					
<u>60</u>	Yes	Successful					
<mark>8</mark> IDs	Yes	None					
0 IDs No None							
0 IDs Ambiguous Pending							
Total Unique	e User IDs: <mark>68</mark>						
Summary of	Ambiguous Gene II	Ds					
ID Count	Possible Source	Convert All					
All Possible	Sources For Ambig	uous IDs					
Ambiguous ID Possibility Convert							

	light-click to Dov	which which which which we have a second s	<u>Help</u>
Submit Co	onverted List t	o DAVID as a Ge	ne List
From	То	Species	David
202	<u>NM 001624</u>	HOMO SAPIENS	ABSEI
72	<u>NM 001613</u>	HOMO SAPIENS	ACTIN
72	<u>NM 001615</u>	HOMO SAPIENS	ACTIN
27299	<u>NM 014479</u>	HOMO SAPIENS	ADAM
125	<u>NM 000667</u>	HOMO SAPIENS	ALCO
125	<u>NM 000668</u>	HOMO SAPIENS	ALCO
126	<u>NM 000669</u>	HOMO SAPIENS	ALCO
126	<u>NM 000668</u>	HOMO SAPIENS	ALCO
125	<u>NM 000669</u>	HOMO SAPIENS	ALCO

¥

Submit Converted List to DAVID as a Background

d Gene Name

NT IN MELANOMA 1

N, ALPHA 2, SMOOTH MUSCLE, AORTA

N, ALPHA 2, SMOOTH MUSCLE, AORTA

HLIKE, DECYSIN 1

HOL DEHYDROGENASE 1A (CLASS I), ALPHA POLYPEPTIDE

What if I want to compare several gene lists at a time? **ToppCluster (http://toppcluster.cchmc.org)**

A multiple gene list feature enrichment analyzer for the dissection of biological systems

Navigation	Paste input list Load Sample Data	Genes
Main	Symbols are HGNC Symbol 🛛 🔽	ALDH8A1
 Alternative Entry Methods 	Cluster Name Kidney	LOC340094
		LOC134147
Information	remove	SLC36A2
Diselaimor		DZIP1
 Distance Documentation 		EHHADH
Supplementary		BTC
		TMEM12
		LOC388588
LoppGene		DNASE1L3
 Database Info 		KLHDC7A
• Links		BBOX1
		HOXD10
		GLDC
		AQP2
		WDR72
		KCNK5
		VNN1
		LOC441748
		LOC348174
		GATN
		EMX1
		DKFZP586D0919
		EMX2
		UNCSCL
		BTBD5
		HNF4G
		LOC285733
		PPARGC1A
		DHDH
		<
	Symbols are HGNC Symbol	CVP3A4
	Christen News HCNC Symbol	ALDH8A1
	HCNC Symbol and Synonyme	
	Entroz ID	CYP3 A5
	FreembUD	A2M
	BefSeg	СУРЗА7
	Liniprot	AQP9
		MASP2
		EHHADH
		CYP2D6
		TMEM12
		DEXAD

luster

ToppCluster (http://toppcluster.cchmc.org)

Options ———					
Feature	Correction	p-Value cutoff		Gene Limits	
🗹 All	Bonferroni 🔽	0.05 💌	1	<u>≤n</u> ≤ 1500	
🗹 GO: Molecular Function	Bonferroni 💌	0.05 🔽	1	$\leq n \leq 1500$	
🗹 GO: Biological Process	Bonferroni 💌	0.05 💌	1	$\leq n \leq 1500$	
🗹 GO: Cellular Componen	t Bonferroni 🔽	0.05 🔽	1	$\leq n \leq 1500$	Network
🗹 Human Phenotype	Bonferroni 💌	0.05 💌	1	≤ <i>n</i> ≤ 1500	
🗹 Mouse Phenotype	Bonferroni 💌	0.05 🔽	1	≤ <i>n</i> ≤ 1500	Imeraci
🗹 Domain	Bonferroni 💌	0.05 💌	1	$\leq n \leq 1500$	Comr
🗹 Pathway	Bonferroni 💌	0.05 💌	1	$\leq n \leq 1500$	Gene
Pubmed	Bonferroni 💌	0.05 💌	1	$\leq n \leq 1500$	Tab 9
Interaction	Bonferroni 💌	0.05 💌	1	$\leq n \leq 1500$	HTMI
🗹 Cytoband	Bonferroni 💌	0.05 💌	1	$\leq n \leq 1500$	Netwo
🗹 TFBS	Bonferroni 💌	0.05 💌	1	$\leq n \leq 1500$	Ratch
🗹 Gene Family	Bonferroni 💌	0.05 💌	1	$\leq n \leq 1500$	Comr
Coexpression	Bonferroni 💌	0.05 💌	1	$\leq n \leq 1500$	
Computational	Bonferroni 💌	0.05 💌	1	$\leq n \leq 1500$	
MicroRNA	Bonferroni 💌	0.05 💌	1	≤ <i>n</i> ≤ 1500	Cluste
🗹 Drug	Bonferroni 💌	0.05 💌	1	≤ <i>n</i> ≤ 1500	
	Bonferroni 💌	0.05 🔽	1	s م < 1500	
Chose Toppcluster output f	ormat: Networl	< Generator			

Kidney 🔨					Liver 🔼			Pancreas			~
303	known - 59 unknowr	1		2	79 known - 30 unkr	nown		1	134 known - 46 unknown		
Original	Human Symbol	Entrez		Original	Human Symbol	Entrez ID		Original	Human Symbol	Entrez ID	
				СҮРЗА4	СҮРЗА4	1576		APOBEC2	APOBEC2	10930	
ALDH8AI	ALDH8A1	64577		ALDH8A1	ALDH8A1	64577		EDN3	EDN3	1908	
LOC340094	LOC340094	340094		JUB	JUB	84962		SYT5	SYT5	6861	
SLC36A2	SLC36A2	153201		CYP3A5	CYP3A5	1577		SLC44A4	SLC44A4	80736	
DZIP1	DZIP1	22873		A2M	A2M	2		C14orf50	C14orf50	145376	
EHHADH	EHHADH	1962		CYP3A7	CYP3A7	1551		CDH22	CDH22	64405	
BTC	втс	685		AOP9	AOP9	366		TTR	TTR	7276	
LOC388588	LOC388588	388588		MASP2	MASP2	10747		ERO1LB	ERO1LB	56605	
DNASE1L3	DNASE1L3	1776		EHHADH	EHHADH	1962		FBXO27	FBXO27	126433	
KLHDC7A	KLHDC7A	127707		CYP2D6	CYP2D6	1565		GPR44	GPR44	11251	
BBOX1	BBOX1	8424		RFXAP	REXAP	5994		PPP1R1A	PPP1R1A	5502	
HOXD10	HOXD10	3236		DNASE1L3	DNASE1L3	1776		GP2	GP2	2813	
GLDC	GLDC	2731		HEMGN	HEMGN	55363		CPA2	CPA2	1358	
AOP2	AOP2	359		ACTP1	AGTR1	105				5210	

Generator

ive

na Separated Values Pattern Format (GCT) Separated Values - Table

ork Generator

na Separated Values Separated Values ered Data (Zipped) Heatmap

ToppCluster (http://toppcluster.cchmc.org)

ToppCluster		Lieks Lieblichting	latwork Coporator		
Recessing Salivary_Glands	Jump To	Back to Start	Select nodes to be included in the net Then click next	work Next >	
	Category 1	(D Title (or Source)	🔀 Kidney_logP L	iver_logP Pancreas_lo	gP Kidney_GeneSet
Novigato	GO: Molecular GO:0048037 Function	GO: Molecular Function cofactor binding	 ✓ ✓ 3.8132 	pValues ☑ 10.0000	ACADSB AGXT2 ALDH6A1 CHDH DDC DMGDH EHHADH FMO1 GCSH GLDC GPT HAO2 HNF4A MIOX MOSC2 NOX4 OGDHL PAH
ivaviyace	GO: Molecular GO:0004252 Function	serine-type endopeptidase activity		☑ 10.0000 ☑ 3.3520	
Jump To Jump To GO: Molecular Function GO: Biological Process GO: Cellular Component	GO: Molecular Function	transporter activity	✓ 10.0000 [3.0795	ABCC6 AQP2 ATP6V0A4 ATP6V0D2 ATP6V1G3 CLCNKB CLDN16 CUBN FXYD2 FXYD4 HCN3 KCNJ1 KCNJ15 KCNJ16 KCNK5 LOC153328 LRP: OSTBETA PDZK1 RBP5 SCNN1G SLC10A2 SLC12A1 SLC12A3 SLC13A1 SLC13A2 SLC13A3 SLC16A12 SLC16A7 SLC16A9 SLC17A1 SLC17A3 SLC1A1 SLC22A2 SLC22A6 SLC22A7 SLC22A8 SLC23A1 SLC23A3 SLC26A7 SLC27A2 SLC28A1 SLC2A2 SLC2A9 SLC30A2 SLC34A1 SLC36A2 SLC3A1 SLC4A4 SLC4A9 SLC5A11 SLC5A12 SLC5A2 SLC5A8 SLC6A13 SLC6A19 SLC6A3 SLC7A13 SLC7A9 SLC04C1 TRPM6
Human Phenotype	GO: Molecular GO:0017171 Function	serine hydrolase activity		☑ 10.0000 ☑ 2.7787	
Domain	GO: Molecular GO:0031406 Function	carboxylic acid binding	✓ 2.1541	☑ 10.0000	DMGDH DPYS FOLR3 FTCD GCSH GLDC HNF4A NR1H4 PAH PCK1 SLC1A1
Pathway Pubmed Interaction	GO: Molecular GO:0016491 Function	oxidoreductase activity	☑ 2.0183	⊻ 10.0000	ACADSB ADH6 ALDH6A1 ALDH8A1 BBOX1 CHDF CYP17A1 CYP27B1 CYP4V2 DAO DHDH DIO1 DMGDH EHHADH FMO1 GLDC HAO2 HGD HSDL1 MIOX MOSC2 NDUFC1 NOX4 OGDHL PAH PIPO) PRODH2
Cytoband TEBS	GO: Molecular GO:0005496 Function	steroid binding	✓ 1.5055	10.0000	AGXT2 CALB1 DDC GLDC GPT HNF4A HNF4G KL MOSC2 NR1H4
Coexpression	GO: Molecular GO:0001871 Function	pattern binding		✓ 10.0000	
Computational Drug Disease	GO: Molecular GO:0008324 Function	cation transmembrane transporter activity	 ✓ 10.0000 		ATP6V0A4 ATP6V0D2 ATP6V1G3 CLDN16 FXYD4 HCN3 KCNJ1 KCNJ15 KCNJ16 KCNK5 SCNN1G SLC10A2 SLC12A1 SLC12A3 SLC13A1 SLC13A2 SLC13A3 SLC17A3 SLC1A1 SLC22A2 SLC22A8 SLC23A1 SLC28A1 SLC2A2 SLC2A9 SLC30A2 SLC36A2 SLC4A4 SLC5A11 SLC5A2 SLC6A13 SLC6A19 SLC6A3 TRPM6
MicroRNA	GO: Molecular GO:0016705 Function	oxidoreductase activity, acting on paired don incorporation or reduction of molecular oxyge	ors, with 🔽 [n	10.0000	

	Network Generator
(Warning: because of the network size, some options like layout, preview and PNG have been limited or hidden.
	Summary 2126 checked boxes 2016 nodes in an ABSTRACTED network. 2600 nodes in a GENE LEVEL network.
	 Method ABSTRACTED A Feature to Cluster network where the score is used as the edge weight GENE LEVEL A gene-based network where each gene connects from a Cluster to a Feature. Method Options Create a Category node linked to all features of that category

-File Format-

- XGMML An XML based format compatible with Cytoscape. (more information)
- O TEXT A Simple Text Format.
- GEXF An XML based format compatible with Gephi. (more information)

Begin

Summary 279 checked	oxes	
265 nodes in 660 nodes in	an ABSTRACTED network. a GENE LEVEL network.	
Method		
ABSTRAC GENE LEY Method Option	ΈD A Feature to Cluster network where the score is used as the edge τ EL A gene-based network where each gene connects from a Cluster to Is	wei a F
🔲 Create a (ategory node linked to all features of that category	
-Layout Algori	ישר	
💿 Kamada-k	awai.	
🔘 Fruchterm	an-Reingold.	
O Spring.		
O Circle.		
U Meyer's S	lf-Organizing.	
File Format		
XGMML A	(XML based format compatible with Cytoscape, (more information)	
O PNG A ras	er graphic format. (more information)	
🔘 TEXT A Si	iple Text Format.	

)	
)	
)	
\	
jht	

ToppCluster (http://toppcluster.cchmc.org)

Sosy and the strong of immune receptors built from immunc and the second s and station sory response Zegulationatiolipid metabolisgunatars Bartole de arance negative regulation of very-low-density lipoprote s**folioise de seguenta a tis**c process egulaton... Maffediated immunity ona shingulyery-low-density lipoprotein particle ren การมีผลเกาะเจาการสายาสายการสายาสายการที่สายางการสายาสายาง by peptide bo creating the second of the second stimulus caracele process reverse ch coagulation entence Tublesterol homeostasis autor of defense response stor response to glucocorticoid stimulus omicro tiencound emeration appropriation, classical pathway tive nagulation of fibrinolysis proversion and the second s গ্যonohy sterol transport telstasis diagatives and a time of a finite lange of the process negative regulation of multicellular organismal process Parg? neutral lipid metabolic process ne bolic process ne bolic process ne bolic process ne bolic process spanse to nutrient levels guiation process putation process A BAR BAR STORE STORE System process La catalogin progratabolic progration investigation of the station of progration catalogical and the station of the station catalogical and the station of t

ToppCluster (http://toppcluster.cchmc.org)

Network Generator		
279 checked boxes 265 nodes in an ABSTRACTED network. 660 nodes in a GENE LEVEL network.		
Method ABSTRACTED A Feature to Cluster network where the score is use GENE LEVEL A gene-based network where each gene connects from Method Options	ed as the edge we om a Cluster to a f	eight Feature.
Create a Category node linked to all features of that category	Opening data.xgm	ıml
 Layout Algorithm Kamada-Kawai. Fruchterman-Reingold. Spring. Circle. Meyer's Self-Organizing. File Format XGMML An XML based format compatible with Cytoscape. (more in PNG A raster graphic format. (more information) TEXT A Simple Text Format. 	You have chosen to ata.xgmml which is a: XG from: http://to What should Firefox <u>O</u> pen with <u>Save File</u> Do this <u>a</u> uto	open MML file oppcluster.cchmc.org < do with this file? Firefox (default) matically for files like I
GEXF An XML based format compatible with Gephi. (more information)		
Begin Preview Cytoscape (http://cyto Gephi (http://gephi.or	oscape	e.org)

Should be installed on your computer and the downloaded files should be imported into these applications

Cytoscape Network (Abstract View)

Store Desktor (Contraction Contraction)	o (New Session)					
File Edit View Select	Layout Plugins Help					
	ζ 🔍 🔍 🔯	Search	h:			
Control Panel		🖆 🖪 Cluste	er Enrichment Results			
Retwork VizMapper™	^M Editor Filters	_				
Current Visual Style						
	suits s 🞽 📓				_	
					_=	
Source		1				
	Targ	t				
		-				
Visual Mapping Brow	ser					
₽↓ 🛅 💷						
😑 Edge Visual Mapping						
🗄 Edge Color	vizmap:Cluster Enrich				•••//	7/ //
😑 Node Visual Mapping					///	
표 Node Color	vizmap:Cluster Enrich					
표 Node Label	ID					
🗄 Node Shape	vizmap:Cluster Enrich					
Unused Properties						
Edge Font Face	Double-Click to create					
Edge Font Size	Double-Click to create	3				
Edge Label	Double-Click to create					
Edge Label Color	Double-Click to create					
Edge Label Opacity	Double-Click to create					
Edge Line Style	Double-Click to create					
Edge Line Width	Double-Click to create				,	
Edge Opacity	Double-Click to create			- 25		
Edge Source Arrow C	Double-Click to create				and a	
Edge Source Arrow O	Double-Click to create					
Edge Source Arrow Sh	Double-Click to create					
Edge Target Arrow Color	Double-Click to create	Data Pan	el			
Edge Target Arrow O	Double-Click to create		8			
Edge Target Arrow Sh	Double-Click to create		ID ∇			
Edge Tooltip	Double-Click to create	regulatio digestion	n of hormone levels	-		
Node Border Color	Double-Click to create	v				1
Welcome to Cytoscape 2.6	5.3 Right-click + d	Node Attril	Middle-click + drag, to P	te Browser Netw AN	ork Attribute Browser	J

Cytoscape Network (GeneLevel View)

_ 7 🛛 Ð 🔟 🗁 🎬

_ 7 🛛

Cytoscape Network (GeneLevel View)

EHF COL15A1 LOC100130100 IGHA1 LTF IGKC IGL@ FAM129A ATP8B1 IGLC2 Network View – Shared and specific genes and annotations between different gene lists Cytoscape (http://cytoscape.org) installation required

Salivary Gland

~~~

Stomach

Disease Candidate Gene Prioritization

What, Why, & How

Computational Disease Gene prioritization

- What: Computationally assigning likelihood of gene involvement in generating a disease phenotype
- Why: Narrows down the set of genes to be tested experimentally – saves time/resources.
- How: "Guilt by Association" Gene "priority" in disease is assigned in a more "informed" way taking into account a set of relevant features or annotations (e.g., gene expression, function/processes, pathways, model organism phenotype, etc.) - <u>Functional</u> Similarity-based methods

Broad Classification

Protein Associations (Functional Linkage)

Functional annotation-based candidate disease gene prioritization

- Guilt by association Reliable predictions about the disease involvement of a gene can be made if several of its partners (e.g., genes with correlated expression profiles or protein interactants or genes involved in same biological process or pathway) share a corresponding annotation.
- Incorporating the prior information or knowledge about a disease (e.g., known disease genes) is critical. Challenge: Gather, normalize, and integrate heterogeneous data from multiple sources (and keeping)
- them current).

Functional annotation-based candidate disease gene prioritization – General workflow

- <u>Step 1</u>: List of candidate genes (**Test Set**) to prioritize linkage regions, chromosomal aberrations, association study loci, differentially expressed gene lists or genes identified by sequencing variants, or the complete genome
- <u>Step 2</u>: Seed Genes or Training Set: Prior knowledge about the disease - known disease genes, or disease-relevant keywords, or biological processes or pathways.
- <u>Step 3</u>: **Prioritization** methods: Which one to select/use?
- Step 4: Assessment Are the selected training/seed genes, keywords and tools suitable? Can reliable predictions be made using these?
- <u>Step 5</u>: Use multiple tools or multiple sets of seed gene or keywords - Combine the results to obtain a consensus result

What constitutes a "good" seed gene set?

- **Relevancy**: Review each gene Domain experts especially for selecting keywords (e.g., diseaserelevant phenotypes)
- Size Matters: Neither too small nor too large.
 - Too small may be insufficiently informative
 - Too large too heterogeneous pattern to be useful.
 - Break them down into multiple random sets
 - Filter them based on additional features (e.g., genes associated with a BP term + MP term)
 - Ideally 6 30

What constitutes a "good" seed gene set?

- Robustness: How robust are the ranking results using a particular seed set?
 - **Cross-validation Assess whether a set of seed** genes provides a coherent pattern
 - Create <u>multiple sets</u> of seed genes or keywords covering complementary phenotypic aspects of the disease and assess their performance separately. Negative control seed genes: Use genes for other
 - unrelated diseases as training set.
 - Top-ranking candidates are same with negative control seed genes – suggests some systematic bias and prioritization results are probably unreliable

Other Quality Control Measures

Tool A ranks my "favorite" gene on/among top – Therefore tool A is the BEST!!!

- Smaller Test Sets: Perform prioritizations both on the actual set of candidates and on the whole genome OR on a larger set that includes the smaller set of candidates.
 - Are the top-ranking candidates from the small subset rank within the top 5–15% of the whole genome?
 - If not, the prioritization might not have been able to capture enough information to identify good candidates
- Functional Coherence: What are the enriched terms for the top ranked candidates? Do they match expectations for the biological process or phenotype of interest?

Moreau & Tranchevent, 2012

Resources commonly used for compiling seed set

OMIM: http://omim.org

GAD: http://geneticassociationdb.nih.gov

Search Phenopedia

for Enter a

Phenopedia: http://hugenavigator.net

An integrated, searchable knowledge base of genetic associations and human genome epidemiology.

	Last data upload: 08 May 2014.
Phenopedia	
	Home About
isease term	Go Clear All

Additional resources for compiling seed set **Comparative Toxicogenomics Database: http://ctdbase.org**

G The Comparative To	G The Comparative Toxicogeno +						
Ctdbase.org/;jsessi	ionid=9EF5F8ECCE0C2	E6693EF8A5E73	BB3941				
Ctol Illuminating how chemicals affect human health.							
Comparative Toxicogenon	nics Database						
Home - Search	 Analyze 	Download	т H	elp 🔻			
A	All Tools						
Connect. Con	Batch Query	Batch Query			fect human health. <u>Mor</u>		
CTD illuminates how	v en Set Analyzer	Set Analyzer					
Discover.	MyGeneVenn						
1. What human dis	ease MyVenn		gene/p	orotein?	(Example		
2. What human dis	ease VennViewer		chemic	al? (Exa	<u>mple</u>)		
3. What genes/pro	teins interact wit	h a <u>chemica</u>	<u>II? (Exar</u>	nple)			
4. What chemicals i	interact with a ge	<u>ene/protein</u>	? (<u>Exam</u>	<u>ple</u>)			
5. What references	report a chemica	al-gene/pro	tein in	teractio	<u>1? (Exam</u>		
6 What cellular fun	ctions (CO terms	a) are affect	ted by	a chemi	cal2 (sva		

Comparative Toxicogenomics Database: http://ctdbase.org

Download

Comparative Toxicogenomics Database: http://ctdbase.org

# Input Ger	neSymbol	GeneID	Ontology	GoTe	rmName GoTermID
go:0007507	TBX20	57057	Biological	Process	aortic valve development G0:0003176
go:0007507	EFNA1	1942	Biological	Process	aortic valve morphogenesis G0:0003180
go:0007507	GATA3	2625	Biological	Process	aortic valve morphogenesis G0:0003180
go:0007507	NOTCH1	4851	Biological	Process	aortic valve morphogenesis G0:0003180
go:0007507	TBX20	57057	Biological	Process	aortic valve morphogenesis G0:0003180
go:0007507	TWIST1	7291	Biological	Process	aortic valve morphogenesis G0:0003180
go:0007507	FHL2	2274	Biological	Process	atrial cardiac muscle cell development G0:0055014
go:0007507	MYH15	22989	Biological	Process	atrial cardiac muscle cell development G0:0055014
go:0007507	NKX2-5	1482	Biological	Process	atrial cardiac muscle cell development G0:0055014
go:0007507	NKX2-6	137814	Biological	Process	atrial cardiac muscle cell development G0:0055014
go:0007507	ISL1	3670	Biological	Process	atrial cardiac muscle cell differentiation G0:0055011
go:0007507	RBM24A	405801	Biological	Process	atrial cardiac muscle tissue development GO:0003228
go:0007507	RBM24B	562236	Biological	Process	atrial cardiac muscle tissue development GO:0003228
go:0007507	BMP10	27302	Biological	Process	atrial cardiac muscle tissue morphogenesis GO:0055009
go:0007507	MYH6	4624	Biological	Process	atrial cardiac muscle tissue morphogenesis GO:0055009
go:0007507	PITX2	5308	Biological	Process	atrial cardiac muscle tissue morphogenesis GO:0055009
go:0007507	PROX1	5629	Biological	Process	atrial cardiac muscle tissue morphogenesis GO:0055009
go:0007507	TNNT2	7139	Biological	Process	atrial cardiac muscle tissue morphogenesis GO:0055009
go:0007507	TNNT2A	58071	Biological	Process	atrial cardiac muscle tissue morphogenesis GO:0055009
go:0007507	WNT2	7472	Biological	Process	atrial cardiac muscle tissue morphogenesis GO:0055009
go:0007507	MYH6	4624	Biological	Process	atrial cardiac myofibril assembly GO:0055004
go:0007507	MYL7	58498	Biological	Process	atrial cardiac myofibril assembly GO:0055004
go:0007507	ANK2	287	Biological	Process	atrial septum development GO:0003283
go:0007507	DAND5	199699	Biological	Process	atrial septum development GO:0003283
go:0007507	GJA5	2702	Biological	Process	atrial septum development GO:0003283
go:0007507	NPHP3	27031	Biological	Process	atrial septum development GO:0003283
go:0007507	TBX5	6910	Biological	Process	atrial septum development GO:0003283
go:0007507	CFC1	55997	Biological	Process	atrial septum morphogenesis G0:0060413
go:0007507	CFC1B	653275	Biological	Process	atrial septum morphogenesis GO:0060413
go:0007507	CYR61	3491	Biological	Process	atrial septum morphogenesis G0:0060413
go:0007507	GATA4	2626	Biological	Process	atrial septum morphogenesis GO:0060413
go:0007507	GJA5	2702	Biological	Process	atrial septum morphogenesis G0:0060413
go:0007507	HEY2	23493	Biological	Process	atrial septum morphogenesis G0:0060413
go:0007507	ISL1	3670	Biological	Process	atrial septum morphogenesis GO:0060413
go:0007507	NKX2-5	1482	Biological	Process	atrial septum morphogenesis GO:0060413
go:0007507	NOTCH2	4853	Biological	Process	atrial septum morphogenesis GO:0060413
go:0007507	SMO	6608	Biological	Process	atrial septum morphogenesis G0:0060413
go:0007507	TBX20	57057	Biological	Process	atrial septum morphogenesis G0:0060413
go:0007507	TBX5	6910	Biological	Process	atrial septum morphogenesis G0:0060413
go:0007507	ZFPM1	161882	Biological	Process	atrial septum morphogenesis G0:0060413
go:0007507	ACVR1	90	Biological	Process	atrial septum primum morphogenesis GO:0003289
go:0007507	GAIA4	2626	Biological	Process	atrial septum primum morphogenesis GO:0003289
go:0007507	SUX4	00009	Biological	Process	atrial septum primum morphogenesis G0:0003289
go:0007507	CATA	2626	Biological	Process	atrial septum primum morphogenesis G0:0003289
go:0007507	WHSC1	2020	Biological	Process	atrial septum secundum morphogenesis G0:0003290
g0:0007507	GTA1	2607	Biological	Process	atrial ventricular junction remodeling 60:0003294
go:0007507	GUAI	2037	Biological	Process	atrial ventricular junction remodeling G0:0003294
go:0007507	PDT.TM7	9260	Biological	Process	atrial ventricular junction remodeling G0:0003294
go:0007507	TRY5A	30071	Biological	Process	atrial ventricular junction remodeling G0:0003294
go:0007507	TRX3	6926	Biological	Process	atrioventricular bundle cell differentiationG0.0003167
go:0007507	ACTC1A	408256	Biological	Process	atrioventricular canal development GO:0036302
go:0007507	FOXN4	121643	Biological	Process	atrioventricular canal development GO:0036302
go:0007507	GATA4	2626	Biological	Process	atrioventricular canal development G0:0036302
go:0007507	HAS2	3037	Biological	Process	atrioventricular canal development G0:0036302
go:0007507	MMD	23531	Biological	Process	atrioventricular canal development GO:0036302
go:0007507	PTPN11	5781	Biological	Process	atrioventricular canal development GO:0036302

Ontological tree – **Children nodes and their** annotations also used

Comparative Toxicogenomics Database: http://ctdbase.org

ctd Illuminating	how chemicals a	ffect human h	ealth.		
Comparative Toxicogenomics I	Database				
► Home ▼ Search ▼	Analyze 🔻	Download	•	Help 🔻	
Connect Com	All Tools				
Connect. Compa	Batch Query				
CTD illuminates how en	Set Analyzer		fect	: human he	ealth.
Discover.	MyGeneVenn		Ì		
1. What human diseas	MyVenn		<u>aen</u>	<u>e/protein</u> ?	' <u>(Exa</u>
2. What human disease	VennViewer		che	mical? (Exa	mple)
What genes/proteins	s interact with	n a <u>chemic</u> a	al? (I	Example)	
4. What chemicals inter	act with a <u>ge</u>	ne/protein	? (<u>E</u>)	<u>cample</u>)	
5. What references rep	ort a <u>chemica</u>	al-gene/pro	otein	<u>interactio</u>	<u>n? (E</u>
6. What cellular function	ns (GO terms	s) are affec	ted	by a <u>chem</u>	<u>ical</u> ?

More...

mple)

<u>xample</u>)

(Example)

Explore the Venn utilities – Handy for generating/comparing annotated gene lists (seed set selection)

NCBI MedGen - http://www.ncbi.nlm.nih.gov/medgen

SNCBI Resources 🖸	How To 🖸					<u>Sign in to NCBI</u>	
MedGen	MedGen	Limits Advanced			Search	Help	
MedGen	MedGen	Advanced			Search) H	elp
Limits Search Field Tag Field: All Fields	S T						
Chromosomes	13 19 14 20 15 21	<u>clear</u> MT Unknown	Show only Found in GeneReviews With genetic testing Associated with a gene 	<u>clear</u>	Record Category Disease Focus Clinical Features Vocabulary	<u>clear</u> clear	
4 10 5 11 6 12	 16 22 17 X 18 Y 				GTR HPO MeSH	<u>⊂iear</u> ■ NCI	
			Clear	Search			

NCBI's portal to information related to Medical Genetics. Terms from the NIH Genetic Testing Registry (GTR), UMLS, HPO, ClinVar and other sources are aggregated into concepts and their gene annotations where available.

NCBI MedGen - http://www.ncbi.nlm.nih.gov/medgen

Alzheimer's disease (AD)

MedGen UID: 1853 . Concept ID: C0002395 . Disease or Syndrome

Synonyms:	AD; Alzheimer dementia (AD); ALZHEIMER DISEA Alzheimer syndrome; Alzheimer's disease; Alzhei Alzheimer Disease; familial Alzheimer disease (FA Dementia			ASE, FAMILIAL, 1, AUTOSOMAL RECESSIVE; Al mer-type dementia (ATD); dementia; Dementia; Ea AD); Presenile and senile dementia; Primary Senile		
Modes of inheritance:	Hetero	geneous mal dominant in	haritanaa			
SNOMED CT:	AULOSO AD - Al disease	lzheimer's disea: e (26929004)	se (26929004); Alzheimer d	lisease (26929004); Alzheimers disease (26929004		
Genes: Cytogenetic locations: OMIM:	PAXIP1 10q22.2 104300	l; SORL1; PLAU 2; 11q24.1; 12p1	; NOS3; MPO; HFE; ACE; 3.31; 17q11.2; 17q22; 17q2	BLMH; APP; APBB2; A2M 23.3; 21q21.3; 4p14-13; 6p22.2; 7q36.1; 7q36.2		
Genetic Testing F	Regis	try	Disorder of nervous	s system		
Deletion/duplication analysis (2)			of brain			
Mutation scanning of select exons (1)		Delirium, Dementia, Amnestic, Cognitive Disord				
Research (1)		0	Cognitive disorder			
Sequence analysis of	of the c	untiro codina		Dementia		
region (14)	n the e			Alzheimer s disease Alzheimer disease, type 6		
Targeted variant anal	veic (A	Table of o	contents	 Alzheimer disease, type 7 		
Targeteu vanant anai	y 515 (4	Disease ch	aracteristics	 Alzheimer disease, type 8 		
See all (20)				Alzheimer disease, type 9 Alzheimer disease, type 10		
		Additional	descriptions	Alzheimer disease, type 10 Alzheimer disease, type 11		
Clinical fe Term Hier		Clinical features		Alzheimer disease, type 12		
		Term Hiera	rchy	 Alzheimer disease, type 13 Alzheimer disease, type 14 		
		Professional guidelines		 Alzheimer disease, type 15 Alzheimer disease, type 16 		
		Recent clir	nical studies	Early-Onset Familial Alzheim		
		Recent sys	stematic reviews			
				-		

lzheimer sc⊦ arly-Onset F e Degenerati	Molecular resources
	OMIM
4); Alzheime	RefSeqGene
	View A2M variations in ClinVar
	View APBB2 variations in ClinVar
	View APP variations in ClinVar
	View BLMH variations in ClinVar
ders	View ACE variations in ClinVar
	View HFE variations in ClinVar
	View MPO variations in ClinVar
	View NOS3 variations in ClinVar
	View PLAU variations in ClinVar
	View SORL1 variations in ClinVar
	View PAXIP1 variations in ClinVar
L	

ner Disease er Disease

NCBI BioSystems - http://www.ncbi.nlm.nih.gov/biosystems

Functional Similarity – What features to consider?

Cartoon: G. Renee Guzlas

UNIVERSITY OF Cincinnati

- No single source of data can be expected to capture all relevant relations
- Integrate multiple data sources: Better signal-to-noise ratio and improved prediction accuracy

Cartoon - G. Renee Guzlas Tranchevent & Moreau

Gene prioritization through genomic data fusion

S Aerts, D Lambrechts, S Maity, P Van Loo ... - Nature ..., 2006 - nature.com Abstract The identification of genes involved in health and disease remains a challenge. We describe a bioinformatics approach, together with a freely accessible, interactive and flexible software termed Endeavour, to prioritize candidate genes underlying biological processes ... Cited by 666 Related articles All 32 versions Web of Science: 425 Cite Save

ToppGene Suite for gene list enrichment analysis and candidate gene prioritization J Chen, EE Bardes, BJ Aronow... - Nucleic acids research, 2009 - Oxford Univ Press Abstract ToppGene Suite (http://toppgene. cchmc. org; this web site is free and open to all users and does not require a login to access) is a one-stop portal for (i) gene list functional enrichment,(ii) candidate gene prioritization using either functional annotations or network ... Cited by 388 Related articles All 14 versions Web of Science: 257 Cite Save

Guilt-by-association: Approaches differ by the strategy adopted in calculating similarity and by the data sources utilized

With some exceptions (e.g., ENDEAVOUR,

ToppGene), most of the existing approaches mainly focus on the combination of only a few data sources

For methodological details & validation see:

Aerts et al., 2006 Nature Biotech. Chen et al., 2007 BMC Bioinfo.

UNIVERSITY OF Cincinnati

ENDEAVOUR Select All None

- Annotation EnsemblEst 🛈 Annotation - GeneOntology 🛈
- Annotation Interpro 🛈
- Annotation Kegg 🛈
 - Annotation Swissprot 🛈
- Blast 🛈 CisRegModule 🛈
 - Expression SonEtAl 🛈 Expression - SuEtAl 🛈
- Interaction Bind 🛈
- Interaction BioGrid 🛈
- Interaction Hprd 🛈
 - Interaction InNetDb 🛈
 - Interaction Intact 🛈 Interaction - Mint 🛈
- 📃 Interaction String 🛈
- 📃 Motif 🛈
 - Precalculated Ouzounis 🛈
 - Precalculated Prospectr 🛈
- 📃 Text 🛈

Торр	Gene
GO: Molecular Function	
GO: Biological Process	
GO: Cellular Component	MSigDB C2: University Pierre and Marie Curie
	MSigDB C2: University of Liverpool
	MSigDB C2: University of Washington
Gene3D	MSigDB C6: Broad Institute
	MSigDB C7: Nick Haining Jab (DECI)
PROSITE	
Pfam	
ProDom	Body Map
SMART	E FaceBase_RNAseq
▼	FaceBase_ST1
BioSystems: BIOCYC	Gudmap Mouse MOE430.2
BIOSystems: KEGG Ris Systems: Rethusy Interaction Database	Gudmap Mouse ST 1.0
	Gudmap RNAseq
BioSystems: WikiPathways	Immgen.org, GSE15907
GenMAPP	PCBC
MSigDB C2: BioCarta	PCBC AltAnalyze
MSigDB C2: SigmaAldrich	Computational
MSigDB C2: Signaling Gateway	MSigDh: C4 CCN: Canaar Cone Neighborhood
MSigDB C2: Signaling Transduction KE	MSigDb. C4 - CGN. Cancer Gene Neighborhood
MSigDB C2: SuperArray	MSIgDb: C4 - CM: Cancer Modules
PantherDB	
Pathway Ontology	MSigDB
SMPDB	MicroRNA.org
	PITA
	PicTar
	TargetScan
Cytoband	miRTarbase
Transcription Factor Binding Site	miRecords TarBase
Gene Family	
▼	
GeneSigDB	
MSigDB C2: Aristoteles University of Thessaloniki	
MSigDB C2: Broad Institute	
MSigDB C2: Columbia University	Drug Bank
MSigDB C2: Giannina Gaslini Institute	Stitch
MSigDB C2: Johns Hopkins University School of Medicine	▼ □ Disease
MSigDB C2: Laboratoire CarMeN	CTD CTD
MSigDB C2: Michigan State University	Clinical Variations
MSigDB C2: Stanford University	GWAS
MSigDB C2: Steinbeis Transfer Center for Proteome Analysis	
MSigDB C2: Telethon Institute for Child Health Research	
MSigDB C2: University Pierre and Marie Curie	

ENDEAVOUR http://homes.esat.kuleuven.be/~bioiuser/endeavour/index.php

1. Species 2. Training genes 3. Data source	s used to build models	4. Candidate	s
Select All None Annotation - EnsemblEst ¹ Annotation - GeneOntology ¹ Annotation - Interpro ¹ 			
Annotation - Kegg	1. Species 2. Training ge	enes 3. Data so	urces used to build models 4. Candidates
Blast 🛈	Candidate genes to pr	ioritize (14 ger	nes)
CisRegModule 🛈	Gene (Reference ID)	Alias	
Expression - SonEtAl	ENSG0000151617	EDNRA Endot	helin-1 receptor precursor (Endothelin A receptor) (E
Expression - SuEtAl ⁽¹⁾	ENSG0000183625	CCR3 C-C d	nemokine receptor type 3 (C-C CKR-3) (CC-CKR-3) (C
Interaction - Bind	ENSG0000118523	CTGF Conne	ctive tissue growth factor precursor (Hypertrophic o
Interaction - BioGrid U	ENSG0000163638	ADAMTS9 ADAM	TS-9 precursor (EC 3.4.24) (A disintegrin and met
Interaction - InNetDb 🕕	ENSG0000153208	MERTK Proto-	oncogene tyrosine-protein kinase MER precursor (E
Interaction - Intact ①	ENSG0000173598	NUDT4 Dipho	sphoinositol polyphosphate phosphohydrolase 2 (EC :
Interaction - Mint 1	Add following candida	tes	
Interaction - String ¹	CCR3		
Motif 🛈	ADAMTS9		
Precalculated - Ouzounis	MERTK NUDT4		
Precalculated - Prospectr U Text 0	IGF2 GPR125 F7		- Add
	Full genome		

1 . 1	
กณก	DTOC.
	ates.

Little picky on the input types - e.g., gene symbols Supports chromosomal regions, e.g. chr:8p or chr:20p13 – will fetch all the genes in that region Doesn't support chromosomal coordinates

What shared features make a test set gene rank at top or What features are shared between the training/seed set and test set gene are not explicit.

Interaction InNetDb	Interaction Intact	Interaction Mint	Interaction String	Motif	Precalculated Ouzounis	Precalculated Prospectr	Text
GPR125	GPR125	GPR125	LTBP1	F7	PVRL1	ADAMTS9	CCR3
CALCB	CALCB	CALCB	EDNRA	GPR116	MERTK	NUDT4	MERTK
EDNRA	EDNRA	EDNRA	CALCB	MERTK	F7	PVRL1	F7
CTGF	CTGF	CTGF	CORIN	CCR3	EDNRA	MERTK	CTGF
LTBP1	LTBP1	LTBP1	IGF2	CTGF	LTBP1	F7	IGF2
CORIN	CORIN	CORIN	ADAMTS9	ADAMTS9	CORIN	EDNRA	PVRL1
CCR3	CCR3	CCR3	CCR3	GPR125	IGF2	LTBP1	CORIN
PVRL1	PVRL1	PVRL1	PVRL1	PVRL1	GPR125	CTGF	EDNRA
ADAMTS9	ADAMTS9	ADAMTS9	MERTK	NUDT4	CTGF	GPR125	ADAMTS9
IGF2	IGF2	IGF2	NUDT4	LTBP1	GPR116	IGF2	LTBP1
F7	F7	F7	GPR125	EDNRA	CALCB	CALCB	GPR125
MERTK	MERTK	MERTK	GPR116	CORIN	CCR3	CORIN	NUDT4
GPR116	GPR116	GPR116	CTGF	CALCB	ADAMTS9	CCR3	CALCB
NUDT4	NUDT4	NUDT4	F7	IGF2	NUDT4	GPR116	GPR116

ToppGene – http://toppgene.cchmc.org

ToppGene Suite

A one-stop portal for gene list enrichment analysis and candidate gene prioritization	
based on functional annotations and protein interactions network	

• **ToppFun**: Transcriptome, ontology, phenotype, proteome, and pharmacome annotations based gene list functional enrichment analysis

Detect functional enrichment of your gene list based on Transcriptome, Proteome, Regulome (TFBS and miRNA), Ontologies (GO, Pathway), Phenotype (human disease and mouse phenotype), Pharmacome (Drug-Gene associations), literature co-citation, and other features.

• ToppGene: Can	didate gene prioritization	Select your gene id	entifier type, paste your training and	test gene sets bel	ow or select example sets, then	submit.
Prioritize or	rank candidate genes based on functional similarity to training gene list.	Example gene sets:	HGNC Symbol Entrez ID (click on "HGNC Symbol" or "Entrez ID" to use the e	xample training and test set	of genes)	
• ToppNet: Relativ	e importance of candidate genes in networks	Symbol Types	HGNC Symbol -		HGNC Symbol	-
Prioritize or	rank candidate genes based on topological features in protein-protein interacti	Training Gene Set:		Test gapa sat		
• ToppGenet: Price	pritization of neighboring genes in protein-protein interaction network	Training Gene Set.	CPE	iest gene set.	EDNRA CCR3	
Identify and	prioritize the neighboring genes of the seeds in protein-protein interaction network	N	AGTR1 CTNNB1		CTGF ADAMTS9	
		_	MEN1		MERTK	
			WISP2		IGF2	
			LHCGR		GPR125	
			MC2R		LTBP1	
	Doesn't support other		AVPR1A ADPB1		GPR116 CORIN	
	than human/mouse		GIPR		CALCB	
	than numan/mouse		AVPR2		CCNT PVRL1	
				4		
				.11		.44
			Clear	Submit Quer	у	

CCNT

Training set (14 / 14)

Test set (14 / 15)

E	Entered	Human Symbol	Gene ID	Entered	Human Symbol	
AXIN2	AXIN2	8313	ED	NRA ED	DNRA	1909
CPE	CPE	1363	CC	R3 CC	CR3	1232
AGTR1	AGTR1	185	CTO	GF CT	GF	1490
CTNNB1	CTNNB1	1499	AD	AMTS9 AD	DAMTS9	56999
MEN1	MEN1	4221	ME	ERTK ME	ERTK	1046
GIP	GIP	2695	NU	IDT4 NU	JDT4	11163
WISP2	WISP2	8839	IGF	F2 IGF	F2	3481
LHCGR	LHCGR	3973	GP	PR125 GF	PR125	16664
AVPR1B	AVPR1B	553	F7	F7	,	2155
MC2R	MC2R	4158	LTE	3P1 LTE	BP1	4052
AVPR1A	AVPR1A	552	GP	PR116 GF	PR116	22139
ADRB1	ADRB1	153	CO	ORIN CC	DRIN	10699
GIPR	GIPR	2696	CA	LCB CA	ALCB	797
AVPR2	AVPR2	554	PV	'RL1 PV	/RL1	5818
Ignored			lgr	nored		
	Entered	Statu	IS	Entere	d s	Statu

Training parameters

	Feature	Correction	p-Value cutoff	Ge
	🗹 All	FDR 🔻	0.05 👻	1 ≤ <i>n</i> ≤ 1
	GO: Molecular Function	FDR 🔻	0.05 👻	1 ≤ <i>n</i> ≤ 1
	GO: Biological Process	FDR 👻	0.05 👻	1 ≤ <i>n</i> ≤ 1
	GO: Cellular Component	FDR 👻	0.05 👻	1 ≤ <i>n</i> ≤ 1
	Human Phenotype	FDR 👻	0.05 👻	1 ≤ <i>n</i> ≤ 1
	Mouse Phenotype	FDR 👻	0.05 👻	1 ≤ <i>n</i> ≤ 1
►	Domain	FDR -	0.05 👻	1 ≤ <i>n</i> ≤ 1
►	Pathway	FDR 👻	0.05 👻	1 ≤ <i>n</i> ≤ 1
►	Pubmed	FDR 👻	0.05 👻	1 ≤ <i>n</i> ≤ 1
	Interaction	FDR 👻	0.05 👻	1 ≤ <i>n</i> ≤ 1
	Cytoband	FDR 👻	0.05 👻	1 ≤ <i>n</i> ≤ 1
	Transcription Factor Binding Site	FDR 👻	0.05 👻	1 ≤ <i>n</i> ≤ 1
	Gene Family	FDR -	0.05 👻	1 ≤ <i>n</i> ≤ 1
►	Coexpression	FDR 👻	0.05 👻	1 ≤ <i>n</i> ≤ 1
►	Coexpression Atlas	FDR -	0.05 👻	1 ≤ <i>n</i> ≤ 1
►	Computational	FDR 👻	0.05 👻	1 ≤ <i>n</i> ≤ 1
►	MicroRNA	FDR -	0.05 👻	1 ≤ <i>n</i> ≤ 1
►	Drug	FDR 👻	0.05 👻	1 ≤ <i>n</i> ≤ 1
▼	Disease	FDR -	0.05 👻	1 ≤ <i>n</i> ≤ 1
	CTD			
	Clinical Variations			
	☑ GWAS			
				E
		Group results within a cate	gory by source.	CCNT
Ran	dom sampling size: 1500 (6% of genome) 👻			

Test parameter

Start

ntered Update 🔲 Check All

Not Found

Training Results [Expand All] [Download All] [Sparse Matrix] Display pValues and Scores as Scientific (4 significant digits) - Table row limit 50 -

1: GO: Molecular Function [Display Chart] 132 annotations before applied cutoff / 18273 genes in category

	ID	Name	Source	pValue	FDR B&H	FDR B&Y	Bonferroni	Genes from Input	Genes in Annotation
1	GO:0017046	peptide hormone binding		1.118E-10	1.389E-8	7.589E-8	1.476E-8	5	43
2	GO:0008528	G-protein coupled peptide receptor activity		2.736E-10	1.389E-8	7.589E-8	3.612E-8	6	126
3	GO:0001653	peptide receptor activity		3.157E-10	1.389E-8	7.589E-8	4.167E-8	6	129
4	GO:0042562	hormone binding		1.979E-9	6.529E-8	3.568E-7	2.612E-7	5	75
5	GO:0005000	vasopressin receptor activity		1.251E-8	3.302E-7	1.804E-6	1.651E-6	3	7
S	how 45 more	annotations							

2: GO: Biological Process [Display Chart] 1554 annotations before applied cutoff / 18138 genes in category

	ID	Name	Source	pValue	FDR B&H	FDR B&Y	Bonferroni	Genes from Input	Genes in Annotation
•	1 GO:0007186	G-protein coupled receptor signaling pathway		3.501E-10	5.441E-7	4.312E-6	5.441E-7	10	1057
2	2 GO:0030819	positive regulation of cAMP biosynthetic process		1.788E-9	6.796E-7	5.387E-6	2.779E-6	5	73
•	3 GO:0060341	regulation of cellular localization		2.187E-9	6.796E-7	5.387E-6	3.398E-6	9	875
4	4 GO:0030816	positive regulation of cAMP metabolic process		2.197E-9	6.796E-7	5.387E-6	3.413E-6	5	76
!	5 GO:0042592	homeostatic process		2.352E-9	6.796E-7	5.387E-6	3.655E-6	10	1284
C	how 45 more	annotations							

3: GO: Cellular Component [Display Chart] 104 annotations before applied cutoff / 18818 genes in category

	ID	Name	Source	pValue	FDR B&H	FDR B&Y	Bonferroni	Genes from Input	Genes in Annotation
1	GO:0005768	endosome		3.932E-6	4.089E-4	2.137E-3	4.089E-4	6	650
2	GO:0005887	integral component of plasma membrane		2.019E-5	7.322E-4	3.827E-3	2.099E-3	7	1341
3	GO:0031226	intrinsic component of plasma membrane		2.589E-5	7.322E-4	3.827E-3	2.693E-3	7	1393
4	GO:0030877	beta-catenin destruction complex		2.816E-5	7.322E-4	3.827E-3	2.929E-3	2	11
5	GO:0031410	cytoplasmic vesicle		8.434E-4	1.754E-2	9.168E-2	8.771E-2	5	1093

Show 5 more annotation

4: Human Phenotype [Display Chart] 321 annotations before applied cutoff / 3811 genes in category

	ID	Name	Source	pValue	FDR B&H	FDR B&Y	Bonferroni	Genes from Input	Genes in Annotation
1	HP:0000850	Cushing syndrome		5.761E-5	1.849E-2	1.174E-1	1.849E-2	2	6
2	HP:0001578	Hypercortisolism		2.101E-4	2.248E-2	1.428E-1	6.745E-2	2	11
3	HP:0004316	Increased cortisol production		2.101E-4	2.248E-2	1.428E-1	6.745E-2	2	11
4	HP:0004421	Elevated systolic blood pressure		7.191E-4	3.521E-2	2.236E-1	2.308E-1	2	20
5	HP:0010514	Hyperpituitarism		9.545E-4	3.521E-2	2.236E-1	3.064E-1	2	23

Show 45 more annotations

5: Mouse Phenotype [Display Chart] 1062 annotations before applied cutoff / 7344 genes in category

	ID	Name	Source	pValue	FDR B&H	FDR B&Y	Bonferroni	Genes from Input	Genes in Annotation
1	MP:0005418	abnormal circulating hormone level		5.911E-8	6.278E-5	4.737E-4	6.278E-5	9	656
2	MP:0000639	abnormal adrenal gland morphology		1.454E-7	6.387E-5	4.819E-4	1.545E-4	5	86
3	MP:0003953	abnormal hormone level		1.804E-7	6.387E-5	4.819E-4	1.916E-4	9	745

Enrichment of Training/seed set:

- Helps in assessing the "quality" of the training set
 - Can assist in selecting subsets of training set to perform prioritizations (e.g., large training set)

les	t Resul	ts [Hide D	Down	load Show N	Network																															
Rank (net)	Gene	Gene	GO: M Fun	olecular ction	GO: Bio Proc	ological cess	GO: Ce Comp	ellular onent	Hu Pher	uman notype	Mo Phen	use (otype	Domain	Pat	hway	Pubmed	Int	eraction	Су	toband	Transcription Binding	n Factor Site	Gene Fami	y Coe	pression	Coexpr Atl	ession Comp	utational	Micr	oRNA	Dri	g	Dise	ease	Average	Overall Pavalue
(net)	Symbol		Score	pValue	Score	pValue	Score	pValue	Score	e pValue	Score	pValue So	ore pValu	e Score	pValue	Score pV	alue Sco	re pValue	e Scor	re pValue	Score	pValue	Score p	alue Sco	re pValue	Score	pValue Scor	e pValue	Score	pValue	Score	pValue	Score	pValue	30010	1 -Value
1	EDNF	RA 1909	9.135E-1	5.232E-3	1.000E0	6.736E-2	8.078E-1	1.243E-2	1.323E-1	1 4.644E-2	3.591E-1	4.382E-2 1.142	E-1 7.848E-	3 9.932E-1	1.000E-6	1.000E0 1.112	2E-2 2.748E	-1 4.055E-2	2 0.000E	E0 5.049E-1	0.000E0	4.997E-1		7.117E	-1 1.000E-6	2.362E-1	5.886E-3 7.999E-	1 1.000E-6	0.000E0	4.997E-1	1.000E0	9.810E-3	2.013E-1	6.540E-3	5.028E-1	8.680E-12
2	IG	F2 3481	5.930E-1	4.709E-2	1.000E0	6.736E-2	9.065E-1	6.540E-4	1.000E0	0 6.540E-4	8.686E-1	1.897E-2 0.000	E0 5.095E-	1 0.000E0	5.154E-1	1.000E0 1.04	3E-2 7.393E	-1 5.886E-3	3 0.000E	E0 5.049E-1	0.000E0	4.997E-1		7.597E	-1 1.000E-6	3.295E-1	3.924E-3 0.000E	0 5.003E-1	0.000E0	4.997E-1	1.000E0	9.810E-3	8.721E-1	1.308E-3	5.335E-1	3.530E-8
3	CCI	R3 1232	9.135E-1	5.232E-3	1.000E0	6.736E-2	8.029E-1	1.243E-2			2.507E-1	5.952E-2 1.142	E-1 7.848E-	3 8.511E-1	2.616E-3	9.931E-1 2.42	DE-2 0.0008	5.258E-1	1 0.000E	E0 5.049E-1	0.000E0	4.997E-1	0.000E0 4.99	'E-1 5.732E	-1 2.616E-3	0.000E0	5.173E-1 7.999E-	1 1.000E-8	0.000E0	4.997E-1	8.654E-1	1.014E-1	0.000E0	5.069E-1	4.254E-1	3.308E-6
4	СТС	GF 1490	7.846E-1	1.635E-2	1.000E0	6.738E-2	4.245E-1	1.354E-1			3.729E-1	4.251E-2 9.998	E-1 8.540E-	4 0.000E0	5.154E-1	1.000E0 1.040	BE-2 0.000E	5.258E-1	1 0.000E	E0 5.049E-1	0.000E0	4.997E-1		6.812E	-1 6.540E-4	2.382E-1	5.886E-3 0.000E	0 5.003E-1	0.000E0	4.997E-1	1.000E0	1.046E-2	4.528E-1	3.924E-3	4.345E-1	1.498E-5
5	GPR1	16 221395	6.602E-1	3.009E-2	9.964E-1	1.485E-1	6.169E-1	5.101E-2			3.507E-1	5.298E-2 9.704	E-1 2.616E-	3 0.000E0	5.154E-1	3.163E-1 1.230	9E-1		0.000E	E0 5.049E-1	0.000E0	4.997E-1	0.000E0 4.99	'E-1 0.000	0 5.154E-1	2.362E-1	5.886E-3		0.000E0	4.997E-1	4.710E-1	1.687E-1			3.630E-1	5.249E-3
6	COR	IN 10699	2.504E-1	1.387E-1	1.000E0	6.738E-2	8.981E-1	1.308E-3	1.247E-3	3 5.494E-2	1.181E-1	7.129E-2 0.000	E0 5.095E-	1 0.000E0	5.154E-1	9.970E-1 2.093	3E-2		0.000E	E0 5.049E-1	0.000E0	4.997E-1		0.000	0 5.154E-1	3.295E-1	3.924E-3 0.000E	0 5.003E-1	0.000E0	4.997E-1	7.081E-1	1.308E-1	0.000E0	5.069E-1	2.773E-1	5.666E-3
7 🗖	GPR1	25 166647	6.602E-1	3.009E-2	7.881E-1	2.485E-1	3.164E-1	1.609E-1			1.000E-2	7.848E-2 9.721	E-1 1.962E-	3		6.835E-1 7.58	7E-2 0.0008	5.258E-1	0.000E	E0 5.049E-1				0.000	0 5.154E-1	0.000E0	5.173E-1		0.000E0	4.997E-1	0.000E0	6.167E-1			3.061E-1	2.118E-2
8	1	F7 2155	4.430E-1	7.260E-2	1.000E0	6.802E-2	6.354E-1	4.120E-2	2.679E-1	1 3.859E-2	2.507E-1	5.952E-2 0.000	E0 5.095E-	1 0.000E0	5.154E-1	1.000E0 1.112	2E-2 0.000E	5.258E-1	1 0.000E	E0 5.049E-1				0.000	0 5.154E-1	0.000E0	5.173E-1 0.000E	0 5.003E-1	0.000E0	4.997E-1	9.911E-1	4.774E-2	0.000E0	5.069E-1	2.870E-1	2.533E-2
9 🗖	CALC	CB 797	3.463E-1	9.614E-2	9.987E-1	1.328E-1	0.000E0	6.566E-1				0.000	E0 5.095E-	1 7.597E-1	5.232E-3	8.666E-1 5.363	3E-2		0.000E	E0 5.049E-1	0.000E0	4.997E-1		0.000	0 5.154E-1	0.000E0	5.173E-1 0.000E	0 5.003E-1	0.000E0	4.997E-1	1.000E0	9.810E-3		1	3.105E-1	2.890E-2
10 🔲	CCN	T1 904	8.203E-1	1.373E-2	1.000E0	7.194E-2	5.235E-1	6.671E-2				0.000	E0 5.095E-	1 0.000E0	5.154E-1	7.583E-1 6.99	3E-2 4.588E	-1 2.158E-2	2 0.000E	E0 5.049E-1	0.000E0	4.997E-1		0.000	0 5.154E-1	0.000E0	5.173E-1 0.000E	0 5.003E-1	0.000E0	4.997E-1	4.071E-1	1.838E-1			3.080E-1	3.093E-2
11 🗖	PVR	L1 5818	8.505E-1	1.046E-2	1.000E0	7.979E-2	4.833E-1	9.745E-2	8.204E-2	2 4.905E-2	1.000E-2	7.848E-2 0.000	E0 5.095E-	1 0.000E0	5.154E-1	9.972E-1 2.02	7E-2 0.0008	5.258E-1	0.000E	E0 5.049E-1	0.000E0	4.997E-1	0.000E0 4.99	'E-1 0.000	0 5.154E-1	0.000E0	5.173E-1 0.000E	0 5.003E-1	0.000E0	4.997E-1	8.866E-1	9.810E-2	0.000E0	5.069E-1	2.428E-1	5.302E-2
12 🔲	N	_			1	-2	9.733E-2	2.976E-1				0.000	E0 5.095E-	1 0.000E0	5.154E-1	0.000E0 5.618	3E-1		0.000E	E0 5.049E-1	0.000E0	4.997E-1	0.000E0 4.99	'E-1 5.136E	-1 2.616E-3	0.000E0	5.173E-1 0.000E	0 5.003E-1	0.000E0	4.997E-1	6.224E-1	1.445E-1			1.917E-1	9.202E-2
13 🗖	м					-2	6.682E-1	3.205E-2	1.247E-3	3 5.494E-2	5.149E-1	3.728E-2 0.000	E0 5.095E-	1 0.000E0	5.154E-1	0.000E0 5.618	BE-1 0.0008	5.258E-1	0.000E	E0 5.049E-1	0.000E0	4.997E-1		0.000	0 5.154E-1	0.000E0	5.173E-1 0.000E	0 5.003E-1	0.000E0	4.997E-1	5.005E-1	1.629E-1	0.000E0	5.069E-1	2.024E-1	9.464E-2
14 🔲	L	Ranl	k 6	Sene	Ge	ne 🗉	0.000E0	6.566E-1			2.507E-1	5.952E-2 0.000	E0 5.095E-	1 0.000E0	5.154E-1	7.945E-1 8.34	4E-2 0.0008	5.258E-1	1 0.000E	E0 5.049E-1	0.000E0	4.997E-1		0.000	0 5.154E-1	0.000E0	5.173E-1 0.000E	0 5.003E-1	0.000E0	4.997E-1	6.978E-1	1.321E-1			2.382E-1	1.203E-1
15 🗖	ADA	(net)) Sy	mbol		D -1	3.867E-1	1.406E-1			1.000E-2	7.848E-2 0.000	E0 5.095E-	1 0.000E0	5.154E-1	5.696E-1 9.418	3E-2		0.000E	E0 5.049E-1	0.000E0	4.997E-1	0.000E0 4.99	'E-1 0.000	0 5.154E-1	0.000E0	5.173E-1		0.000E0	4.997E-1	8.444E-2	2.341E-1	0.000E0	5.069E-1	1.750E-1	1.738E-1

Why is a test set gene ranked at top or What features are shared between the training/seed set and ranked test set gene are presented both as a network and tabular format.

- Select the ranked genes
- Resulting training set, shared annotations, and the ranked gene(s) can be downloaded as an XGMML or GEXF file (Cytoscape/Gephi import)

Download the rankings table

Opening ToppGeneDa	ta.csv	×
You have chosen to	open:	
🖳 ToppGeneDat	a.csv	
which is: Micr	osoft Excel Comma Separated Values File (2.8 KB)	
from: https://t	oppgene.cchmc.org	
What should Firefor	do with this file?	
Open with	Microsoft Excel (default)	•
Save File		
📃 Do this <u>a</u> uto	matically for files like this from now on.	
	UK Can	cei

UNIVERSITY OF Cincinnati

Supporting Details

Feature	ID	Name	Genes
GO: Molecular Function	GO:0008528	G-protein coupled peptide receptor activity	AGTR1 AVPR1A AVPR1B AVPR2 EDNRA LHCGR MC2R
GO: Molecular Function	GO:0001653	peptide receptor activity	AGTR1 AVPR1A AVPR1B AVPR2 EDNRA LHCGR MC2R
GO: Molecular Function	GO:0004930	G-protein coupled receptor activity	ADRB1 AGTR1 AVPR1A AVPR1B AVPR2 EDNRA GIPR LHCGR MC2R
GO: Molecular Function	GO:0004888	transmembrane signaling receptor activity	ADRB1 AGTR1 AVPR1A AVPR1B AVPR2 EDNRA GIPR LHCGR MC2R
GO: Molecular Function	GO:0038023	signaling receptor activity	ADRB1 AGTR1 AVPR1A AVPR1B AVPR2 EDNRA GIPR LHCGR MC2R
GO: Biological Process	GO:0043084	penile erection	AVPR1A EDNRA
GO: Biological Process	GO:0051482	positive regulation of cytosolic calcium ion concentration involved in phospholipase C-activating G-protein coupled signaling pathway	AGTR1 EDNRA
GO: Biological Process	GO:0051281	positive regulation of release of sequestered calcium ion into cytosol	EDNRA LHCGR
GO: Biological Process	GO:0007620	copulation	AVPR1A EDNRA
GO: Biological Process	GO:0007190	activation of adenylate cyclase activity	ADRB1 AVPR2 EDNRA GIPR LHCGR
GO: Biological Process	GO:0045762	positive regulation of adenylate cyclase activity	ADRB1 AVPR2 EDNRA GIPR LHCGR
GO: Biological Process	GO:0031281	positive regulation of cyclase activity	ADRB1 AVPR2 EDNRA GIPR LHCGR
GO: Biological Process	GO:0090183	regulation of kidney development	AGTR1 CTNNB1 EDNRA
GO: Biological Process	GO:0051349	positive regulation of lyase activity	ADRB1 AVPR2 EDNRA GIPR LHCGR
GO: Biological Process	GO:0007202	activation of phospholipase C activity	AVPR1A AVPR1B EDNRA
GO: Biological Process	GO:0010863	positive regulation of phospholipase C activity	AVPR1A AVPR1B EDNRA
GO: Biological Process	GO:0045761	regulation of adenylate cyclase activity	ADRB1 AVPR2 EDNRA GIPR LHCGR
GO: Biological Process	GO:1900274	regulation of phospholipase C activity	AVPR1A AVPR1B EDNRA
GO: Biological Process	GO:0007200	phospholipase C-activating G-protein coupled receptor signaling pathway	AGTR1 EDNRA LHCGR

Shared annotations between training set & ranked test set gene

Blue nodes: Seed genes Pink nodes: ranked candidates All other nodes – shared annotations

Gene in bold is ranked test set gene; rest are training/seed genes

Combining gene level information with genomic variant information – Few case studies

Exome sequencing and gene prioritization

Genome Res. 2011 21: 658-664 originally published online April 12, 2011

Moreau & Tranchevent, 2012

UNIVERSITY OF W Cincinnati

Some more examples of published studies that used Endeavour and/or ToppGene for candidate gene prioritization

Familial Cancer © Springer Science+Business Media Dordrecht 2013 10.1007/s10689-013-9642-y

Original Article

Whole exome sequencing identifies mutation of EDNRA involved in ACTH-independent macronodular adrenal hyperplasia

Jie Zhu¹, Liang Cui¹, Wei Wang¹, Xing-Yi Hang², A-Xiang Xu¹, Su-Xia Yang¹, Jing-Tao Dou¹, Yi-Ming Mu¹, Xu Zhang 1 and Jiang-Ping Gao 1 🖂

Exome Sequencing and Systems Biology Converge to Identify Novel Mutations in the L-Type Calcium Channel, CACNA1C, Linked to Autosomal Dominant Long QT Syndrome Nicole J. Boczek, Jabe M. Best, David J. Tester, John R. Giudicessi, Sumit Middha, Jared M. Evans, Timothy J. Kamp and Michael J. Ackerman

Circ Cardiovasc Genet. published online May 15, 2013;

		Rank		
Gene	Endeavour ³⁰	SUSPECTS ³¹	Topp Gene ³²	Total Rank
CACNA1C	1	1	1	1
SLC26A1	3	2	2	2
MAPIA	2	6	3	3
DMRTBI	8	3	4	4
DSCAML I	6	4	6	5
GLTSCRI	5	8	5	6
PPP1R12C	4	7	8	7
MARCKS	7	5	7	8

The rank of candidate genes in different diseases prediction										
Rank	SUSPECTS	ToppGene	Endeav							
1	EDNRA	EDNRA	EDNRA							
2	CCR3	CCR3	GRM1							
3	CTGF	PTAFR	GPR125							
4	ADAMTS9	GRID2	ACVR1B							
5	MERTK	CASR	CCR3							
6	NUDT4	GPR18	LGR5							
7	IGF2	CALCB	CUL1							
8	GPR125	ADCY8	F7							
9	F7	GRM1	GRHPR							
10	LTBP1	WFS1	PTK2							

OPEN O ACCESS Freely available online

Exome-Sequencing Confirms DNAJC5 Mutations as Cause of Adult Neuronal Ceroid-Lipofuscinosis

Massachusetts, United States of America

Bruno A. Benitez¹, David Alvarado², Yefei Cai¹, Kevin Mayo¹, Sumitra Chakraverty¹, Joanne Norton¹, John C. Morris³, Mark S. Sands^{2,4}, Alison Goate^{1,3,4,5}, Carlos Cruchaga^{1,4}*

Human Genetics

March 2013, Volume 132, Issue 3, pp 285-292

Variants in *GATA4* are a rare familial and sporadic congen diaphragmatic hernia

Lan Yu, Julia Wynn, Yee Him Cheung, Yufeng Shen, George B. My Crombleholme, Kenneth S. Azarow, Foong Yen Lim, Dai H. Chung, Warner, Brian Bucher, Charles Stolar, Gudrun Aspelund, Marc S. A

		T	oppgene R	esults	Endeavour	results	
	Gene Symbol	Rank Net	Average Score	Overall pValue	Global prioritization score	Rank	Combined score
	DNAJC5	1	0.7031	7.07E-05	2	0.117	1.5
aguag of	CDC16	3	0.4483	0.0133049	3	0.167	3
cause of	PDCD6IP	5	0.3351	0.0246281	1	0.071	3
	NPY1R	2	0.6797	2.30E-04	5	0.249	3.5
ital 👘 👘	LIPJ	4	0.3063	0.015721	4	0.215	4
itui	ZNF717	8	0.1556	0.1493499	7	0.29	7.5
	LCMT1	10	0.1008	0.1746657	8	0.312	9
	MUC3A	12	0.1445	0.2637284	6	0.256	9
	ENPP3	7	0.2334	0.1058833	13	0.531	10
aliska. Timothy M	ABCC1	11	0.2423	0.2043685	9	0.337	10
auglas Dataka, Bred W	ARHGAP10	9	0.1517	0.1615053	12	0.479	10.5
ougias Potoka, Brad VV.	TNRC6A	6	0.3164	0.0609277	16	0.705	11
ovitz, Wendy K. Chung	LOC100287879	14	-1	0.3513417	11	0.41	12.5
	CCDC74B	15	-1	0.3513417	10	0.355	12.5
	TTBK2	13	0.1311	0.2709082	15	0.689	14
	LOC389906	16	-1	0.3513417	14	0.69	15

OTX2 Duplication Is Implicated in Hemifacial Microsomia Dina Zielinski¹, Barak Markus¹, Mona Sheikh¹, Melissa Gymrek^{1,2,3,4}, Clement Chu⁵, Marta Zaks⁶,

Balaji Srinivasan⁵, Jodi D. Hoffman⁷, Dror Aizenbud^{6®}, Yaniv Erlich¹*[®] I Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America, 2 Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, Massachusetts, United States of America, 3 Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts United States of America, 4 Department of Molecular Biology and Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America, 5 Counsyl, South San Francisco, California, United States of America, 6 Rambam Health Care Campus, Haifa, Israel, 7 Division of Genetics, Tufts Medical Center, Bosto

Limitations & Points to Remember

- Bias towards the training set: Disease genes yet to be discovered will be consistent with what is already known about a disease and/or its genetic basis – assumption not always true.
- Bias towards selecting better annotated genes: "true" candidate can be missed if it lacks "sufficient" annotations.
- Accuracy depends on the <u>quality</u> (and coverage) of underlying original sources from which the annotations are retrieved.
- Appropriate or "true representative" training set selection: Using larger training sets (>100 genes) decreases the sensitivity and specificity of the prioritization compared to smaller training sets (6 to 30 genes).
- <u>Coding-gene-centric</u>: Complex traits result more often from noncoding regulatory variants than from coding sequence variants

Gene Prioritization Portal http://homes.esat.kuleuven.be/~bioiuser/gpp/index.php

Gene Prioritization Portal

									Charles				
				Hom	e		ools		Stats		Sea	irch	Contact
eneral stat	ISTICS	5											
iis section conta trieved from our ioritization. Curre	ins diff frequ ntly, th	ferent ently (e porta	statisti updated al conta	cs abou I datab iins :	ut the base an	gene d thus	prioritiz they	ation reflect	portal. t the	These curren	statis t state	tics ar of th	e automatically ne art in gene
• 46 gene prio	ritizatio	n tools											
 12 data source 113 gene prior 39 gene prior 	ces oritizatio ritizatio	on rela n valida	ited put ations	olication	าร								
ata sources	s stat	istic	:s										
nis section contai llowing table corr In be found below	ins deta espond the tai	ails abo s to Ta ble.	out the able 2 o	differ f the p	ent dat aper <u>Tr</u>	tasourc ranchev	es and ent <i>et</i>	their al. (201	use by 10). Fur	the g ther d	ene pr etails a	ioritiza bout tł	tion tools. The ne data source:
					,	,	,	,	,	,	,	,	, ,
				15		<u>s</u> r /	/	/	/	/	/		1094 S
			notatie		ormat	ion	an /	/ /	/ /	/ /	/ /	home	abilitie
		23	ni jon	ord'in	il cito	c ncilo	ions	5	/e	, pe	atic	n' pro	po als
	ne	iol, of	.e5	late	60 / 1	(u) el	activity	NON O	sent	north	server, c	235°	emica
Tools	43	4	2°	120	120	In	20	Ser	841	/0	0	<u> </u>	/
aGeneApart					Х								1
BioGraph	х				Х	Х	Х					х	5
Biomine	х	Х			х	х	Х		Х	Х		х	8
Bitola					х								1
Caesar	х	Х			х	х	Х			Х	Х		7
Candid		Х			х	х		Х		Х	Х		6
CGI		Х				х							2
DGP								Х		Х			2
		Х				х	Х						3
DIR													1
DIR DomainRBF								Х					
DIR DomainRBF Endeavour	x	х	x		x	x	x	x x			x		8
DIR DomainRBF Endeavour eResponseNet	х	x x	х	х	x	x x	x x	x x			x		8
DIR DomainRBF Endeavour eResponseNet G2D	x x	x x	x	x x	х	x x x	x x	x x x			х		1 8 4 4
DIR DomainRBF Endeavour eResponseNet G2D GeneDistiller	x x x	x x x	x	x x x	x	x x x x	x x x	x x x	x		х		1 8 4 4 6
DIR DomainRBF Endeavour eResponseNet G2D GeneDistiller GeneFriends	x x x	x x x x	х	x x x	x	x x x x	x x x	x x x	х		Х		1 8 4 6 1
DIR DomainRBF Endeavour eResponseNet G2D GeneDistiller GeneFriends GeneProspector	x x x	x x x x	Х	x x x	x x	x x x x	x x x	x x x	х		х		1 8 4 6 1
DIR DomainRBF Endeavour eResponseNet G2D GeneDistiller GeneFriends GeneProspector GeneRank	x x x x	x x x x x	Х	x x x	x x	x x x x	x x x	x x x	x		х		1 8 4 6 1 1 2

Inputs / outputs statistics

This section contains details about the different inputs needed by the gene prioritization tools and about the different outputs they produce. The following two tables corresponds to Table 3 of the paper Tranchevent et al. (2010). Further details about the inputs / outputs can be found below the tables. The first table describes the inputs of the gene prioritization softwares.

	Training data			Candidate genes				
Tools	Known genes	Keywords	Expression dataset	Region	DEG	Genome		
aGeneApart		х				х		
BioGraph		х				Х		
Biomine	х	х			Х			
Bitola		х		Х		Х		
Caesar		х		Х	Х	Х		
Candid		х		Х	Х	Х		
CGI			х			Х		
DGP						х		
DIR	х				Х			
DomainRBF		Х				х		
Endeavour	Х	Х		Х	Х	Х		
eResponseNet	Х				Х			
G2D	Х	Х		Х				
GeneDistiller	Х	Х		Х				
GeneFriends	Х					х		
GeneProspector		Х				х		
GeneRank			х			х		
GeneRanker	Х	Х				х		
GeneSeeker		Х		Х		Х		
GeneWanderer	Х			Х	Х			
Génie		х			Х	Х		
GenTrepid		Х		Х	Х			

Gene Prioritization Portal

Detailed view of a gene prioritization tool

Previous tool Back to list Next tool

Name

Pinta

URL

http://www.esat.kuleuven.be/pinta/

Description

PINTA identifies the most promising candidates within a region when only sparse information about the phenotype is available by replacing this knowledge by experimental data on differential gene expression between affected and healthy individuals. Considering the problem from the perspective of a gene/protein network, we assess the relevance of a candidate gene by considering the level of differential expression in its network neighborhood under the assumption that strong candidates tend to be surrounded by differentially expressed neighbors.

Software modes

	Web based software	The software contains a web based interface and therefore can be used from a web browser.
Datas	ources	
	Functional annotations	Keywords associated to the genes and describing their functions or the ones of the corresponding proteins. Often an organized vocabulary (ontology) is used. The most used annotation source is Gene Ontology.
	Expression	Data covering the expression level (usually at the transcript level) of many genes (usually genome-wide) over a wide range of tissues/conditions.
	Text (co-citation)	Links between genes obtained by applying text mining techniques in order to find co-citations occurring in the scientific literature.
	Interactions	Collection of gene-gene (or protein-protein) interactions coming from biological experiments. Two examples of such data sources are DIP and BioGrid.

Inputs / outputs

Training data: expression dataset Candidate genes: region Candidate genes: DEG Candidate genes: genome

Publications

Nitsch et al., PINTA: a web server for network-based gene prioritization from expression data, Nucleic Acids Res. (2011) Show abstract, link to paper

Benchmarks

Nitsch et al., Candidate Gene Prioritization by Network Analysis of Differential Expression using Machine Learning Approaches, BMC Bioinformatics (2010) Show abstract, link to paper

Tools used: Pinta.

Critical Assessment

Results of a critical assessment performed on 8 gene prioritization softwares (reference to come). Regular benchmarks are usually run on know data; oppositely this benchmark mimics the discovery of a novel disease gene by performing predictive prioritizations. More precisely, 42 novel disease gene associations were used to benchmark the tools as soon as they were published and therefore before their inclusions in the databases used by these tools.

This plot presents the results of this benchmark for Pinta. Several performance indices are computed: median over the 42 rank ratios, AUC (Area Under the ROC Curve), and True Positive Rates at 10% and 30%.

Prioritized list of candidates Test Statistics

Disease Gene Prioritization - Networkbased strategies

- Candidate genes are ranked based on their topological relevance (e.g., distance) to known disease genes (Training/seed genes) in a network.
 - Protein-protein interactions network (BioGrid, BIND, HPRD, etc.)
 - Protein association network (STRING)
- Random-walk (or PageRank) approaches outperform clustering and neighborhood approaches.

se	et (7 / 7)		Test set (146 / 158)					
ł	Human Symbol	Gene ID	Entered	Human Symbol	Gene ID	*		
	NKX2-5	1482	ACVR1	ACVR1	90	=		
	MEF2A	4205	ACVR2B	ACVR2B	93	-		
	GATA4	2626	ADAM19	ADAM19	8728			
	HAND1	9421	ADM	ADM	133			
	HAND2	9464	ADRA1A	ADRA1A	148	_		
	TBX5	6910	ADRA1B	ADRA1B	147			
	SRF	6722	ADRBK1	ADRBK1	156			
					67529			
					535			
			BMP10	BMP10	27302			
			BMP2	BMP2	650			
			BMP4	BMP4	652			
			BMPR1A	BMPR1A	657			
			CALCRL	CALCRL	10203			
			CASP3	CASP3	836			
			CASP7	CASP7	840			
			CASP8	CASP8	841			
			CASQZ	CASQ2	845 55626			
					10370	-		
			GITT	GITTIZ	10.170			
g	ene neighbort When train	Pr Bias nood sub Neig ing set is b	ioritizatior (between onetwo hborhood ig, the trai	n method: Pag 0 and 1): 0.3 rk visualiza distance: 1 •	ge Rank Wi tion par borhood su	ith Pri ram	iors 👻 eters work can be	huge.
	K							
	ID		Na	ame				
	2033	;			EP300			
	3399)			ID3			
	3398	;			ID2			
	3397	,			ID1			
	10014	L		F	IDAC5			
	8928	2						
	0020	·						
	6909				IBX2			
	836	;		(CASP3			
	7003	;		٦	FEAD1			
	840)		(CASP7			
	5460	1			MED1			
	0724							
	9734	+		F	IDAC9			
	4776	;		N	FATC4			
	23414			2	ZFPM2			
	23054			N	ICOA6			
	5591			P	RKDC			
	4851			N	DTCH1			
	1/00	1		0				
	1499			C				
	841			(JASP8			
	93649			N	IYOCD	Ch	le ta na	2000
						$\mathbf{O}\mathbf{I}$	יטו כנ מו.	, 2003

New tools – Variant prioritization

http://homes.esat.kuleuven.be/~bioiuser/eXtasy/

http://compbio.charite.de/ExomeWalker exomewalker Prioritization of whole-exome data by random-walk analysis of protein-protein interactions

identify novel Mendelian disease genes. Our approach involves filtering a Variant Call Format (VCF) file according to a number of user-definable criteria, for instance, off-target variants (those that are not located within or close to protein-coding exons) are

No file selected.

Genes are prioritised according to a variant score (predicted pathogenicity, rarity, pattern of variants compatible with the assumed mode of inheritance) and to their vicinity to other genes that belong to the same disease-gene family within the protein protein interaction (PPI) network, using the Random-Walk method as described in Köhler et al. (2008) to determine similarity within the PPI network on the basis of the global characteristics of the network.

VCF files for single or multiple samples are supported. If you upload a multiple-sample VCF file, you will also be required to enter pedigree data in PED file format. The file suffix must be "VCF" or "vcf".

0	w	s	e	_	
_		_	_	_	_

Send File

References & Further Reading

- Kann MG. 2010. Advances in translational bioinformatics: computational \bullet approaches for the hunting of disease genes. Brief Bioinform. 11(1):96-110.
- Piro, R. M. & Di Cunto, F. 2012. Computational approaches to disease-gene prediction: rationale, classification and successes. FEBS J. 279: 678–696.
- Moreau Y, Tranchevent LC. 2012. Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat Rev Genet 13: 523-536.
- Bromberg Y. 2013. Chapter 15: disease gene prioritization. PLoS Comput Biol. 9(4):e1002902.
- Navlakha S, Kingsford C. 2010. The power of protein interaction networks for associating genes with diseases. Bioinformatics 26(8):1057-63.
- Gonzalez MW, Kann MG. 2012. Chapter 4: Protein interactions and disease. PLoS Comput Biol. 8(12):e1002819
- Gilissen C, Hoischen A, Brunner HG, Veltman JA. 2012. Disease gene identification strategies for exome sequencing. Eur J Hum Genet. 20(5):490-7.

Cartoon - G. Renee Guzlas