🖉 🗠 Cincinnati **Comparative Genomics Gene Regulatory Networks (GRNs)** Anil Jegga **Biomedical Informatics**

Contact Information:

Anil Jegga **Biomedical Informatics** Room # 232, S Building 10th Floor **CCHMC** Homepage: http://anil.cchmc.org Tel: 513-636-0261 E-mail: anil.jegga@cchmc.org

Session 2: February 24, 2012

Additional exercise available at: http://anil.cchmc.org/grn.html

Session 1: Overview of GRNs (Feb 23)

- **Computational Approaches a**.
- b. Cis-Element Identification
- c. Comparative Genomics
- d. Regulatory region variations
- e. p53 case study

Session 2: Database Session (Feb 24)

- a. Genome Browsers
- b. Promoter Analysis, TFBS Search
- c. Co-regulated gene analysis

Session 2

(Databases/Servers)

Feb 24, 2012

- a. Genome Browsers
- b. Promoter Analysis, TFBS Search
- c. Co-regulated gene analysis

UCSC	C Genome Bioinformatics
Genomes -	Blat - Tables - Gene Sorter - PCR - VisiGene - Proteome - Session - FAQ - Help
Genome Browser	About the UCSC Genome Bioinformatics Site Welcome to the UCSC Genome Browser website. This site contains the reference sequence and working draft
ENCODE Blat Table Browser Gene Sorter In Silico PCR	to the ENCODE project. We encourage you to explore these sequences with our tools. The <u>Genome Browser</u> zooms and scrolls over <u>Sorter</u> shows expression, homology and other information on groups of genes that can be related in many ways provides convenient access to the underlying database. <u>VisiGene</u> lets you browse through a large collection <u>Genome Graphs</u> allows you to upload and display genome-wide data sets. The UCSC Genome Browser is developed and maintained by the Genome Bioinformatics Group, a cross Engineering (<u>CBSE</u>) at the University of California Santa Cruz (<u>UCSC</u>). If you have feedback or questions con public mailing list.
Genome Graphs	News
Galaxy	To receive announcements of new genome assembly releases, new software features, updates and training sem
VisiGene	9 September 2009 - Changes to the bigBed/bigWig data formats
Proteome Browser Utilities	If you have been taking advantage of the new bigBed format (for very large data sets), you'll be happy to hear program that converts BED files into bigBed files: bedToBigBed. Because it now uses a multi-pass appro uncompressed BED input file (instead of the 5x RAM it needed previously!). Read more <u>here</u> . Pick up the new
Downloads	In conjunction with this change, there is also a change to the way you must specify your bigBed or bigWig Cust file (on your web-accessible http, https, or ftp server), use this designation: bigDataUrl (instead of the old desig
Release Log	e.g. track type=bigBed name="My Big Bed" description="Some Data from My Lab" bigDataU
Custom Tracks	Additionally, we would like to announce a companion program to the previously-announced wigToBigWig pro bigWig files. The bedGraph format allows display of sparse or varying-size data. Read more <u>here</u> . You can do
Archaeal Genomes	The main advantage of the bigBed and bigWig formats is that only the portions of the files needed to display displaying bigBed/bigWig data is considerably faster than regular BED/wig data. The bigBed/bigWig file ref UCSC server. Consequently, creating your Custom Track is very fast. Only the portion that is needed for th
Mirrors Archives	UCSC as a "sparse file".

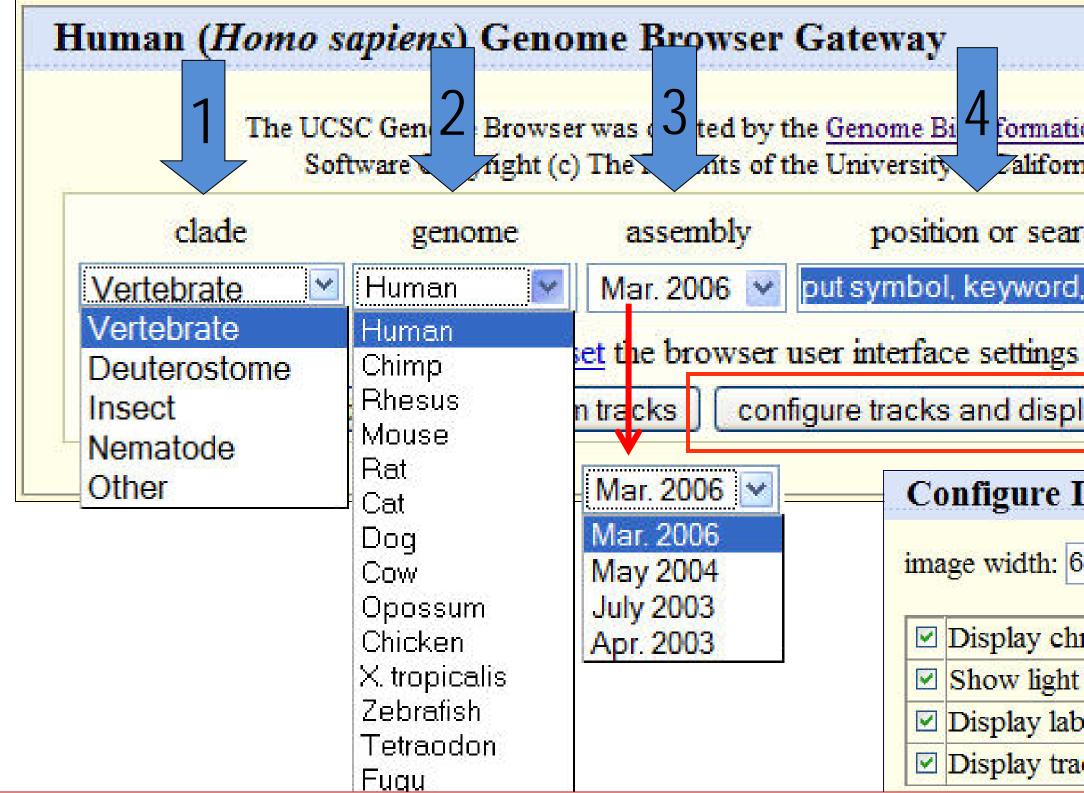
aft assemblies for a large collection of genomes. It also provides a portal

er chromosomes, showing the work of annotators worldwide. The <u>Gene</u> ys. <u>Blat</u> quickly maps your sequence to the genome. The <u>Table Browser</u> ion of *in situ* mouse and frog images to examine expression patterns.

ss-departmental team within the Center for Biomolecular Science and oncerning the tools or data on this website, feel free to contact us on our

News Archives >

minars by email, subscribe to the <u>genome-announce</u> mailing list.

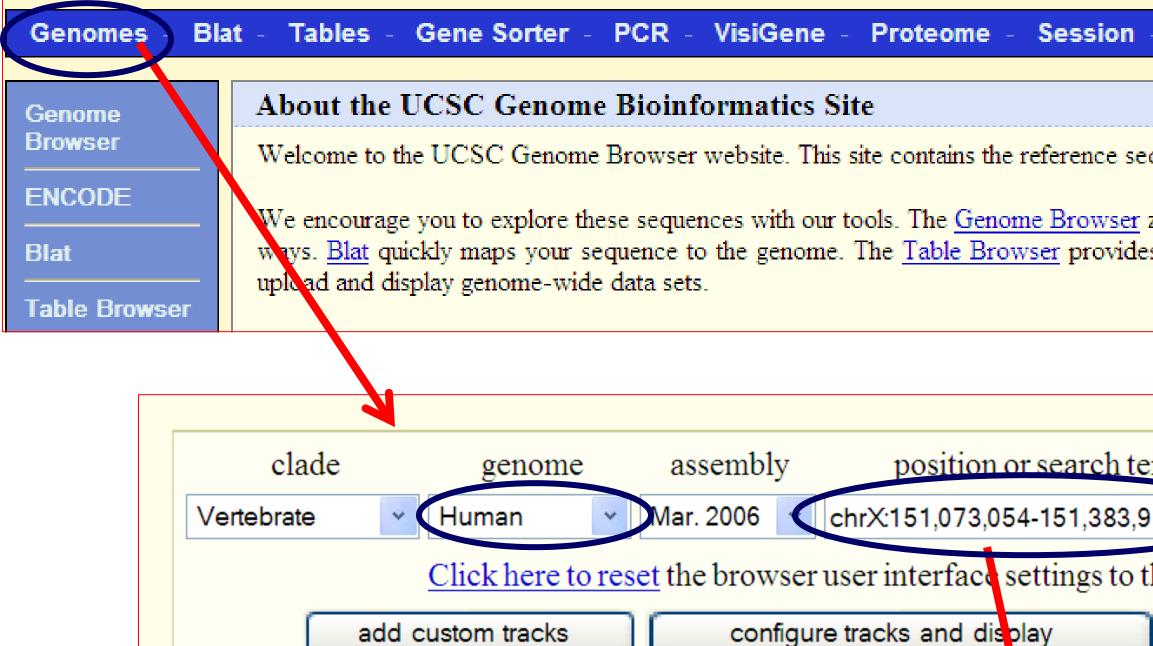

ar that we have considerably slimmed down the memory footprint of the proach, it now takes only 1/4 the amount of RAM as the size of the sw bedToBigBed executable <u>here</u>.

istom Track. When you specify the location of your local bigBed/bigWig ignation: dataUrl).

aUrl=http://myorg.edu/mylab/myBigBed.bb

rogram: bedGraphToBigWig. This program converts bedGraph files into lownload the new bedGraphToBigWig utility <u>here</u>.

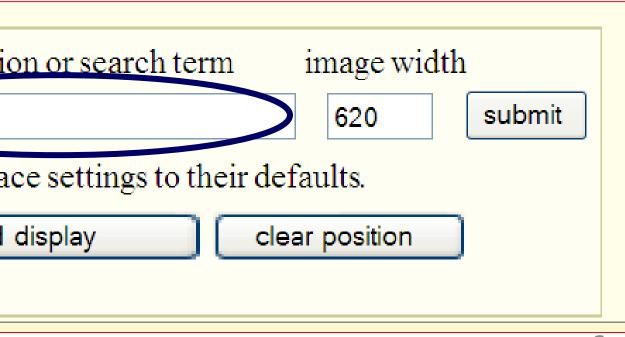
lay a particular region are transferred to UCSC, so for large data sets, remains on your web accessible server (http, https, or ftp), not on the the chromosomal position you are currently viewing is locally cached at

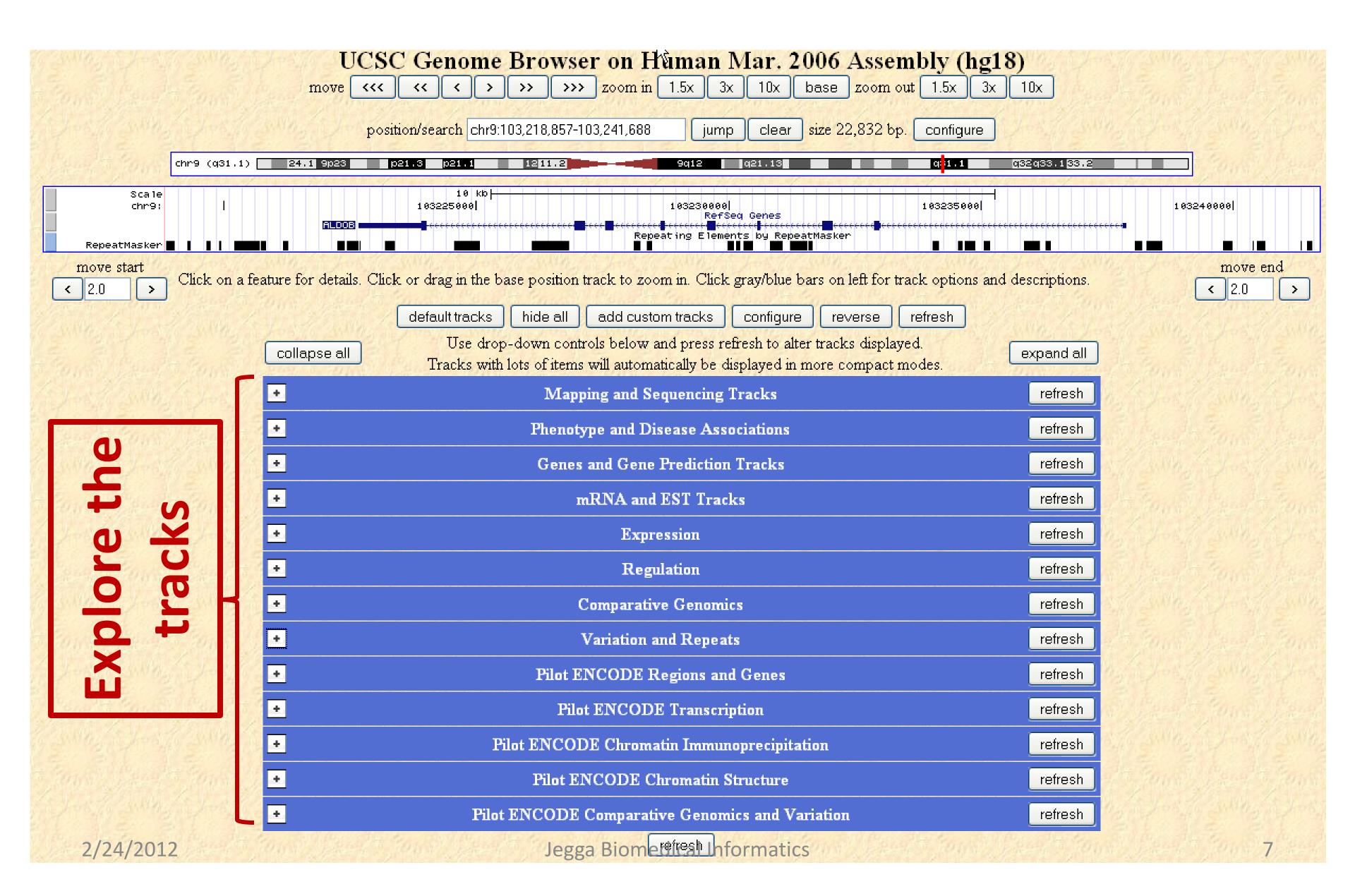


Genome Browser Gateway choices:

- Select Clade 1.
- Select genome/species: You can search only one species at a time 2.
- Assembly: the official backbone DNA sequence 3.
- Position: location in the genome to examine or search term (gene symbol, accession) 4. number, etc.)
- Image width: how many pixels in display window; 5000 max 5. Jegga Biomedical Informatics 2/24/2012
- Configure: make fonts bigger + other options 6.

<u>cs Group of UC S</u> uia. All rights res			
ch term i	nage widtl	1	
, ID here	620	submit	
to their default	s.		
lay	sition 6		
Image			
20 text size:	small 🔽	Submit	
romosome ideog	tiny small	main graphic.	
	medium	main graphic.	
blue vertical gui bels to the left of	large huge	ks.	
ck description al		rack.	


UCSC Genome Bioinformatics



clade	genome		assembly	y v positi
Vertebrate	- Human	*	Mar. 2006	PDX1
	Click here to	res	<u>et</u> the brow	ser user interfa
a	dd custom tracks		conf	igure tracks and

- FAQ - Help
quence and working d
zooms and scrolls over s convenient access to

rm	image wid	lth	
76	620	submit	
heir det	faults.		
cle	ar position		

UCSC Genes

PDX1 (uc001urt.1) at chr13:27392157-27397394 - r	
PDHX (uc001mvt.1) at chr11:34894741-34974094 -	Home Genomes Blat Tables Gene Sorter PCR
SPOP (uc002ipg.1) at chr17:45031245-45110524 -	UCSC Genome Browser on
SPOP (uc002ipf.1) at chr17:45031245-45110524 - :	
SPOP (uc002ipe.1) at chr17:45031245-45110524 - s	move <<< < >>>>> zoom in [1
SPOP (uc002ipd.1) at chr17:45031245-45110524	
SPOP (uc002ipc.1) at ch	position/search chr13:27,392,157-27,397,394
SPOP (uc002ipb.1) at	position search en 13.27,332,137 27,337,331
	chr13 (q12,2) 1312
RefSeq Genes	
The second se	chr13: 27393000 27394000 STS Markers on Genet
PDX1 at chr13:27392157-27397394 - (NM 000209) pa	STS Markers
<u>PDXI ac chill5:27552157 27557554</u> (NM_000205) pa	CR593175
	PDX1 ====================================
Non-Human RefSeq Genes	
	BC111592
Pdx1 at chr13:27392267-27397054 - (NM 022852) pa	Human mRNAs
PDX1 at chr13:27392276-27396838 - (NM_001081478)	Spliced ESTs
<u>pdx1 at chr13:27392612-27396613</u> - (NM_131443) pa	Vertebrate Multiz Ali
<u>Pdx1 at chr13:27392153-27398338</u> - (NM_008814) pa	Mamma 1 Cons
·《···································	清末,2000年36
Alias of STS Marker	Home Genomes Genome Brows
	Get DNA in Window
PDX1 at chr7:34489430-34689640 - (AFM067XA9)	
	Get DNA for
Non-Human Aligned mRNA Search F	×_1
and the second from the second from the second for	Position chr13:27,392,157-27,397,394
U73854 - Mesocricetus auratus, homeodomain prote:	
BC103572 - Mus musculus, pancreatic and duodenal	Rei Note: if you would prefer to get DNA for fe
BC103581 - Mus musculus, pancreatic and duodenal	
BC103582 - Mus musculus, pancreatic and duodenal	
BC105642 - Mus musculus, pancreatic and duodenal	Sequence Ketrieval Kegion Obtion
BC078192>hg18_dna range=chr13:27391157-27397394 5'pad GCCAAGCACAGATGTTATCATGGAAAATGCAGCGTTTTTATTTCT	
TAAATATGTAACTCTTCCTCCACTTCCCCCTCTCCTGCTTGCCT	
AATTGCAAGCAGAAGAGAGTGAGTGTTCTCTGCCGGCAAACTCCG	
GTCCCGGCCCGTAGAGAGTCGTCAAGGGTCTGGAACCCCCGTGCC	Note: if a feature is close to the beginning of
CTGCCCCTGCTTCGCAGCCCCAAGAGGAAGGCCGCGTCTTTCCCC	CTCGC transated in order to avoid extending past th
TGTATTGGGAAGCTACGTTCCGGGCTGGCCAAATGGGCCCCAATT AAACCCAAATTTGTAATACCCTTCaattttttaaaaaaaaaaaatt	
aaGTCTCTGTGAATGCTTCAGAAGTTACCGTTTACACCCCAGAAG	
GCAGCACATCCACAAGTAAAAACACACAACGAATGCCAGAGTTTC	
TTTTTTAACCGACATCTTTGTGGCTGTGAACAAACTTCATAAATA	() All upper case
GAATCAAATGCTTCTGACCTAGAGAGCTGGGTCTGCAAACTTTT TCGTATTCCGCAACAGTTAAATAAAAATTAAAAACTCAACATGI	
TGTAAACTACATCAATTAACAACACACTATGTCCATTATCAACA	
AGAAAAAATATAGGAAAATAGAAAATAGAAAAATATAGGAAAATA	
TTTTAAGCCACGGTGAAAATGTTTCTATAAATGAGTGGTTCTAAT	GTTTT
CGTGAGCGCCCATTTTGGGGAGCACCGCCAGCTGCCCGTTCAGGA	
CAGCAAACTCAGCTGAGAGAGAAAATTGGAACAAAAGCAGGTGCI	
	legga Biomedical Informatics
GCCGGTCCGCGCTGGCTGTGGGTTCCCTCTGAGATCAGTGCGGAG	CTGTC Note: The "Mask repeats" option applies or

DNA Con	vert Ensembl	NCBI PDF	PS Sessi	on Help
	n Mar. 200	I March March 1997	Store - Call Marca	12/11/19
			_ •	the all
	x base zoom ou			1999
Imp	clear size 5,23	o ta Config	ITE	Sullar
Ump	size 5,23	8 bp. Comige		
	q31,1	a34		1944
	000 2739600		900	1.17 3.16
	nd Radiation Hybric niProt, GenBank, ar		Senomics	1 the state
·····	······			Area /
RefS <mark>r</mark> q	******		4	en Pal
ian Gene Colle	ction Full ORF mRNi	As 		Ten Still
	lave Been Spliced			1.11.5
	stCons Conservatic	on (28 Species)	12	的行动的
			5	1 Barrister
ser Blat	ables Gene So	orter PCR	Session F	AQ Help
	V			

features of a particular track or table, try the Table Browser using the output format

ons:

nd extra downstream (3')

or end of a chromosome and upstream/downstream bases are added, they may be the edge of the chromosome.

8

o N quence)

ptions

only to "get DNA", not to "extended case/color options".

What if I want to download promoter sequences for several genes at a time?

Jegga Biomedical Informatics

2/24/2012

UCSC	Genome Bioinformatics
Genomes - E	Blat Tables - Gene Sorter - PCR - VisiGene - Proteome - Session - FAQ - Help
Genome Browser ENCODE Blat	About the UCSC Genome Bioinformatics Site Welcome to the UCSC Genome Browser website. This site contains the reference sequence and working draft to the ENCODE project. We encourage you to explore these sequences with our tools. The Genome Browser zooms and scrolls over Sorter shows expression, homology and other information on groups of genes that can be related in many ways
Table Browser Gene Sorter In Silico PCR	 <u>botter</u> shows expression, noncoogy and other information on groups of genes that can be related in many ways provides convenient access to the underlying database. <u>VisiGene</u> lets you browse through a large collection <u>Genome Graphs</u> allows you to upload and display genome-wide data sets. The UCSC Genome Browser is developed and maintained by the Genome Bioinformatics Group, a cross Engineering (<u>CBSE</u>) at the University of California Santa Cruz (<u>UCSC</u>). If you have feedback or questions cor <u>public mailing list</u>.
Genome Graphs	News
Galaxy	To receive announcements of new genome assembly releases, new software features, updates and training semi
VisiGene	9 September 2009 - Changes to the bigBed/bigWig data formats
Proteome Browser Utilities	If you have been taking advantage of the new bigBed format (for very large data sets), you'll be happy to hear program that converts BED files into bigBed files: bedToBigBed. Because it now uses a multi-pass appro uncompressed BED input file (instead of the 5x RAM it needed previously!). Read more <u>here</u> . Pick up the new
Downloads	In conjunction with this change, there is also a change to the way you must specify your bigBed or bigWig Cust file (on your web-accessible http, https, or ftp server), use this designation: bigDataUrl (instead of the old design
Release Log	e.g. track type=bigBed name="My Big Bed" description="Some Data from My Lab" bigDataU
Custom Tracks	Additionally, we would like to announce a companion program to the previously-announced wigToBigWig pro bigWig files. The bedGraph format allows display of sparse or varying-size data. Read more <u>here</u> . You can dow
Archaeal Genomes Mirrors	The main advantage of the bigBed and bigWig formats is that only the portions of the files needed to display displaying bigBed/bigWig data is considerably faster than regular BED/wig data. The bigBed/bigWig file rer UCSC server. Consequently, creating your Custom Track is very fast. Only the portion that is needed for the UCSC as a "sparse file".
Archives	

aft assemblies for a large collection of genomes. It also provides a portal

er chromosomes, showing the work of annotators worldwide. The <u>Gene</u> ys. <u>Blat</u> quickly maps your sequence to the genome. The <u>Table Browser</u> ion of *in situ* mouse and frog images to examine expression patterns.

ss-departmental team within the Center for Biomolecular Science and oncerning the tools or data on this website, feel free to contact us on our

News Archives >

minars by email, subscribe to the <u>genome-announce</u> mailing list.

ar that we have considerably slimmed down the memory footprint of the proach, it now takes only 1/4 the amount of RAM as the size of the w bedToBigBed executable <u>here</u>.

istom Track. When you specify the location of your local bigBed/bigWig ignation: dataUrl).

aUrl=http://myorg.edu/mylab/myBigBed.bb

rogram: bedGraphToBigWig. This program converts bedGraph files into lownload the new bedGraphToBigWig utility <u>here</u>.

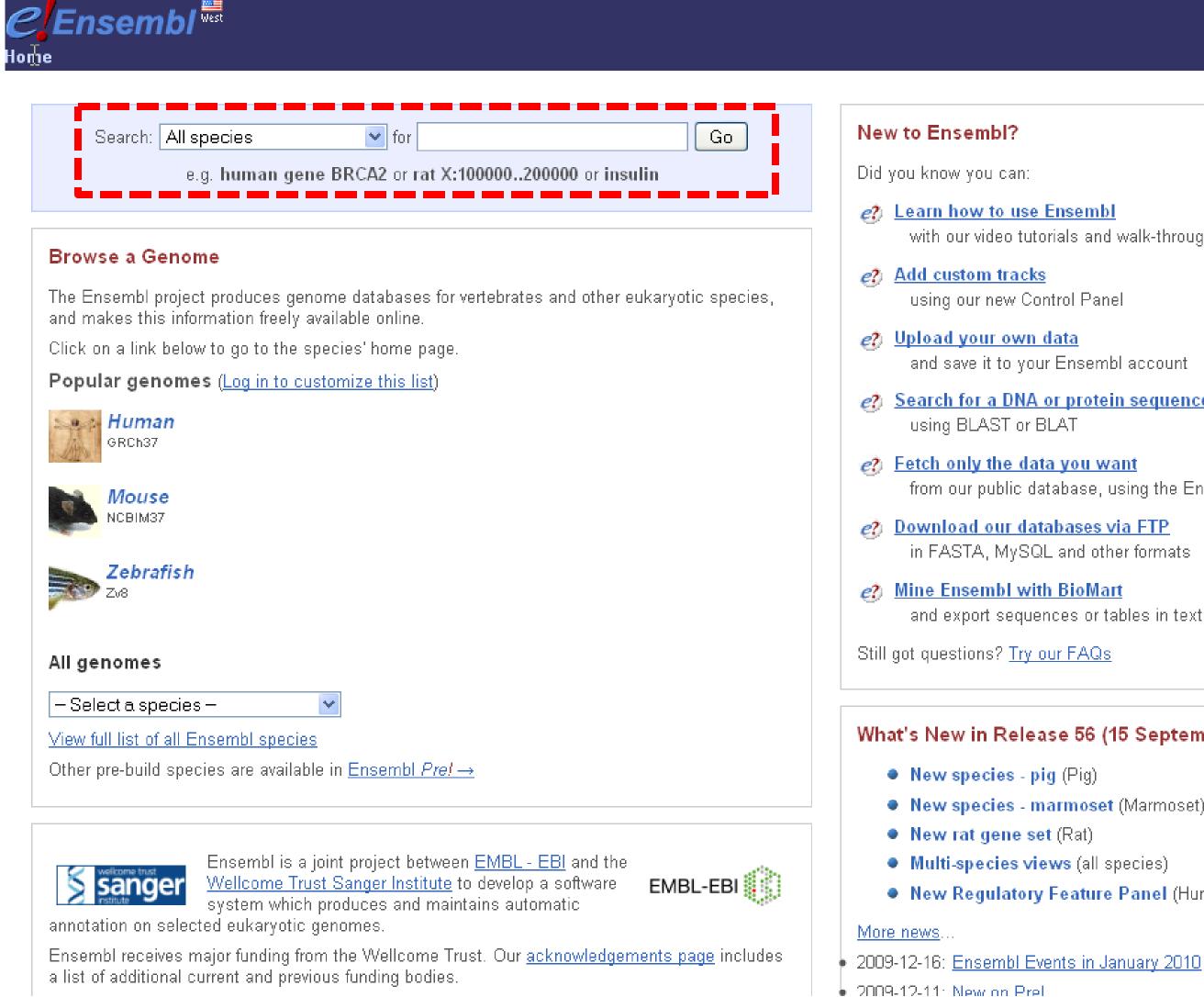

lay a particular region are transferred to UCSC, so for large data sets, remains on your web accessible server (http, https, or ftp), not on the the chromosomal position you are currently viewing is locally cached at

Table Presses			ງ
Table Browser		Table Browser	
Use this program to retrieve the data associated with a track in text see <u>Using the Table Browser</u> for a description of the controls in this presentation of the software features and usage. For more complex restrictions associated with these data. clade: Mammal v genome: Human v assembly group: Genes and Gene Prediction Tracks v table: refFlat v describe table scheme region: • genome • ENCODE • position chrX:151073054- identifiers (names/accessions): paste list upload list	s form, the <u>User's Guide</u> for general information and sample queries, you may want to use <u>Galaxy</u> or our <u>public MySC</u> y: <u>Mar. 2006</u> track: RefSeq Genes <u>A</u> add custom tracks	Use this program to retrieve the data as see <u>Using the Table Browser</u> for a desc	
filter: create		gbMiscDiff	
intersection: create		interse gbSeq gbStatus	able
	Send output to <u>Galaxy</u>	output gbWarn output imageClone	(leave blank to keep output in browser)
	p output in browser)	kaXref	zip compressed
file type returned: 💿 plain text 🔿 gzip compressed	Paste In Identifiers for refFlat	file tyl knownToRefSeq mrnaOrientInfo	mb combioner
get output summary/statistics	Please paste in the identifiers you want to include. The items must be values of the geneName field schema" button shows more information about the table fields.) Some example values: LOC133874 PLXDC1	get ou refFlat	
To reset all user cart settings (including custom tracks), <u>click here</u> .	SNORD115-17	To rese refSeqAli	ustom tracks), <u>click here</u> .
	AMBP SERPINA1	refSeqStatus refSeqSummary	
>hg18_refFlat_SERPINC1 range=chr1:172153140-172153639 gaaacgcgcttggcatgcacccccgaggccctgctcttctctccctgtccc accacttcagggctgctggggaatgggtctctctctgtgggccacaggtgta accattgtgttttccttgtctgtgccagggacaccttggcactcagatgc	APOH APOA1 APOA1 CYP2C8 CYP2E1 ALDOB SERPINC1	Using the Laple Browser	Table Proven (Input Identifiend)
ctgaaggtagcagcttgtccctctttgccttctctaattagatatttctc tctctctcccctctcccataaagaaaactatgagagagggtgggt			Table Browser (Input Identifiers) 4
aaccaagtttgtttccttggttagtttcctaaccaagtttgagggtatga acatactctccttttccttttctataaagctgaggagaagagggggg	submit clear cancel		Use this program to retrieve the data associated with a track in text i
tgtgggcaagagaggtggctcaggctttccctgggcctgattgaacttta aaacttctctactaattaaacaacactgggctctacactttgcttaaccc			see <u>Using the Table Browser</u> for a description of the controls in this
tgggaactggtcatcagcctttgacctcagttccccctcctgaccagctc >hg18_refFlat_ALDOB_range=chr9:103237884-103238383_5'pad=0_3' ttcttgaatgcctactgcgtacagacactatacaactcacttaatgctcc	Sequence Retrieval Region Options:	5	presentation of the software features and usage. For more complex restrictions associated with these data.
tgtgaaattgagatcccactttacagagaagaaataacggctcagacaa gtaaaaaacaaaac	Promoter/Upstream by 500 bases		clade: Mammal 🔽 genome: Human 🔽 assembly
gttacagetacaetaacattetteetagtateatttaatggaeeetagag eteeateattgaetagetgtatgaettaagggaaceteettatetteett	5' UTR Exons		group: Genes and Gene Prediction Tracks
gccttagtttcctcatctgtgaaatggagggtctggattaggaactccac ggtctaaagacattccttgcagctttaacattctatgagcataaggagta	CDS Exons 3' UTR Exons		group: Genes and Gener rediction macks
tatgggcatgattttaaggactggttgtttatgagccaatcagaggtgtt gaataaacacctccctactaggtcaaggtagaaaggggagggcaaatatt	Introns		table: refFlat 🛛 🔽 describe table schema
ggaaaaaaaaaaatgatgagaagtctataaaaattgtgtgctaccaaag	Downstream by 1000 bases		region: 💿 genome 🔿 ENCODE 🔘 position chrX:151073054-19
>hg18_refFlat_AMBP range=chr9:115880574-115881073 5'pad=0 3'r tctgggcaagtcacttcacttcttggagactcaactcctctgcctgtaaa	⊙ One FASTA record per gene.		region. S genome C EACODE C position Chix. 1910/3034-11
ggggacaaatagcacctacttcgtaagcttgttgtggggatttactggac		ra bases upstream (5') and 0 extra dov	identifiers (names/accessions): paste list upload list cle
acctgtggcacgtgtaaagtgcctggtacacagccagcacatagcaggtg ctcagtgaacggaagctcgtaacagtcatcattgttaatgtctctattat	Split UTR and CDS parts of an exon into separate FASTA record	s	
ttgcaaaggctagggcaagcctggggggctggagaaggaactctggagaca ggatacetgggttetggtettggetetgeceatagaetteeetgaggtet etggcaagteaetteeteettgggeeteagtttttteetgtgagaaat	Note: if a feature is close to the beginning or end of a chromosome and u	pstream/downstream bases are added, they m	filter: create intersection: create
gggcccaatcaggcttgacctgctggctcacagagctgtgaggtccagat	Sequence Formatting Options:		
ggcatgactcagcagaaaggccaggtcgctccccatcctcgcatgccctc tgtggggggacttttgggggggggg			output format: sequence
>hg18_refFlat_CYP2C8_range=chr10:96819245-96819744_5'pad=0_3' tatacatttattagctaataatttgatatatgtatggtaattcaacatgt	• Exons in upper case, everything else in lower case.		output file: all fields from selected table
atgagttatattcactatttcatgtttaggcagctgtattttaagtgaac	CDS in upper case, UTR in lower case.		selected fields from primary and related tables
tatactaaatatttgaaaggcttttgttatcaagggctaagtctcctatt ttttgatatagcattacaatgtacattttttatacacaaaatatagaata	 All upper case. All lower case. 		file type return sequence
cactgatttccctcaaggtcataaattcccaactggtcattaatctgaga	Mask repeats: 💿 to lower case 🔘 to N		GTF - gene transfer format BED - browser extensible date
atattgaattttgagtatattctaacatagaatcatttacttcagtgttt ctccatcatcacaggagattggaagaacgagggacttttaattaa			get output S custom track 1 1
ctccatcatcacagcasattggasaacsagggacttttaattaaaaata cctgggctccaaccaatcgastgaattaaccagaatctcctagattggcact	get sequence cancel Jegga Biomedica	Informatics	hyperlinks to Genome Browser 11
ggaaagaaggagtaggacaaaagaacattttatttctatccatgggccaa agtccactcagaaaaaaagtataaattggatctaggtgattgtttacttt			To reset all user cart settings (including custom tracks), <u>click here</u> .
			10 10000 and abor our bonnigs (moravang oubbonn a doreb), onore nore.

Home Genomes GenomeBrowser Blat Tables Gene Sorter PCR Session FAQ Help	e
refFlat Genomic Sequence	
Sequence Retrieval Region Options:	aaa tga tgc ctt >Up!
Sequence Formatting Options:	nnn: nnn: nnn: nnn: nnn:
Exons in upper case, everything else in lower case.	nnn: cac
OCDS in upper case, UTR in lower case.	tat tct
 All upper case. All lower case. Mask repeats: to lower case to N 	aag tga cta tgt aat aag
get sequence cancel Jegga Biomedical Inform	tat matic

ANGPTL3 range=chr1:62834775-62835774 5'pad=0 ctgggeteacgettgtaateggetgnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnntgttattaatct ttgttaaatgtatattatcaaaattgttactaagctaacaaac aaacttatqatqqqcaaqctqcttqtqacattqaaqqtattta attetagtttggteetagatgaceaeatateeattgtteette acatggtaaagagcetagaacacagagacacagaacacagtgg jggagtgaaatgtetttaatgaeaettaetatatatgggatttt atatacaaggatggttaagacatataaggtgatgcaaaaaaaca aattatagtgacaaaaatgaggagcatataattatacattga cagagtaccagaggaacacagcattgagagccgtaacaccacct qtqqaqaaaqqcttcaqaqaqaaqtqttttttqqaatqqatca caaaaqaactaaaqtacaqtttqaqaaatqcatacttaattca tttcccctcaactttaataataaatttacccaacaaaaagtt gacttgtaaatctcttaaaatcataaaaaagtaaaattaqctt acaqqtaqtcaccataqcattqaatqtqtaqtttataatacaqc aatacaatttcaaattacctattaagttagttgctcatttctt atttagcattgatctaactcaatgtggaagaaggttacattcg taacacggettaatgattaactatgtteacetaceaacettae gggcaaatattggtatatatagagttaagaagtctaggtctgc '13B range=chr1:195303021-195304020 5'pad=0 3 nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn ${\tt nnnnnnnttcctatttgtatttaaattaaaactnnnnnn$ nnnnnnnnttgatatagcacagtgetgateteaceacetge itaaaaactctctaaatqtcaaacactactattataaqtaatac itcattgagacaactatggttctgtatctctttaaggagtgcag caacaacatatttcaacatcaggtatctgttatctcatgttcct itcttttacctgatcaatattagtaaagatctatggcctcaag tactctatgaatttacaattgggaacttaggttgaaaatttac tatttattctgctgctataatttattatttattctgctgctat ctaatcagttatcatgctcttactggactctgacatggtaagt attaatatagttgtgttattttaacattatttcaaaatatttt atataagactcgttacaaaaggacttagacagaggttataaat ctttttcctcaagagaagtattgtgtacttaatgacaagttcct

Other Genome Browsers: ENSEMBL http://www.ensembl.org

2/24/2012

Jegga Biomedical Informatics

2-

/ | BLAST/BLAT | BioMart | Docs & FAQs | Mirrors

Q

with our video tutorials and walk-throughs

and save it to your Ensembl account

Search for a DNA or protein sequence

from our public database, using the Ensembl Perl API

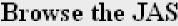
in FASTA, MySQL and other formats

and export sequences or tables in text, html, or Excel format

What's New in Release 56 (15 September 2009)

New species - marmoset (Marmoset) Multi-species views (all species) New Regulatory Feature Panel (Human, Mouse)

Did you know ...?


A preliminary assembly of the NEW! common baboon (Papio hamadryas) is now available on our pre! site, http://pre.ensembl.org <u>/Baboon</u>

Navigation tips

I have a promoter sequence and how do I scan it for known TFBSs?

JASPAR: http://jaspar.genereg.net

Helix-Loop-He

Helix-Loop-He

Hormone-nuc

Receptor

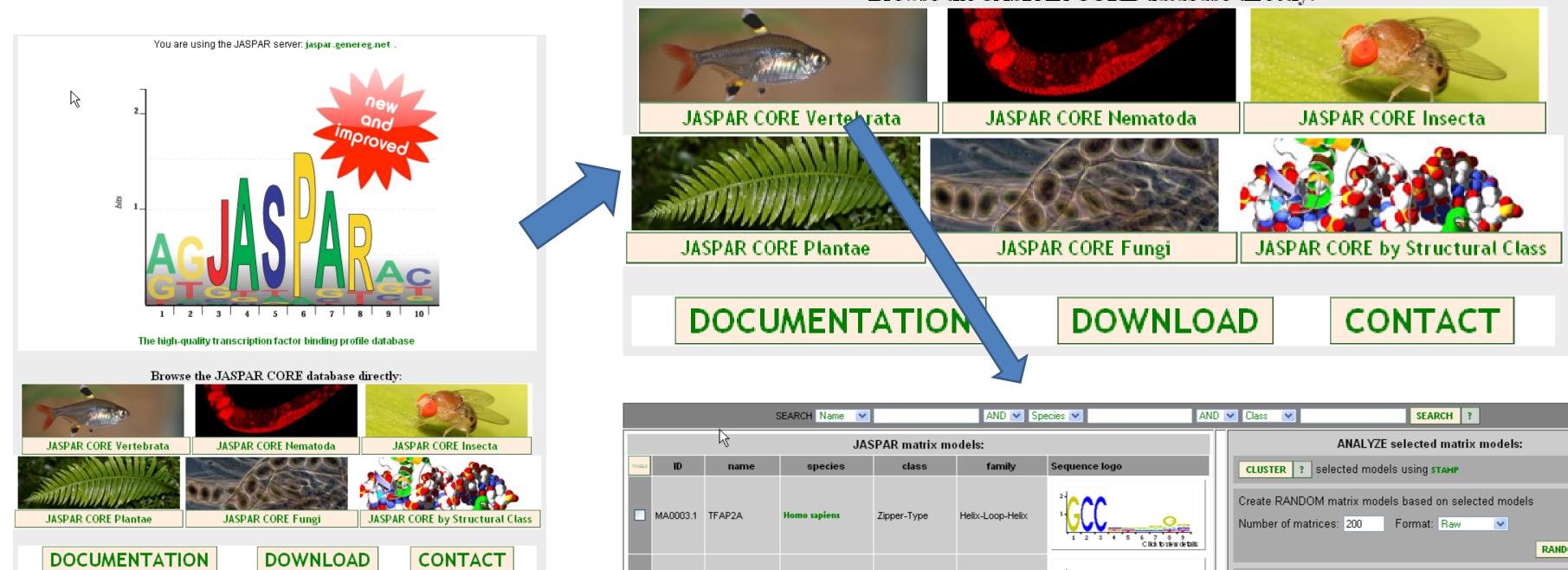
Homeo

Hormone-nuc

Receptor

Zipper-Type

Zipper-Type


Zinc-coordinating

Beta-Hairpin

Helix-Turn-Helix

Zinc-coordinating

Ribbon

MA0004.1 Arnt

MA0006.1 Arnt::Ahr

MA0007.1 Ar

MA0009.1 T

MA0014.1 Pax5

MA0017.1 NR2F1

Jegga Biomedical Informatics

Rattus rattus

Mus mu

Mus muscul

2/24/2012

Browse the JASPAR CORE database directly:

Sp	ecies 💌	AND 💌	Class	¥		SI	ARCH	?			
					ANALYZE	select	ed matr	ix mo	dels:		
	Sequence logo		CLUSTER	R ? sele	cted model	els using	д STAMP				
ix	2 1 1 1 2 3 4 5 6 7 8 9 0 Click to view detail			ANDOM m of matrices	atrix mode : 200		ed on se at: Raw		models 🗸	RANDOMIZE	?
ix					PERMUTE atrix 💌 Fo			n sele 💌	cted:	PERMUTE	?
ix			SCAN th	is (fasta-foi	rmatted) se	equenco	e with se	elected	l matrix	models	٦
ear	2 1 2 4 2 4 6 0 10 10 10 10 10 10 10 10 10	5									
	2- 1- 1- 1-2-3-4-5-6-7-0-9-10-11 Click b view detail	5									
	2 1 2 4 6 0 10 12 14 16 10 20 C lick to view de tail	5	Relative pr	ofile score th	reshold 80) %					
ear										SCAN	?
									1	5	

JASPAR: http://jaspar.genereg.net

			SEARCH Species 💌	homo sapiens	AND 💌 Sp	pecies 💌	AND 💌 Clas				
	JASPAR matrix models:										
TOGALE	ID ID	name	species	class	family	Sequence logo	CLU				
V	MA0003.1	TFAP2A	Homo sapiens	Zipper-Type	Helix-Loop-Helix		Crea Num				
V	MA0017.1	NR2F1	Homo sapiens	Zinc-coordinating	Hormone-nuclear Receptor		Type				
Y	MA0018.2	CREB1	 Rattus norvegicus Homo sapiens Mus musculus 	Zipper-Type	Leucine Zipper		SCA >hgl rang repa GGT0 GCT2				
V	MA0024.1	E2F1	Homo sapiens	Winged Helix- Turn-Helix	E2F		C C C C C C C C C C C C C C C C C C C				
Y	MA0025.1	NFIL3	Homo sapiens	Zipper-Type	Leucine Zipper		TTTO ATCO GAAA ACCA ACCA ACCA CTGA TCTO				
V	MA0028.1	ELK1	Homo sapiens	Winged Helix- Turn-Helix	Ets		AACO ACAT TGTO Relativ				
⊻	MA0030.1	FOXF2	Homo sapiens	Winged Helix- Turn-Helix	Forkhead	2 1 1 2 3 4 5 6 7 8 9 10 11 12 Click to vie	13 14 w ce talis				

2/24/2012

Jegga Biomedical Informatics

ANALYZE selected matrix models: ISTER ? selected models using STAMP te RANDOM matrix models based on selected models ber of matrices: 200 Format: Raw
te RANDOM matrix models based on selected models
RANDOMIZE ?
te models with PERMUTED columns from selected:
: Within each matrix 💌 Format: Raw 💌
PERMUTE ?
N this (fasta-formatted) sequence with selected matrix models
18_ct_tbrefGene_6787_NM_000488_up_1000_chr1_172153140_r 🔥
eatMasking=none GACAGATGAGCCTCTGGGCATTCTGGGGCCCTTTGGGACAGTTCTCG
ACTGTTCACACTGCACATGGAGGGCTTCAAAGGATCCAGGGTCTGAA GCCAAGAACTTAGACACAGCTTCAGTTCAG
AACGAAGAGCTCTCGAAAATGCCTATGACTGCAACAACAACTACAAG ICCTTGATCACACAGCAGGAGGCACATGCGCCCTGTGAACTTGGTGG
CAGTCCTTGTGATGGTGCTTTTGGCTATTTCAGAAGAGGGAAATGTA
AAACCTGCCCTTTATCTCCACTAGTTTGAATTTACCCAATCTCCCCA
CAGCAGTTGTACGTGGGTTTTTCACCTGCCCCGCATTCTGTCTCCTG CCCCAGTAGAGTTTTGCTAAGTATTTCCCCAGCTGCTCACACCCCTTA
ACGCGCTTGGCATGCACCCCGAGGCCCTGCTCTTCTCTCCCCTGTCCC ACTTCAGGGCTGCTGGGGAATGGGTCTCTCTGTGGGCCACAGGTGTA
ATTGTGTTTTCCTTGTCTGTGCCAGGGACACCTTGGCACTCAGATGC
CTCTCTCCCTCTCCCATAAAGAAAACTATGAGAGAGGGTGGGT
TACTCTCCTTTTCCTTTTCTATAAAGCTGAGGAGAAGAGTGAGGGAG
ve profile score threshold 80 %
SCAN ?

JASPAR: http://jaspar.genereg.net

446 putative sites were predicted with these settings (80%) in sequence named hg18_ct_tbrefGene_6787_NM_000488_up_1000_chr1_172153140_r							
Model ID	Model name	Score	Relative score	Start	End	Strand	predicted site sequence
MA0099.2	AP1	6.789	0.858557025236756	3	9	1	TGACAGA
MA0036.1	GATA2	5.559	0.936577973528256	7	11	1	AGATG
MA0037.1	GATA3	4.414	0.833279644173352	7	12	1	AGATGA
MA0003.1	TFAP2A	8.056	0.92377696736812	13	21	1	GCCTCTGGG
MA0003.1	TFAP2A	8.125	0.926028582373526	14	22	-1	GCCCAGAGG
MA0056.1	MZF1_1-4	4.846	0.806575055857775	18	23	1	TGGGCA
MA0161.1	NFIC	5.360	0.854724070886736	18	23	1	TGGGCA
MA0101.1	REL	6.979	0.816516592302126	18	27	1	TGGGCATTCT
MA0442.1	SOX10	6.352	0.886446713233527	22	27	1	САТТСТ
MA0003.1	TFAP2A	4.649	0.812599397463511	24	32	-1	GCCCCAGAA
MA0056.1	MZF1_1-4	4.989	0.813099698301624	27	32	1	TGGGC
MA0163.1	PLAG1	12.055	0.829306251017083	28	41	1	GGGGCCCTTTGGGA
MA0003.1	TFAP2A	5.702	0.846961000372097	31	39	1	GCCCTTTGG
MA0133.1	BRCA1	4.365	0.80885765016573	33	39	-1	CCAAAGG
MA0442.1	SOX10	5.559	0.851241457314128	34	39	1	сттее
MA0056.1	MZF1_1-4	5.838	0.851836911132592	36	41	1	TTGGGA
MA0161.1	NFIC	4.801	0.836001153621289	36	41	1	TTGGGA
MA0003.1	TFAP2A	4.869	0.819778459799588	44	52	-1	GCCGAGAAC
MA0077.1	SOX9	7.851	0.852381205405345	52	60	-1	GAACAGTAG
MA0032.1	FOXC1	5.501	0.889769661179929	53	60	-1	GAACAGTA
MA0084.1	SRY	6.137	0.815028858639605	54	62	-1	GTGAACAGT

2/24/2012

Jegga Biomedical Informatics

Gene-Regulation: http://www.gene-regulation.com

gene-regulation.com > Home > Databases Programs > Free Trials Programs. AliBaba2 MatrixCatch > Publications BOXSHADE m2transfac Composite Module Analyst (CMA) > Subscriptions ClustalW > Events (BB Website) PolyAScan Dialign2 > News (BB Website) ReadSeq F-Match Match SignalScan Links > About Us your login name: ajegga VIEW it DELETE it Select a previous search result: and Select a previously stored sequence: DELETE it and A Match[™] version with additional functionalties Goto Match Profiler Get help s included in the ExPlain[™] Analγsis Platform MATCH[™] public version 1.0 SE IOB 🛆 Biological Databases / Matrix Search for Transcription Factor Binding Sites Biologische Datenbanken GmbH Matrix or Profile Selection: Please enter a name for your search: default Matrices: Group of matrices: all Sequence Selection: vertebrates Select one of your stored sequences: ~ fungi **OR** take an example use high quality matrices only **OR** take a new sequence and enter a name Cut-off selection for matrix group: default for • to minimize false positives it: to minimize false negatives \circ to minimize the sum of both error rates Please enter your sequence or several and 0.75 as 07 Allowed formats sequences (you can use cut & paste): mat. sim. and core sim. cut-off are: RAW, >hg18_ct_tbrefGene_6787_NM_000488_up_100 ^ FASTA, 0_chr1_172153140 r TRANSFAC, Predefined Profiles: range=chr1:172153140-172154139 5'pad=0 EMBL, 3'pad=0 strand=- repeatMasking=none muscle_specific.prf our profiles \bigcirc ¥ GGTGACAGATGAGCCTCTGGGGCATTCTGGGGGCCCTTTGGG GenBank, IG your profiles ~ ACAGTTCTCG GCTACTGTTCACACTGCACATGGAGGGCTTCAAAGGATCC

2/24/2012

AGGGTCTGAA

Jegga Biomedical Informatics

	Sponsored by BIOBASE
	Database Login User: ajegga. <mark>Logout.</mark>
molwSearch P-Match Patch SbBlast SnpFind TfBlast	> Name
	Contact us

Need to have an account (free for academic use)

How can I identify putative regulatory regions for a gene or microRNA?

Jegga Biomedical Informatics

2/24/2012

I have found a miRNA enriched in my gene list <u>or</u> I am interested in a specific gene and I want to identify putative regulatory regions for miRNA/gene

GenomeTrafac: http://genometrafac.cchmc.org

GenomeTraFaC

A comparative genomics-based resource for initial characterization of gene models and the identification of putative cis-regulatory regions of RefSeq Gene Orthologs

• Cis-element clusters within BlastZ Alignments

Find conserved cis-element clusters within BlastZ-identified conserved sequence alignment blocks.

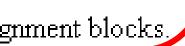
• Cis-elements shared be<u>tween any gene pair</u>

Find shared *cis*-elements between user-selected gene segment pairs.

<u>Conserved Cis-Element Scamer</u>

Genome-wide ortholog conserved Cis-element module search

Note: If you publish results obtained using GenomeTrafac, please cite


Jegga et al., Nucleic Acids Res. 2006 Dec 18; [Epub ahead of print] \mathbf{OR}

Jegga et al., Genome Research 12: 1408-1417, September 2002

2/24/2012

Jegga Biomedical Informatics

k

	\searrow	Basic Search	
		Description mir-122a	▼
		Search	
	Sele	h by disease, gene ontology, pathway, ; Ouerv	
	Sele	Query	
	۲	Query Dise	ease (Always use
	⊙ ○	Query Dise Path	ease (Always use way (Always use
	۲	Query Dise Path Gen	ease <i>(Always use</i> way <i>(Always use</i> e ontology <i>(Alwa</i>
	⊙○	Query Dise Path Gen Mar	ease <i>(Always use</i> way <i>(Always us</i> e ontology <i>(Alw.</i> nmalian phenoty elect gene family
	⊙○	Query Dise Path Gen Mar	ease <i>(Always use</i> way <i>(Always us</i> e ontology <i>(Alw.</i> nmalian phenoty elect gene family
	⊙○	Query Dise Path Gen Mar Select custom group from th	ease <i>(Always use</i> way <i>(Always use</i> e ontology <i>(Alwa</i> malian phenoty elect gene family he list
	⊙○	Query Dise Path Gen Mar V Select custom group from th Search Query took 1.514 s (2 genes meet the search	ease <i>(Always use</i> way <i>(Always use</i> e ontology <i>(Alwa</i> nmalian phenoty) elect gene family he list
	⊙○	Query Dise Path Gen Mar Select custom group from th Search Query took 1.514 s	ease <i>(Always use</i> way <i>(Always use</i> omalian phenoty) elect gene family he list
	Que	Query Dise Path Gen Mar V Select custom group from th Search Query took 1.514 s (2 genes meet the search Reset Accession Number	ease (Always use away (Always use e ontology (Alwa amalian phenoty) elect gene family he list
4 MIR-12	 ● ●	Query Dise Path Gen Mar Select custom group from th Search Query took 1.514 s (2 genes meet the search Reset	ease (Always use away (Always use e ontology (Alwa amalian phenoty) elect gene family he list criteria)

custom groups

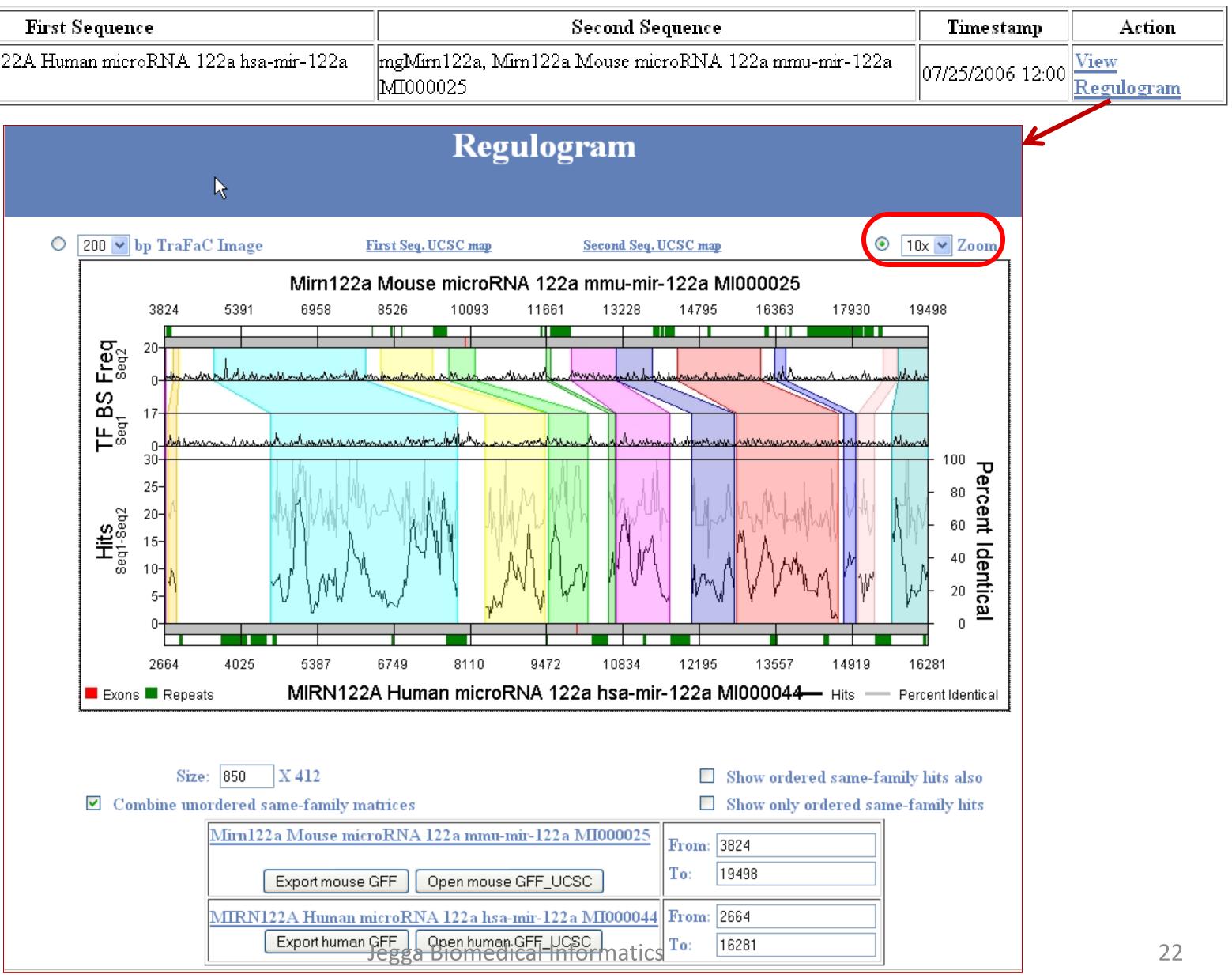
<u>Disease Selector</u>)

<u>Pathway Selector)</u>

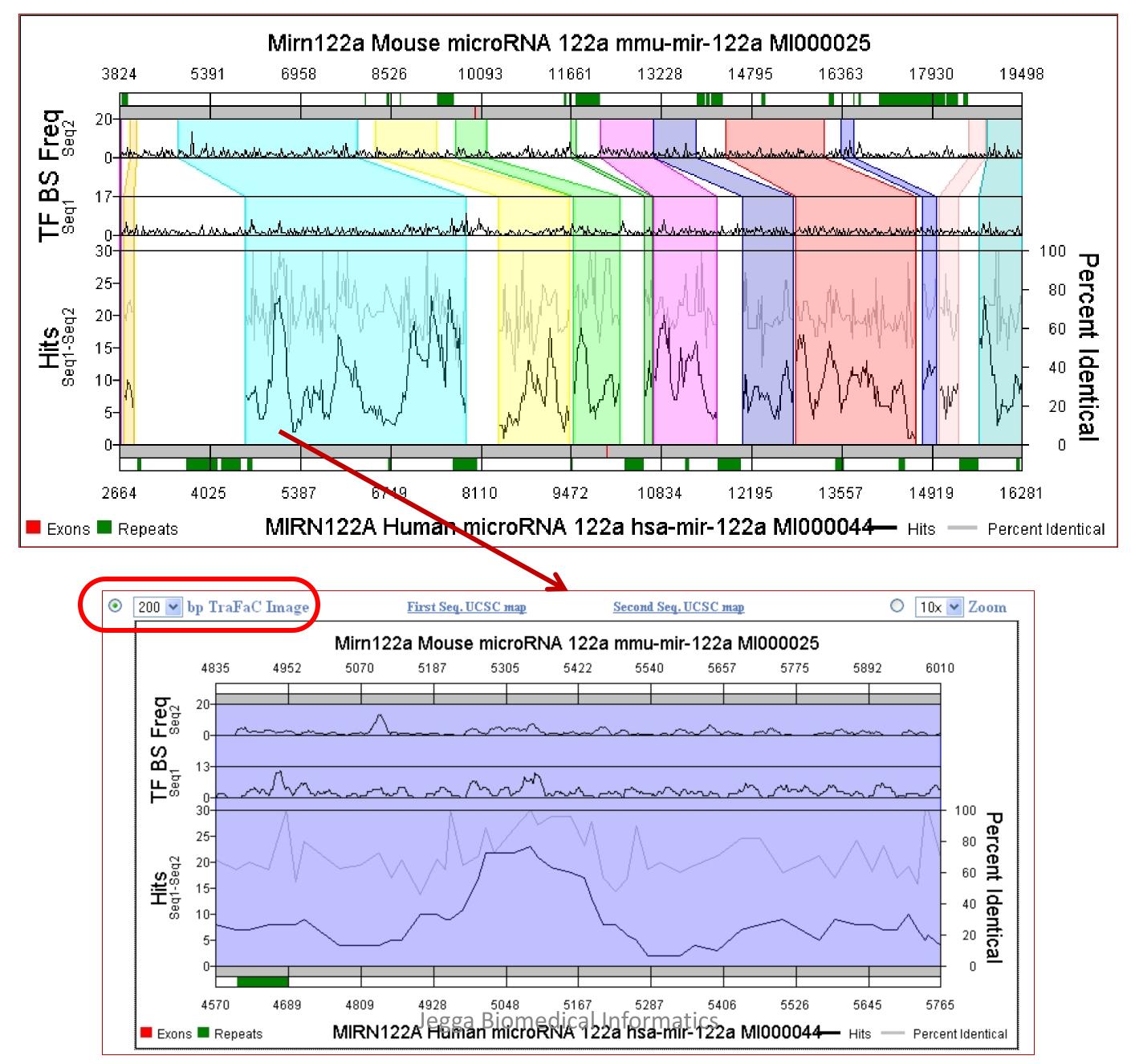
ys use <u>Ontology Selector</u>)

e (Always use <u>Phenotype Selector</u>)

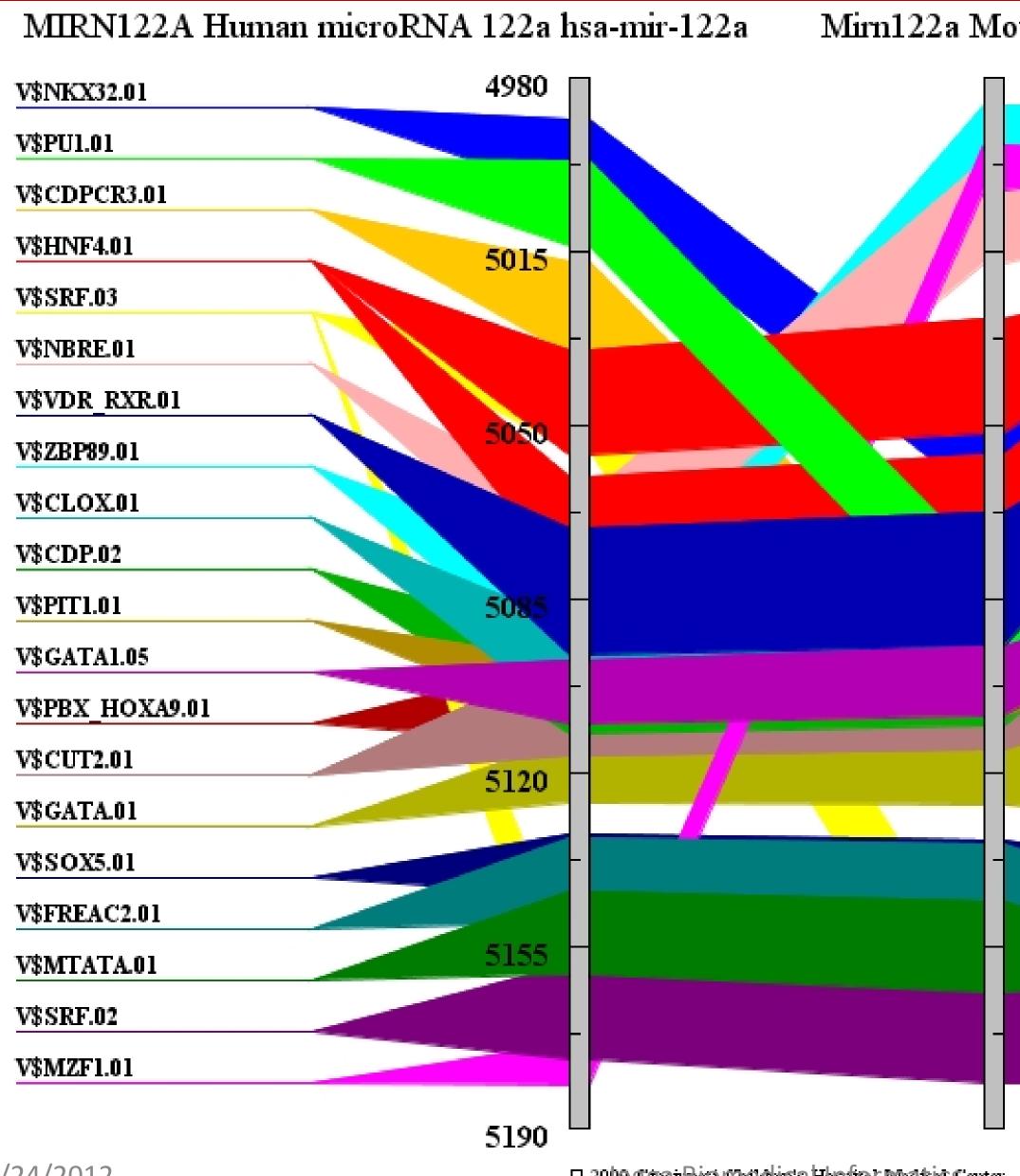
from the list


Name

22A Human microRNA 122a hsa-mir-122a MI000044


22a Mouse microRNA 122a mmu-mir-122a MI000025

· 95


First Sequence	Second Sequence
hgMIRN122A, MIRN122A Human microRNA 122a hsa-mir-122a	mgMirn122a, Mirn122a Mouse microRNA
MI000044	MI000025

2/24/2012

2/24/2012

2/24/2012

🗆 2008 Szzikio (1936) ich Hosfiel Mezicic Senter

5238	V\$ZBP89.01
	V\$MZF1.01
	V\$NBRE.01
5270	V\$HNF4.01
5270	V\$NKX32.01
	V\$VDR_RXR.01
	V\$PU1.01
5302	V\$CLOX.01
	V\$CDP.02
	V\$GATA1.05
5334	V\$PIT1.01
	V\$CUT2.01
	V\$CDPCR3.01
	V\$PBX_HOXA9.01
5366	V\$GATA.01
	V\$SOX5.01
	V\$FREAC2.01
5398	V\$MTATA.01
	V\$SRF.03
	V\$SRF.02

24

Shared Cis-elements

(Genomatix Matrix Family Library Version 5.0 (January 2005)) (For details and annotations of TFBS-PWMs, please register at Genomatix)

 \mathbb{Q}

Femily/Metrix Description		hgMIRN122A						<u>mgMirn122a</u>	
Family/Matrix	Description	Begin	End	Sequence		Begin	End	Sequence	
<u>V\$NKXH/V\$NKX32.01</u>	Homeodomain protein NKX3.2 (BAPX1, NKX3B, Bagpipe homolog)	4993	5007	CCCCCACTCAGCAGA	_	5301	5315	CTGACTTAGTGGACT	+
<u>V\$ETSF/V\$PU1.01</u>	Pu.1 (Pu120) Ets-like transcription factor identified in lymphoid B-cells	5001	5017	CAGCAGAGGAATGGACT	Ŧ	5326	5342	CCTCTCTTCCCCCACAA	-
V\$CLOX/V\$CDPCR3.01	Cut-like homeodomain protein	5020	5038	CCAATCTTGCTGAGTGTGT	-	5343	5361	TCGATAATTTAATGTGACT	-
V\$HNF4/V\$HNF4.01	Hepatic nuclear factor 4	5037	5057	GTTTGACCAAAGGTGGTGCTG	+	5283	5303	GTTTGACCAAAGGTGACTCTG	+
V\$SRFF/V\$SRF.03	Serum responsive factor	5038	5056	TTTGACCAAAGGTGGTGCT	-	5399	5417	GGATCCCATAAAGGGAGAG	-
V\$HNF4/V\$HNF4.01	Hepatic nuclear factor 4	5061	5081	TAGTGGCCTAAGGTCGTGCCC	Ŧ	5307	5327	TAGTGGACTAAGGTCATGCCC	+
V\$RORA/V\$NBRE.01	Monomers of the nur subfamily of nuclear receptors (nur77, nurr1, nor-1)	5065	5083	GGCCTAAGGTCGTGCCCTC	+	5255	5273	GGGAGCTGGACCTTCGGTT	-
V\$RXRF/V\$VDR RXR.01	VDR/RXR Vitamin D receptor RXR heterodimer site	5071	5095	AGGTCGTGCCCTCCCCCACTG	_	5317	5341	AGGTCATGCCCTCTCTCCCCCACA	r –
V\$ZBPF/V\$ZBP89.01	Zinc finger transcription factor ZBP-89	5077	5099	TGCCCTCCCCCCACTGAATC	+	5245	5267	GGGGCATGGGGGGGGGGCTGGACCT	-
25/214/20192°LOX.01	Clox	5089	5107	eggsBionsEdicaTinfoTmatics	+	5334	5352	CCCCCACAATCGATAATTT	25

DCODE: http://www.dcode.org/

Tools

ECR Browser ECRbase

NCBI

Mulan zPicture eShadow

DiRE SynoR

Array2BIO

multiTF rVista 2.0

NEWS

PUBLICATIONS

ABOUT US

LINK TO DCODE!

Whole genome alignments

ECR Browser -- Evolutionary conservation of multiple genomes. Identification and sequence analysis of regulatory elements.

Multiple and pairwise sequence alignments

Mulan -- Full multiple sequence alignment. [Interactive conservation profiles, phylogenetic trees, etc.] zPicture -- Stacked pairwise and multiple sequence alignment. eShadow -- Phylogenetic shadowing of closely related species.

Regulation of co-expressed genes

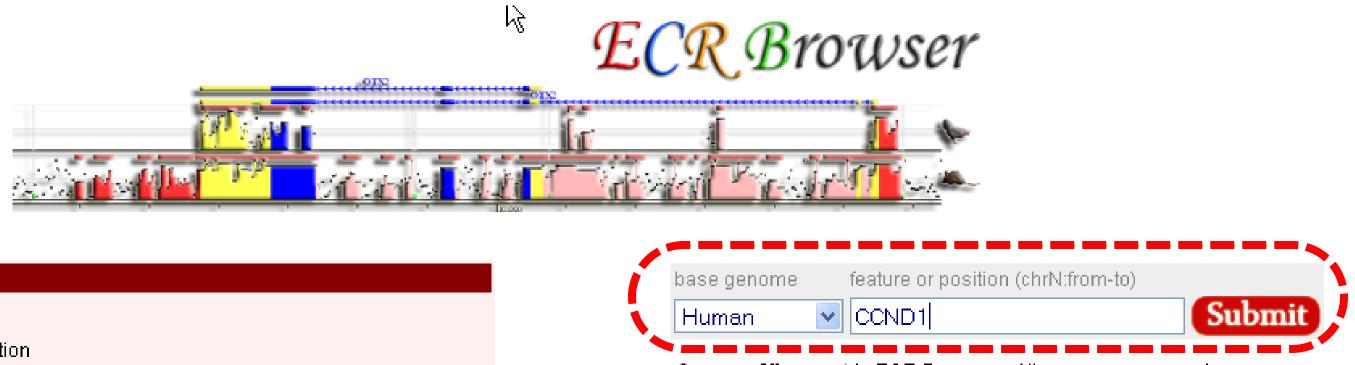
DiRE -- Identification of proximal and Distant Regulatory Elements of co-regulated genes. SynoR -- Prediction of synonymous regulatory elements in vertebrate genomes.

Identification of conserved transcription factor binding sites (cTFBS)

XVENT1_01 Excluding up to 95% false positive TFBS predictions using sequence conservation as a filter. STAT_01 multiTF -- cTFBS in multiple sequence alignments.

rVista 2.0 -- cTFBS in pairwise alignments.

Additional resources


Insitu.dcode.org - Xenopus tropicalis in situ database Reverse complement a nucleotide sequence Batch sequence retrieval from the UCSC Genome Browser

NCBI DCODE.org Comparative Genomics Developments

comparing genomes to decipher the code of gene regulation

Genome Alignment in ECR Browser -- Align your FASTA nucleotide sequence to a genome of choice.

Features

- multiple gene annotation tracks
- possibility to submit your own custom genome annotation
- share your cussom annotation by submitting it to the <u>ECR Browser User Annotation Database</u>
- enhanced search through RefSeq, UCSC, Ensembl, mRNA, STS, SNPs, etc.
- zoom in/out using mouse wheel (similar to Google Maps)
- drag & drop rearrangement of gene annotation tracks
- drag & drop recentering of the conservation plot
- gene annotation drop on the conservation plot changes the reference annotation
- new alignments with repetitive elements included (colored in green)
- synteny annotation under each conservation track
- on-the-fly ECR and gene annotation
- single mouse-click Grab ECR function
- keyboard shortcuts:

o - zoom out 3x, i - zoom in 3x, > - shift to the right, < - shift to the left, I - flip the plot, g - genome selection window, p - parameters window, c - highlight coreECRs, r - reset parameters to defaults, f - refresh the page, a - additional alignments, m - main gene annotation, z - blastz-based genome alignment

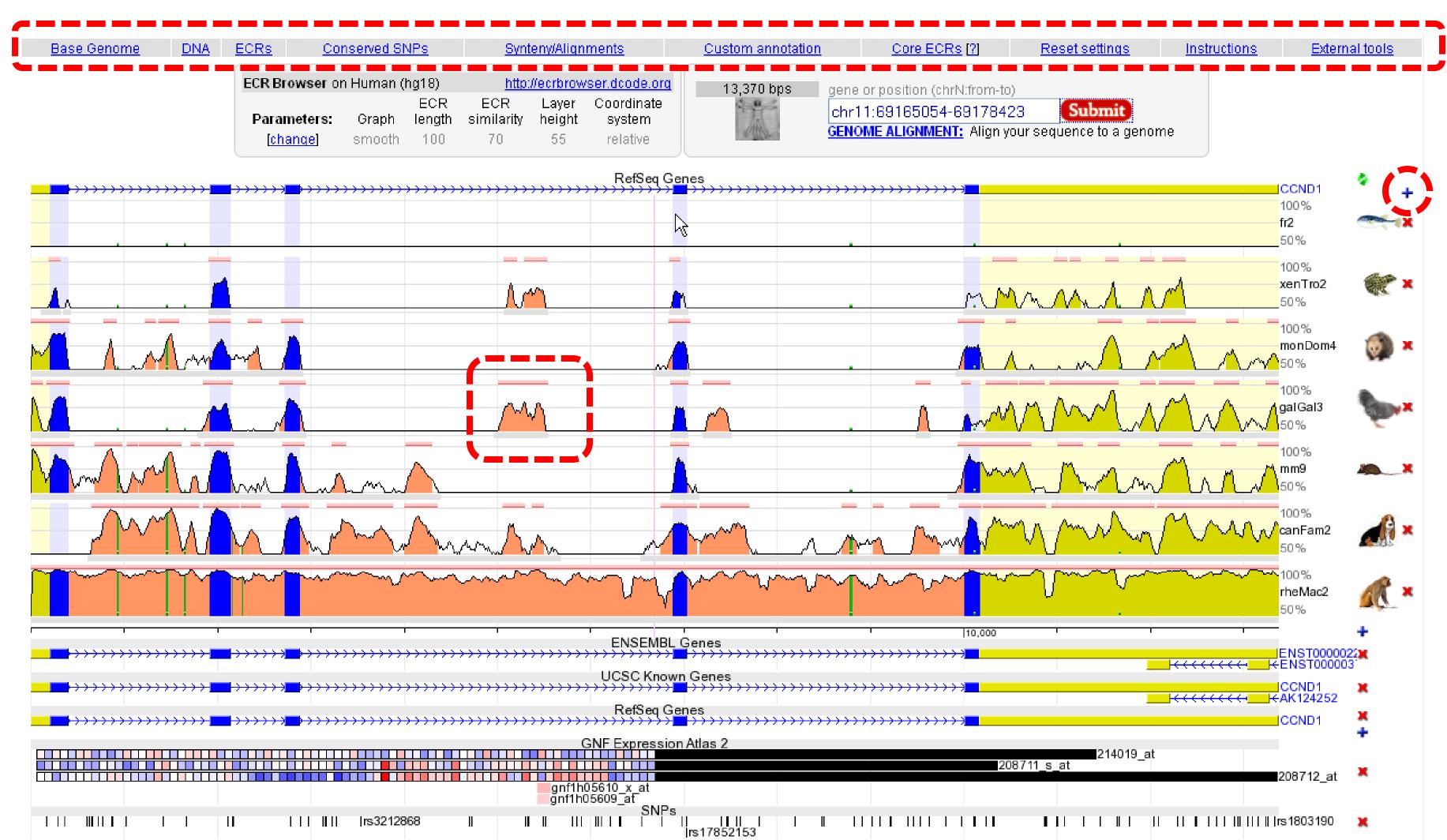
Note: ECR Browser was tested on Internet Explorer 7 and Mozilla Firefox 2. We were also told it works on both Safari and Opera. Please update your Internet browser, if you experience unexpected behavior of ECR Browser.

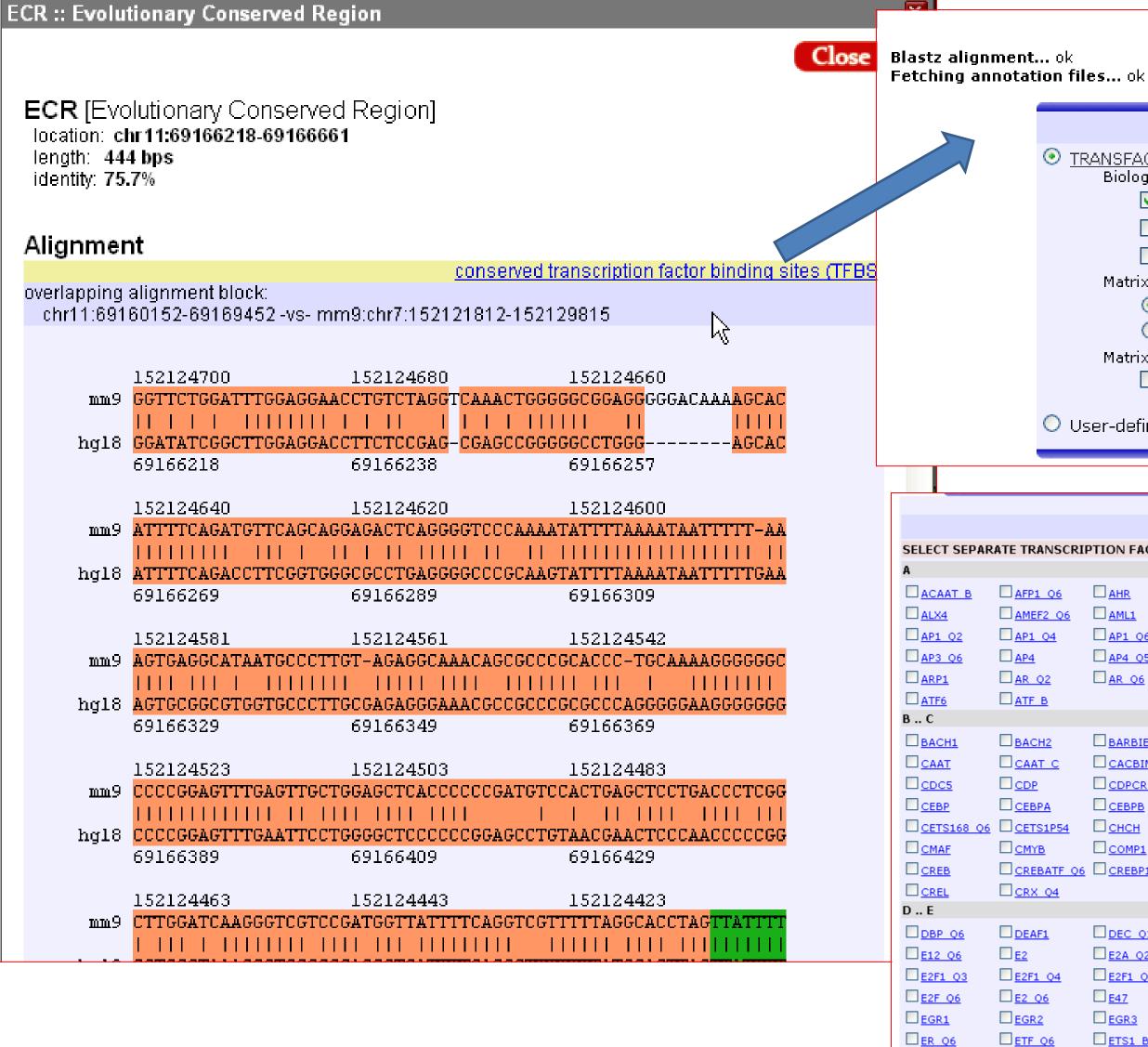
Multispecies (not limited to pairwise comparisons)

Jegga Biomedical Informatics

Genome Alignment in ECR Browser :: Align your sequence to a genome

Instructions on how to use ECR Browser.


Add ECR Browser search button to your Google Toolbar. Click <u>HERE</u> and select your favorite genome.


(You might need Administrative priviledges to complete the installation.)

RefSeq genes... chr11:69165054-69178423 CCND1 cyclin D1 UCSC genes... chr11:69165054-69178423 CCND1 cyclin D1 Ensembl genes... chr11:69165054-69178422 CND10000227507 CCND1_HUMAN chr11:69165054-69178422 ENST00000227507

chr11:69165054-69178422 ENST00000227507 CCND1_HUMAN

-

Jegga Biomedical Informatics

FAC1

FOXP3 Q4

FOXD3

Defining transcription factor binding sites									
NSFAC professional V10.2 library									
Biological species									
⊠ ∫ve	rtebrates	📃 insed	rts						
	ants	📃 fungi							
🗖 nematodes 👘 bacteria									
Matrix sim	-				SUBMIT				
💽 Ор	timized for f	unction			Sobilit				
🔵 Pre	edefined as	0.85 💌							
Matrix sele	ction								
📃 use	e onlv hiah-s	pecificity mat	rices						
	,								
er-defined	consensus	seauences							
				inscription facto	r families: 467				
		IPTION FACT	ORS						
TION FACTORS	6								
	_	_		_					
		AHRHIF Q6	AHR Q5		ALPHACP1				
AML1	AML1 Q6		<u>AP1</u>	AP1FJ Q2	AP1 C				
AP1 Q6			AP2REP	AP2 Q3	□ <u>AP2_Q6</u>				
AP4 Q5	■ <u>AP4_Q6</u>	APOLYA B	AR AR	AREB6					
<u>AR Q6</u>	□ <u>атата в</u>	ATE	ATF1_Q6	ATF3_Q6	ATF4 Q2				
7									
BARBIE	BEL1 B	BLIMP1 Q6	BRACH	BRCA	BRN2				
_		_		CART1					
				COUP DR1 Q					
CREBP1	CREBP1CJUN	CREBP1 Q2	CREB Q2	CREB Q3	CREB_Q4				
DEC Q1	DELTAEF1	DR1 Q3							
1524 02	E2A Q6		E2F1DP1	E2F1DP1RB					
<u>E2A Q2</u>	L COCADON		E2F Q2	E2F Q3	E2F_Q4				
E2F1 Q6	E2F4DP1								
□ <u>E2F1_Q6</u> □ <u>E47</u>	E4BP4	E4F1 Q6	EBF Q6						
□ <u>E2F1_Q6</u> □ <u>E47</u> □ <u>EGR3</u>	E4BP4 EGR_Q6	□ <u>E4F1_Q6</u> □ <u>ELF1_Q6</u>		EN1	$\Box_{\underline{EFC}} Q6}$				
□ <u>E2F1_Q6</u> □ <u>E47</u>	E4BP4	E4F1 Q6		_					
□ <u>E2F1_Q6</u> □ <u>E47</u> □ <u>EGR3</u> □ <u>ETS1_B</u>	□ <u>E4BP4</u> □ <u>EGR_Q6</u> □ <u>ETS2_B</u>	$\Box_{\underline{E4F1}} \underbrace{Q6}{Q6}$			ERR1 Q2				
□ <u>E2F1_Q6</u> □ <u>E47</u> □ <u>EGR3</u>	E4BP4 EGR_Q6	□ <u>E4F1_Q6</u> □ <u>ELF1_Q6</u>		EN1					

SELECT ALL RESET SUBMIT

ዏ

29

Request ID: xbr01202010181133958

Summary:

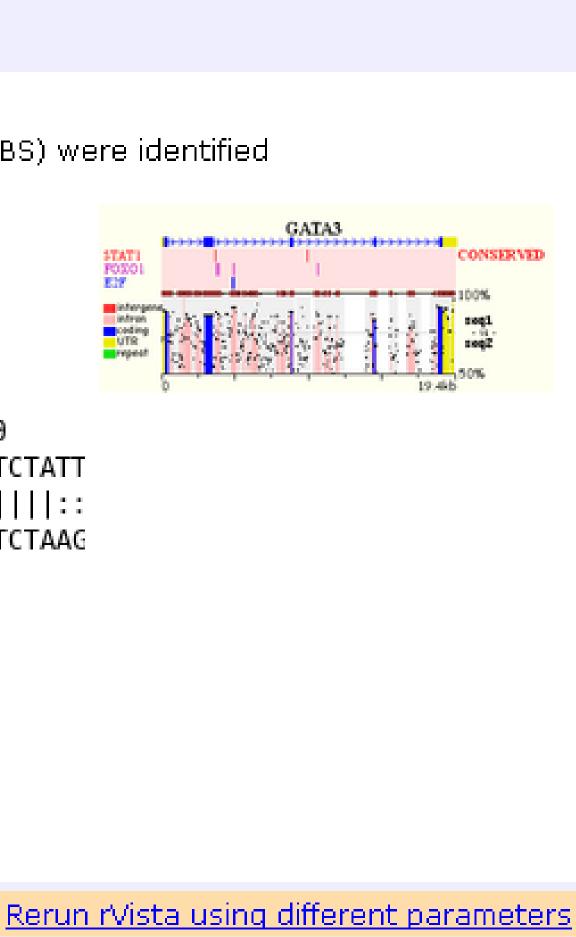
<u>43 conserved</u> and **<u>43 aligned</u> transcription factor binding sites (TFBS) were identified**

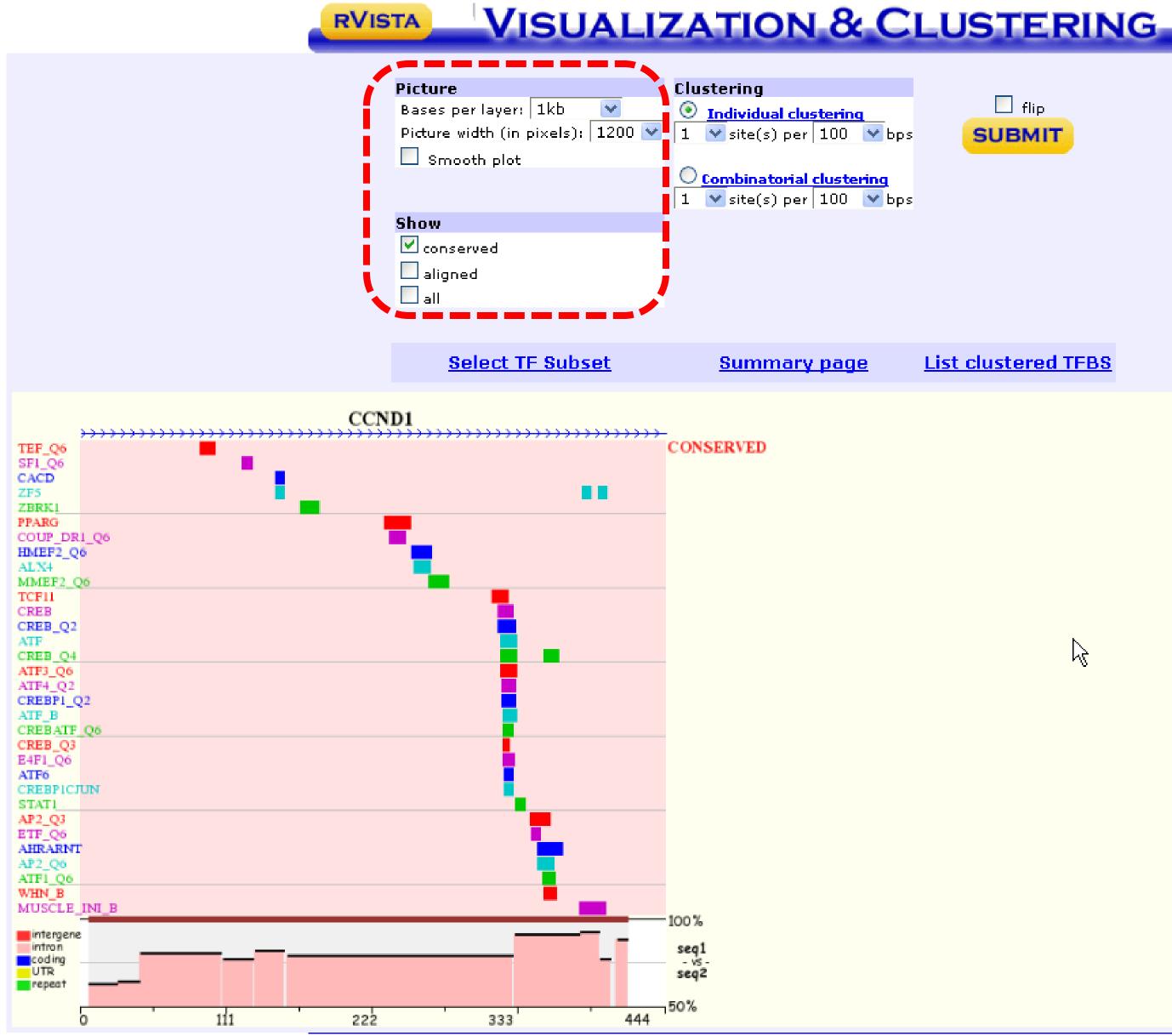
Dynamic visualization: Dynamically overlay TFBS prediction with the conservation profile and perform clustering

Alignment:

Highlight TFBS positions in the alignment

40 50 ATAAGAGATAATAATCTATT 3CT ΄ - - **GAGATAATAA**TCTAAG 60


Binding sites in the input sequences:


<u>207 TFBS</u> detected in the base sequence **<u>173 TFBS</u>** detected in the second sequence

Input files:

Sequences: <u>seq1.fa</u> :: <u>seq2.fa</u> Gene annotation: <u>anno1</u> :: <u>anno2</u>

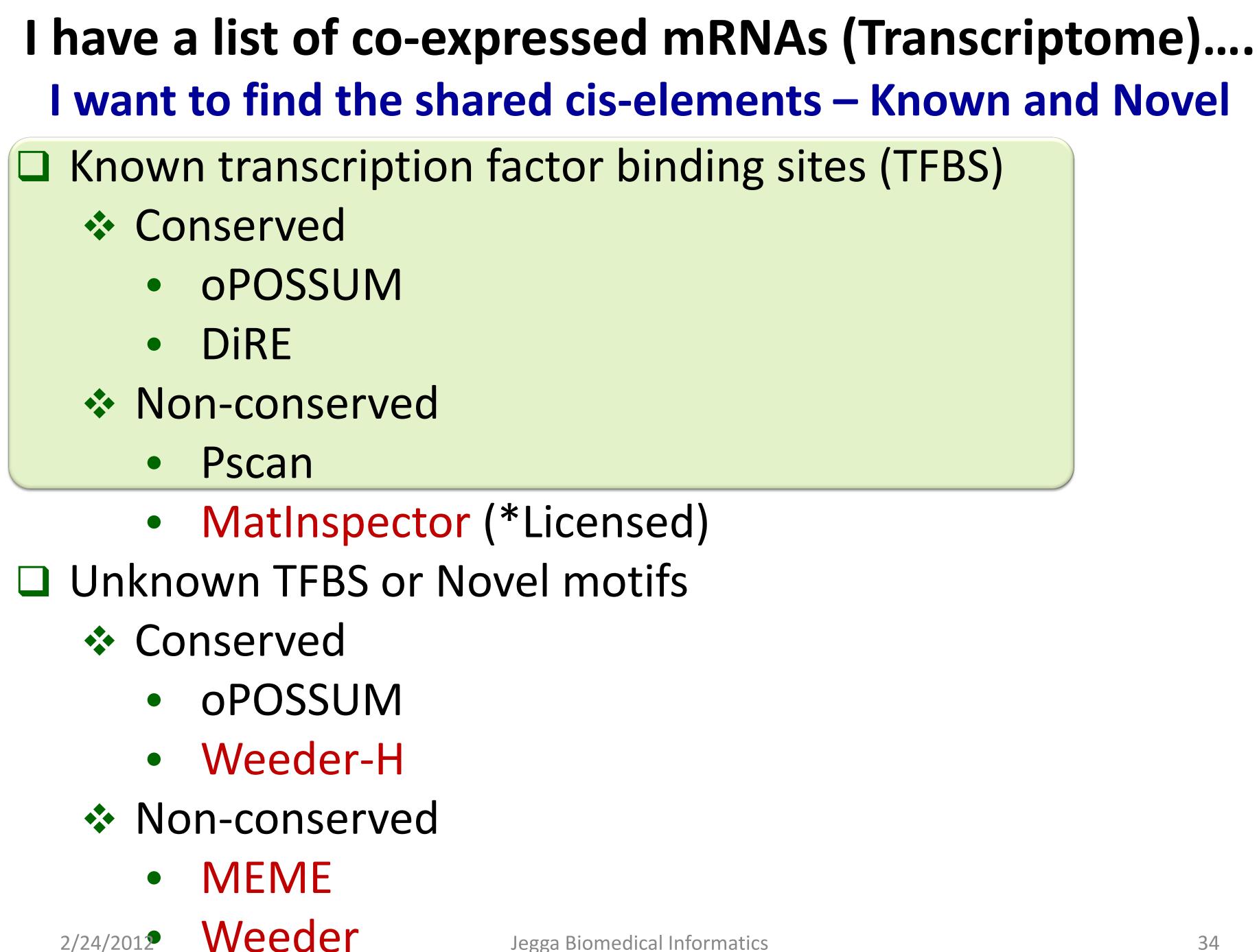
Jegga Biomedical Informatics

2/24/2012

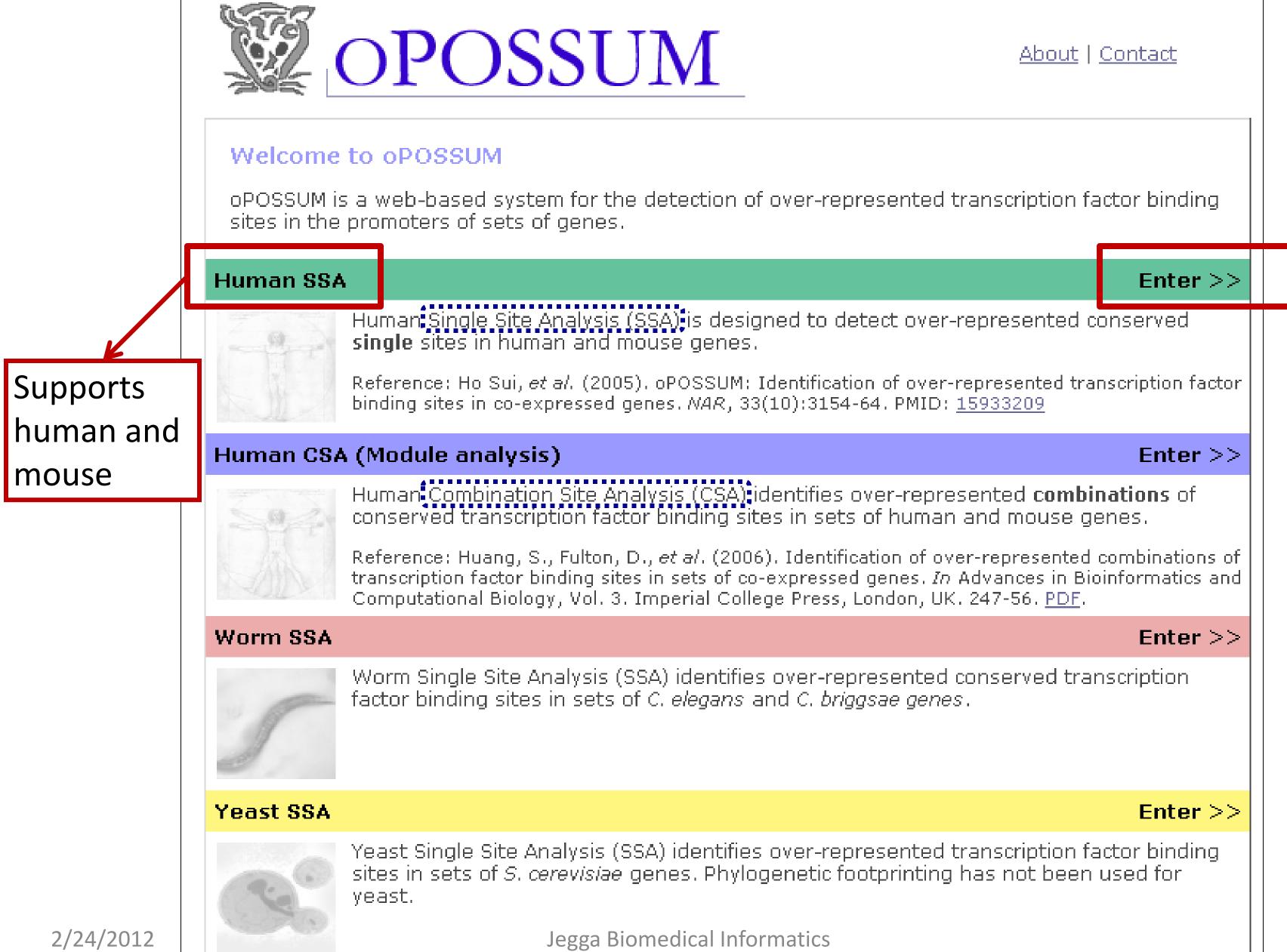
Jegga Biomedical Informatics

List clustered TFBS

 \mathbf{k}

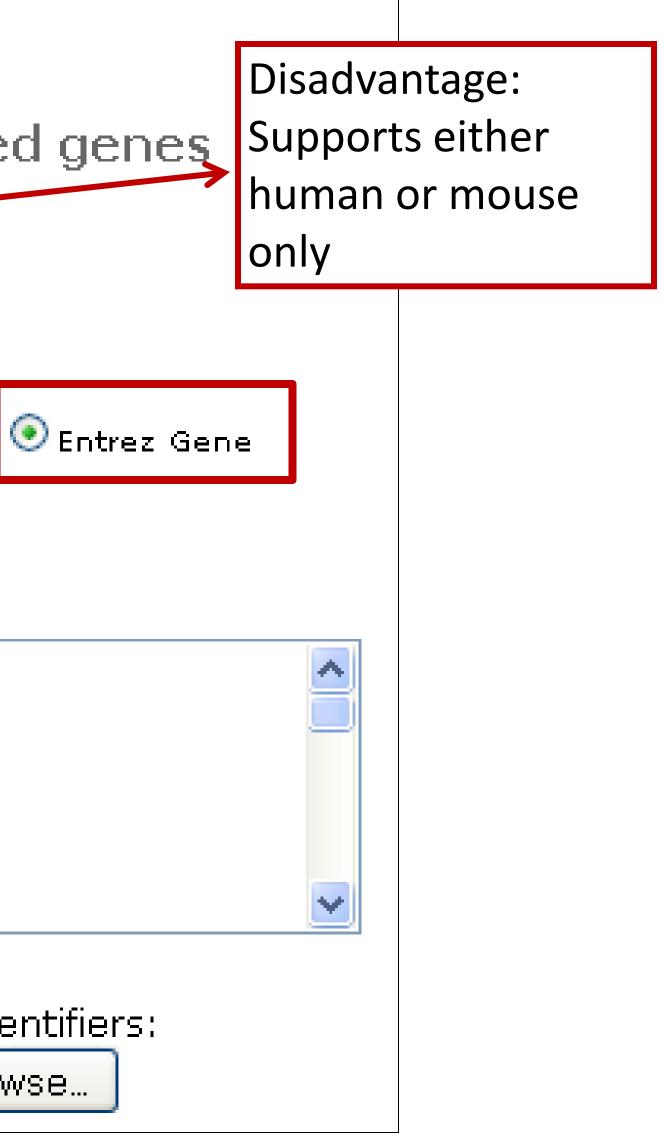

RESOURCES - URLs: Summary

Application/Resource	
Genome Browser	http://genome.ucsc
JASPAR	http://jaspar.genere
Gene Regulation	http://www.gene-reg
GenomeTrafac	http://genometrafac
DCODE	http://www.dcode.o


URL

c.edu eg.net/ gulation.com c.cchmc.org

I have a list of co-expressed mRNAs (Transcriptome).... I want to find the shared cis-elements – Known and Novel Known transcription factor binding sites (TFBS) Conserved oPOSSUM 1. Each of these applications DiRE support different forms of Non-conserved input. Very few support probeset IDs. Pscan **Red Font**: Input sequence 2. • MatInspector (*Licensed) required; Do not support Unknown TFBS or Novel motifs gene symbols, gene IDs, or accession numbers. The Conserved advantage is you can use oPOSSUM them for scanning sequences Weeder-H from any species. *Licensed software: We have 3. Non-conserved access to the licensed version. MEME Weeder 2/24/2012 **Jegga Biomedical Informatics** 33


oPOSSUM (http://burgundy.cmmt.ubc.ca/oPOSSUM/)

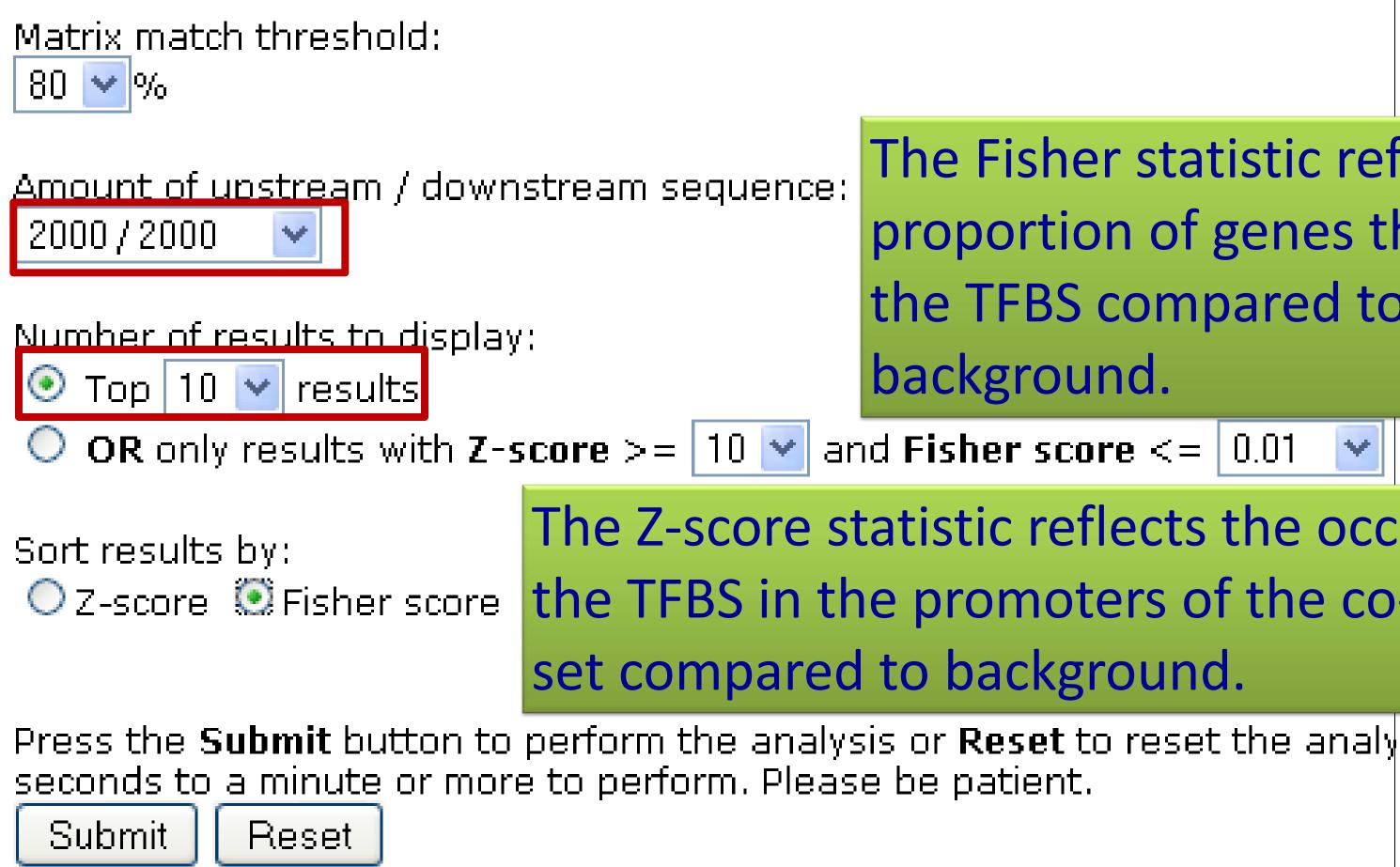
35

oPOSSUM (http://www.cisreg.ca/oPOSSUM)

Sele	Select Analysis Parameters				
STEP	1: Enter a list of co-expresse				
Specie O hum	s: an Omouse				
O Ense	D type: ambl OHUGO/MGI Symbol/Alias ORefSeq ste gene IDs: ample genes Clear				
259 5265 350 335 335 1558					
O OF	tupload a file containing a list of gene ide Brov				

bits (min. 8 bits)

The JASPAR PHYLOFACTS database consists of 174 profiles that were extracted from phylogenetically conserved gene upstream elements. They are a mix of known and as of


They are useful when one expects that other factors might determine promoter characteristics and/or tissue specificity.

bits (min. 8 bits)

STEP 3: Select parameters

Level of conservation:

Top 10% of conserved regions (min. conservation 70%) 🔽

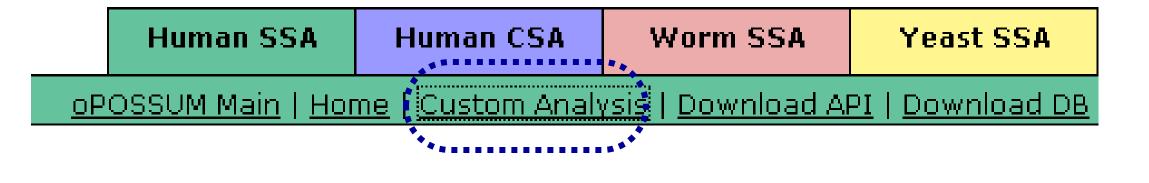
The Fisher statistic reflects the proportion of genes that contain the TFBS compared to ¥ The Z-score statistic reflects the occurrence of the TFBS in the promoters of the co-expressed

oPOSSUM Analysis

Analysis Results		TF 🛰	TF Class 🔌	TF Supergroup	IC 🔽	Background gene hits	Background gene non-hits	Target gene hits	Target gene non-hits	Background TFBS hits	Background TFBS rate	Target TFBS hits	Target TFBS rate	Z-score 🔼	Fisher score
Selected Parameters		HNF1A	HOMEO	vertebrate	15.548	1466	13684	8	7	1860	0.0021	8	0.0136	22.69	2.692e-05
		<u>SRY</u>	HMG	vertebrate	9.193	8624	6526	<u>13</u>	2	34149	0.0248	33	0.0361	6.567	1.552e-02
Conservation level:	Top 10% of cons	Fos	bZIP	vertebrate	10.670	7001	8149	<u>11</u>	4	16086	0.0104	<u>16</u>	0.0155	4.583	3.175e-02
Matrix match score:	80%	HLF	bZIP	vertebrate	11.147	3376	11774	<u>Z</u>	8	5014	0.0048	9		10.72	3.196e-02
		<u>Foxq1</u>	FORKHEAD	vertebrate	14.070	3533	11617	<u>Z</u>	8	6047	0.0054	2		8.207	4.026e-02
Upstream sequence length:	2000	<u>NKX3-1</u>	HOMEO	vertebrate	11.127	5391	9759	9	6	12155		<u>13</u>		4.548	4.696e-02
Downstream sequence length:	2000	FOXD1	FORKHEAD	vertebrate	11.926	5516	9634	9	6	11145	0.0072	<u>15</u>		7.875	5.417e-02
Number of genes submitted:	21	Pd×1	HOMEO	vertebrate	9.040	9899	5251	<u>13</u>	2	54092	0.0261	<u>47</u>		4.571	6.515e-02
-	15	Cebpa	bZIP	vertebrate	9.187	5863	9287	2	6			<u>14</u>		7.21	7.844e-02
-	τJ	Nkx2-5	HOMEO	vertebrate	8.270	10169	4981	<u>13</u>	2	59121	0.0333	<u>52</u>	0.0442	5.46	8.496e-02
Number of genes excluded:	6				Downlo	oad as a tab de	<u>limited text file</u>	(results will	be kept on t	he server for 3:	days after ana	ysis)			
Target Genes Analyzed: 1356 350 2158 259 383 Excluded: 5265 1558 125 3240 383		.571 5105 :	229 325 216	8 2244 5053											
LACIUUEU. 3203 1338 123 3240 38	02, 3004						V								

Genes Containing Conserved HNE1A Binding Sites:

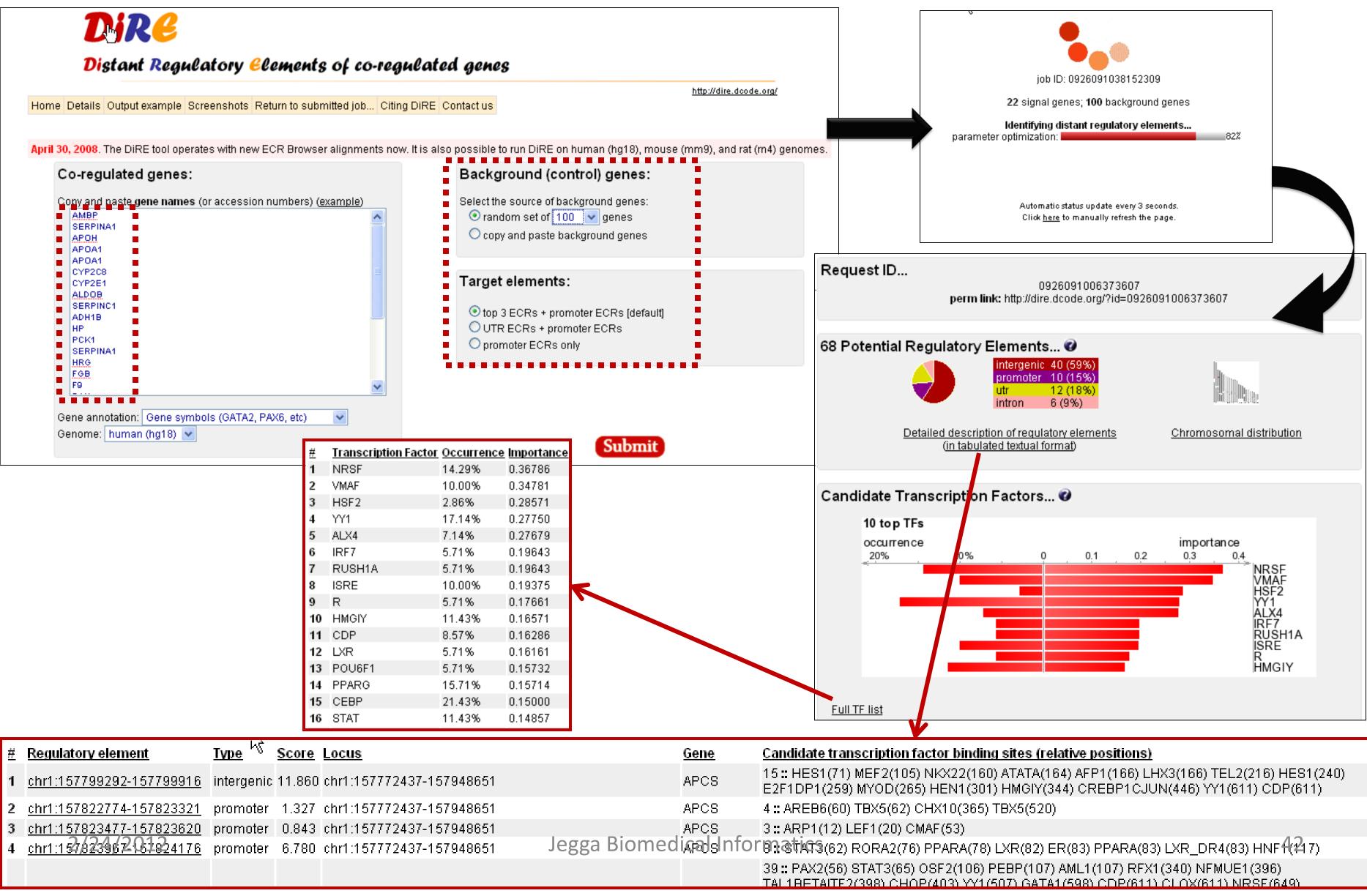
Gene ID	Ensembl ID	Chr	Strand	TSS	Promoter Start	Promoter End	TFBS Sequence	TFBS Start	TFBS Rel. Start	TFBS End	FFB Rel. End	TFBS Orientation	TFBS Score
1356	ENSG0000047457	3	-1	150422269	150420270	150424269	GGTTAATGTTTAAT	150421319	951	150421332	938	1	15.334
350	ENSG0000091583	17	-1	61655974	61653975	61657974	GGTTAATGTTTAAG	61656032	-58	61656045	-71	-1	13,479
3273	ENSG0000113905	З	1	187866487	187864487	187868486	TGTAAATGATTAGT	187866344	-143	187866357	-130	-1	9.708
1571	ENSG0000130649	10	1	135190857	135188857	135192856	GGTTTATTATTAGC	135190745	-112	135190758	-99	-1	14.409
5105	ENSG0000124253	20	1	55569543	55567543	55571542	AGATAATCATTGAA	55569396	-147	55569409	-134	-1	9.903
325	ENSG0000132703	1	1	157824239	157822239	157825284	AGTTATTTATTAGA	157824079	-160	157824092	-147	-1	12,759
2168	ENSG0000163586	2	-1	88208693	88206694	88210693	AGTTAATGTTTGAA	88208792	-99	88208805	-112	-1	12.830
2244	ENSG0000171564	4	1	155703596	155701596	155705595	AGTTAATATTTAAT	155703524	-72	155703537	-59	-1	14.863


Download as a tab delimited text file.

	Genes	Containing	Col	nserv	ed SRY	Binding Site	es:	\searrow				V		
	Gene ID	Ensembl ID	Chr	Strand	TSS	Promoter Start	Promoter End	TFBS Sequence	TFBS Start	TFBS Rel. Start	TFBS End	TFBS Rel. End	TFBS Orientation	TFBS Score
	1356	ENSG0000047457	з	-1	150422269	150420270	150424269	TTAAACATT	150421323	947	150421331	939	-1	6.961
					150422269	150420270	150424269	TGACACAAT	150422361	-92	150422369	-100	1	7,793
					150422269	150420270	150424269	TAAAACAAA	150423255	-986	150423263	-994	-1	9.474
	350	ENSG0000091583	17	-1	61655974	61653975	61657974	TAATATAAT	61654150	1825	61654158	1817	1	5.862
					61655974	61653975	61657974	AAAAACAAA	61654256	1719	61654264	1711	-1	8.914
	2158	ENSG00000101981	Х	1	138440561	138438561	138442560	TTGGACAAA	138441494	934	138441502	942	1	6.016
	383	ENSG00000118520	6	1	131936059	131934059	131938058	ATGAATAAT	131935824	-235	131935832	-227	1	5.865
	3273	ENSG00000113905	з	1	187866487	187864487	187868486	TTAATCAAT	187866435	-52	187866443	-44	1	8.775
	462	ENSG00000117601	1	-1	172153139	172151140	172155139	TTAAGCAAA	172153193	-54	172153201	-62	1	5,779
					172153139	172151140	172155139	TTAAACAAC	172153216	-77	172153224	-85	-1	7.440
	1571	ENSG0000130649	10	1	135190857	135188857	135192856	GAAAATAAT	135188983	-1874	135188991	-1866	-1	8.003
					135190857	135188857	135192856	GCTAATAAT	135190745	-112	135190753	-104	1	6.366
					135200555	135198555	135202554	TAAAACATT	135199099	-1456	135199107	-1448	-1	6.342
	5105	ENSG00000124253	20	1	55569543	55567543	55571542	GTACACAAA	55569204	-339	55569212	-331	1	8.214
2/24/201	2				55569543	55567543	005571R42	omedical I	nfofffffffff	CS -162	55569389	-154	1	6.352
2/27/201	229	ENSG0000136872	9	-1	103237926	103235927	293239926	TCTCACAAT	103237073	854	103237081	846	1	6.965
					103237926	103235927	103239926	GTAAATAAA	103237407	520	103237415	512	1	7.334

Gene ID	Ensembl ID	Chr	Strand	TSS	Promoter Start	Promoter End	TFBS Sequence	TFBS Start	TFBS Rel. Start	TFBS End	TFBS Rel. End	TFBS Orientation	TFBS Scor
1356	ENSG0000047457	З	-1	150422269	150420270	150424269	GGTTAATGTTTAAT	150421319	951	150421332	938	1	15,334
350	ENSG0000091583	17	-1	61655974	61653975	61657974	GGTTAATGTTTAAG	61656032	-58	61656045	-71	-1	13.479
3273	ENSG0000113905	З	1	187866487	187864487	187868486	TGTAAATGATTAGT	187866344	-143	187866357	-130	-1	9.708
1571	ENSG0000130649	10	1	135190857	135188857	135192856	GGTTTATTATTAGC	135190745	-112	135190758	-99	-1	14.409
5105	ENSG0000124253	20	1	55569543	55567543	55571542	AGATAATCATTGAA	55569396	-147	55569409	-134	-1	9.903
325	ENSG0000132703	1	1	157824239	157822239	157825284	AGTTATTTATTAGA	157824079	-160	157824092	-147	-1	12.759
2168	ENSG0000163586	2	-1	88208693	88206694	88210693	AGTTAATGTTTGAA	88208792	-99	88208805	-112	-1	12.830
2244	ENSG0000171564	4	1	155703596	155701596	155705595	AGTTAATATTTAAT	155703524	-72	155703537	-59	-1	14.863

Genes	: Containing	Соі	nserv	ed SRY	Binding Sit	es:	\searrow						
Gene ID	Ensembl ID	Chr	Strand	TSS	Promoter Start	Promoter End	TFBS Sequence	TFBS Start	TFBS Rel. Start	TFBS End	TFBS Rel. End	TFBS Orientation	TFBS Score
1356	ENSG0000047457	3	-1	150422269	150420270	150424269	TTAAACATT	150421323	947	150421331	939	-1	6.961
				150422269	150420270	150424269	TGACACAAT	150422361	-92	150422369	-100	1	7,793
				150422269	150420270	150424269	ТААААСААА	150423255	-986	150423263	-994	-1	9.474
350	ENSG0000091583	17	-1	61655974	61653975	61657974	TAATATAAT	61654150	1825	61654158	1817	1	5.862
				61655974	61653975	61657974	AAAAACAAA	61654256	1719	61654264	1711	-1	8.914
2158	ENSG0000101981	Х	1	138440561	138438561	138442560	TTGGACAAA	138441494	934	138441502	942	1	6.016
383	ENSG00000118520	6	1	131936059	131934059	131938058	ATGAATAAT	131935824	-235	131935832	-227	1	5.865
3273	ENSG0000113905	3	1	187866487	187864487	187868486	TTAATCAAT	187866435	-52	187866443	-44	1	8.775
462	ENSG00000117601	1	-1	172153139	172151140	172155139	TTAAGCAAA	172153193	-54	172153201	-62	1	5.779
				172153139	172151140	172155139	TTAAACAAC	172153216	-77	172153224	-85	-1	7,440
1571	ENSG00000130649	10	1	135190857	135188857	135192856	GAAAATAAT	135188983	-1874	135188991	-1866	-1	8.003
				135190857	135188857	135192856	GCTAATAAT	135190745	-112	135190753	-104	1	6.366
				135200555	135198555	135202554	ТААААСАТТ	135199099	-1456	135199107	-1448	-1	6.342
5105	ENSG00000124253	20	1	55569543	55567543	55571542	GTACACAAA	55569204	-339	55569212	-331	1	8.214
				55569543	55567543	55571542	ATTAACAAC	55569381	-162	55569389	-154	1	6.352
229	ENSG0000136872	9	-1	103237926	103235927	103239926	TCTCACAAT	103237073	854	103237081	846	1	6.965
				103237926	103235927	103239926	GTAAATAAA	103237407	520	103237415	512	1	7.334


Select Custom Analysis Parameters	
STEP 1a: Enter a list of co-expressed genes	
Species: <pre> • human • mouse </pre>	
Gene ID type: OEnsembl OHUGO/MGI Symbol/Alias ORefSeq OEntrez Gene	
 Paste gene IDs (max. 1000 genes): Use sample genes Clear 	
5265 350 335	
335 1558	
O OR upload a file containing a list of gene identifiers: Browse	
STEP 1b: Enter a background list of genes	
 Use background set of 1000 random genes OR Paste background gene IDs (max. 1000 genes): Clear 	
1281 1281 1805 125 10551	
OR upload a file containing a list of gene identifiers: Browse	

oPOSSUM Analysis

TF 💊	TF Class 🔽	TF Supergroup	1С 🔨	Background gene hits	Background gene non-hits	Target gene hits	Target gene non-hits	Background TFBS hits	Background TFBS rate	Target TFBS hits	Target TFBS rate	Z-score 🔼	Fisher score
HNF1A	HOMEO	vertebrate	15.548	1	10	<u>8</u>	7	1	0.0025	<u>8</u>	0.0136	20.32	2.426e-02
HLF	bZIP	vertebrate	11.147	1	10	Z	8	1	0.0021	9	0.0131	21.68	4.943e-02
<u>NKX3-1</u>	HOMEO	vertebrate	11.127	3	8	9	6	3	0.0037	<u>13</u>	0.0110	10.95	1.042e-01
Bapx1	HOMEO	vertebrate	8.542	4	7	<u>10</u>	5	5	0.0079	<u>20</u>	0.0218	14.26	1.286e-01
<u>Lhx3</u>	HOMEO	vertebrate	12.941	3	8	<u>8</u>	7	5	0.0079	<u>11</u>	0.0120	4.173	1.775e-01
Pdx1	HOMEO	vertebrate	9.040	7	4	<u>13</u>	2	28	0.0295	<u>47</u>	0.0342	2.533	1.826e-01
<u>SRY</u>	HMG	vertebrate	9.193	7	4	<u>13</u>	2	26	0.0410	<u>33</u>	0.0361	-2.303	1.826e-01
Nkx2-5	HOMEO	vertebrate	8.270	7	4	<u>13</u>	2	28	0.0344	<u>52</u>	0.0442	4.865	1.826e-01
FOXI1	FORKHEAD	vertebrate	13.183	4	7	2	6	8	0.0168	<u>17</u>	0.0248	5.555	2.142e-01
RORA 1	NUCLEAR RECEPTOR	vertebrate	13.190	1	10	4	11	1	0.0018	5	0.0061	9.233	2.739e-01

DiRE (http://dire.dcode.org/)

DiRE (http://dire.dcode.org/)

ſ	<u>#</u>	Regulatory element	<u>Type</u> ^너 ડ	<u>Score</u>	Locus	<u>Gene</u>	Candidate transcr
	1	<u>chr1:157799292-157799916</u>	intergenic	11.860	chr1:157772437-157948651	APCS	15: HES1(71) ME E2F1DP1(259) MY
I	2	<u>chr1:157822774-157823321</u>	promoter	1.327	chr1:157772437-157948651	APCS	4 :: AREB6(60) TB>
I	3	chr1:157823477-157823620	promoter	0.843	chr1:157772437-157948651	APCS	3 :: ARP1(12) LEF1
I	4	chr1:157823967-157824176	promoter	6.780	chr1:157772437-157948651	APCS	8 :: STAT3(62) ROP
							39 :: PAX2(56) STA TAI 18ETAITE2/39

ECR-Browser (http://ecrbrowser.dcode.org/)

								<u>.</u>	
	ECR Browser o	n Human (F	na18)	http:	//ecrbrow	ser door	de.org		
	Parameters: [change]	Graph smooth	ECR Iength 100	ECR similarity 70	Layer height 55	Coordi syste relati	nate em	625 bps	gene or positi chr1:15779 <u>GENOME ALIG</u>
				D:DE -					
HES1	MEF2	 NKX22 ATATA AFP' LHX3 	Ì		HES1	IYOD	HEN1	score=11.860)	
			_						
									~~~~~
		<u> </u>							
	وبجوالية ويتبارك					-			
· [1]	00 1		200			ENS UCSC Ref	SEMBL Gene CKnown Gen Seq Genes	s ies	400
2/24/2012					S			ical Inform	natics Irs 10908 734

### <u>ription factor binding sites (relative positions)</u>

IEF2(105) NKX22(160) ATATA(164) AFP1(166) LHX3(166) TEL2(216) HES1(240) /IYOD(265) HEN1(301) HMGIY(344) CREBP1CJUN(446) YY1(611) CDP(611) /BX5(62) CHX10(365) TBX5(520)

F1(20) CMAF(53)

ORA2(76) PPARA(78) LXR(82) ER(83) PPARA(83) LXR_DR4(83) HNF1(117) TAT3(65) OSF2(106) PEBP(107) AML1(107) RFX1(340) NFMUE1(396) 398) CHOP(403) YY1(507) GATA1(598) CDP(611) CLOX(611) NRSE(649)

ition (chrN:from-to)

99292-157799916 Submit

IGNMENT: Align your sequence to a genome

CREBP1CJUN		CDP X
		100% fr2 *****
		100% galGal3 50%
		100% ——xenTro2
		100% monDom4 💓 🗙 50%
		100% canFam2 50%
		100 % mm9 🙇 🗙 50 %
		100% rheMac2 50%
500	600	+
		43 <b>×</b>
		•

Insert Gene/Sequence ID list: (help)	Bioinformatics Evolution @nd Comparative GeNomics
	Pscan Web Interfa
Select Organism: Homo sapiens	Use the input form on the left to set u your query. The results will be displat in this window.
Select Region:	If you need HELP please click here.
Jaspar ⊙ Select Jaspar_Fam ○ Descriptors: Transfac ○	Source: Download Pscan source code
User Defined O Run! Undo changes Reset! Messages :	Reference: F.Zambelli, G.Pesole, G.Pavesi <u>Pscan: Finding Over-represented</u> <u>Transcription Factor Binding Site Motifs in</u> <u>Sequences from Co-Regulated or</u> <u>Co-Expressed Genes.</u> <i>Nucleic Acids Research</i> 2009 37(Web St issue):W247-W252.
	Contacts: <u>qiulio.pavesi@unimi.it</u> federico.zambelli@unimi.it

### Sample data

ice

up yed

in

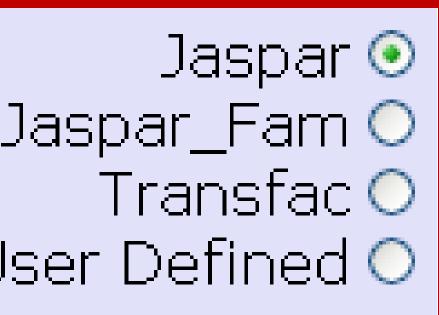
Gerver

List of MYC target genes. MYCxx indicates that xx percent of the genes in the list are MYC targets, while the others are random genes added to the set to assess the performance of the algorithm.

<u>MYC100 MYC90 MYC80 MYC75 MYC65</u> <u>MYC55</u>

List of NFkB target genes, collected from literature. NFKBxx should be read as in the MYC dataset.

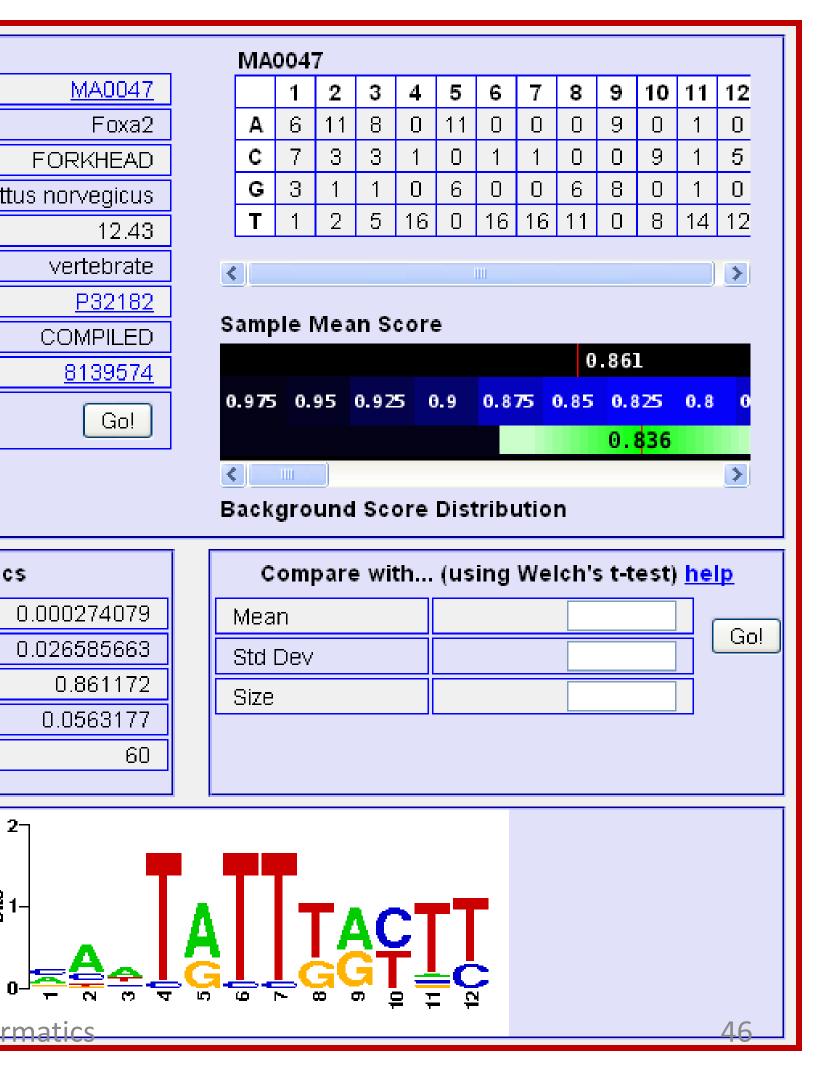
### NFkB100 NFkB90 NFkB80 NFkB70 NFkB60 NFkB50 NFkB40


List of NRF1 target genes. NRFxx should be read as in the MYC dataset. Use the NRF1 matrix with the link provided below to test these datasets (save the matrix as a text file).

<u>NRF1_100 NRF1_90 NRF1_80 NRF1_70</u> <u>NRF1_60 NRF1_50 NRF1_40</u>

**NRF1 Matrix** 

Insert Gene/Sequence ID list: (help)	Calast Ourse
NM_006408 NM_006418	Select Orga Select Regi
NM_006439 NM_006475 NM_001285	Jeletti Keyi
NM_000668 NM_000667	Select Descriptors
NM_000669 NM_000668	
Select Organism: Homo sapiens	
Select Region: -450 +50 🔽	-
Jaspar ⊙ Select Jaspar_Fam ○ Descriptors: Transfac ○ User Defined ○	U
Run! Undo changes Reset!	
Messages:	
6 (out of 84) gene ID(s) not found: NM_138298 NM_138299 NM_024416 XM_936565 XM_941953 XM_930062	
Working on 78 gene promoter(s). 2/24/2012 Jegga Biome	dical Informatics


niem.	
inism:	Human and Mouse
	Homo sapiens
on:	Mus musculus
	Human and Mouse
	Drosophila melanogaster
	Arabidopsis thaliana
1 1	Saccharomyces cerevisiae




<u>View T</u>	<u>ext Results</u>	^		
97 TF p	rofiles used			
Matrix Name	P-value			
<u>TBP</u>	1.59074e-08	Ξ		
Foxa2	0.000274079			
FOXL1	0.000657034		Ma	trix Info
MEF2A	0.000657227			<u>MA0047</u>
Hand1-Tcfe2a	0.000697277		Name Class	Foxa2
Nobox	0.000790445		Species	Rattus norvegicus
FOXI1	0.000804377		Inf. Content	12.43
PBX1	00124224		SuperGroup	vertebrate
			Protein Acc.	<u>P32182</u>
<u>SRF</u>	0.00124647		Туре	COMPILED
<u>Evi1</u>	0.00128699		PMID	<u>8139574</u>
TEAD1	0.00212538		Report Occurrences	Go!
Lhx3	0.00303459			
<u>Foxq1</u>	0.00355502			
Prox2	0.00486451			
Lhx3	0.00527407			e Statistics
<u>NKX3-1</u>	0.00590862		p-value	0.000274079
NFIL3	0.00642618		Bonferroni p-value Mean	0.026585663
REL	0.00685234		Std Dev	0.0563177
Pax6	0.00765503		Size	60
Foxd3	0.00776631			
				2
HNF1A	0.00783389			
<u>Cebpa</u>	0.00920516	~		<u>뽑</u> 1-
NI/v2_5		Y		

2/24/2012

Jegga Biomedical Informatics



View Text Results		-	-		
97 TF profiles used A A A A A A A A A A A A A A A A A A A	<u>View</u>	/ Text Re:	<u>sults</u>		^
TBP         1.59074e-08           Foxa2         0.000274079	Name	Score F	Position	Sequence	Stranc =
FOXL1         0.000657034           MEF2A         0.000657227	¹ / <u>hg18_refGene_NM_002345</u>	0.98343	-197	CAATATTGATTT	- 1
Hand1-Tcfe2a         0.000697277           Nobox         0.000790445	hg18 refGene NM 000668	0.982619	-145	AAATATTGACTT	· ·
EOXI1         0.000804377           PBX1         0.00124224	hg18 refGene NM 006408	0.951013	-258	CTTTATTTACTT	-
SRF         0.00124647           Evi1         0.00128699	hg18 refGene NM 000667	0.944804	-34	ATTTATTTATTT	-
TEAD1         0.00312538           Lhx3         0.00303459	hg18 refGene NM 000609	0.939791	-428	ACTTGTTTGCTT	+
Foxq1         0.00355512           Prrx2         0.00486451	hg18 refGene NM 001033886	0.939791	-428	ACTTGTTTGCTT	+
Lhx3         0.00527407           NKX3-1         0.00590862	hg18 refGene NM 199168	0.939791	-428	ACTTGTTTGCTT	+
NFIL3         0.00642618           REL         0.00685234	hg18 refGene NM 021010	0.935506	-261	GAGTATTTACTT	-
Pax6         0.00765503           Foxd3         0.00776631	hg18 refGene NM 133477	0.932417	-356	AAACATTTATTT	+
HNF1A         0.00783389           Cebpa         0.00920516	hg18 refGene NM 194435	0.931745	-216	CTTTGTTTGTTT	+
	hg18 refGene NM 003381	0.931745	-216	СТТТӨТТТӨТТТ	+
Matrix Info MA0047	hg18 refGene NM 005603	0.922637	-143	GAATATTTACAT	+
ID         MA0047         1         2         3         4         5         6         7         8         9         10         11         12	hg18 refGene NM 004616	0.9222	-56	ATCTGTTTACTT	+
Name         Foxa2         A         6         11         8         0         11         0         0         0         9         0         1         0           Class         C         7         3         3         1         0         1         0         9         1         5	6440	n n40080	220	ATTTATTACTT	×
Species         Rattus norvegicus         G         3         1         1         0         0         0         6         8         0         1         0	<	1111			
Inf. Content         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43         12.43	Occurrences Position D	istributi	on (sc	ore >=0.836)	
Protein Acc. P32182 Sample Mean Score					
Type     COMPILED     Sample Weat Score       PMID     8139574     0.861					
Report         0.975         0.95         0.925         0.9         0.875         0.825         0.8         0	50 0 -50 -	100  -1	50	-200 -250	-300
Occurrences 0.836				- -	
Background Score Distribution					>
Sample Statistics Compare with (using Welch's t-test) help	Occurrences Score Dist	tribution	i		
p-value         0.000274079         Mean         Go!					
Burlierruni p-value 0.026585665 Std Dev					
Std Dev 0.0563177	1		0.8	15	
Size 60			•		
2					>
2/24/2012 이루윾승승 등 등 등 등 등 등 등 등 등 Siomed	ical Informatics				47



View Text Results 97 TF profiles Used					cfe2a		•
Matrix Name P-value							
				o (a2	FOXL1 MEF2A Hand1	Nobox F0XI1	a . a
TBP         1.5.074e-08           Foxa2         0.000.74079				TBF Fo)	FOXL. MEF2. Hand	10k	PBX1 SRF Evil
<u>FOXL1</u> 0.000657034		>hg18 r	efGene NM 000088				
MEF2A 0.000657227			efGene NM 058175				
Hand1-Tcfe2a 0.00069727			efGene NM 022844				
<u>Nobox</u> 0.000790445			efGene NM 002354				
<u>FOXI1</u> 0.000804377			efGene_NM_001937				
PBX1         0.00124224			efGene NM 207373				
SRF         0.00124647			efGene NM 194435				
<u>Evi1</u> 0.00128699			efGene NM 001443				
<u>TEAD1</u> 0.00212538			efGene_NM_032413				
Lhx3 0.00303459			efGene NM 013372				
<u>Foxq1</u> 0.00355502			efGene NM 001613				
Prrx2 0.00486451			efGene NM 001615				
<u>Lhx3</u> 0.00527407			efGene NM 021010				
<u>NKX3-1</u> 0.00590862			efGene NM 000900				
<u>NFIL3</u> 0.00642618			efGene NM 005603				
REL         0.00685234			efGene NM 199512				
Pax6 0.00765503			efGene_NM_000090				
<u>Foxd3</u> 0.00776631			efGene NM 003013				
HNF1A 0.00783389			efGene NM 000587				
Cebpa         0.00920516			efGene NM 006274				
			efGene NM 002667				
			efGene NM 006418				
			efGene_NM_006439				
TF_NAME MATRIX_ID Z_SCORE P_VALUE	E SAMPLE_AVERAGE BACKGROUND_AVI						
TBP MA0108 5.52625 1.59074e-08	0.859494 0.816811		60				
Foxa2 MA0047 3.45141 0.000274079	0.861172 0.836541		60				
FOXL1 MA0033 3.21019 0.000657034	0.918922 0.891892		60				
MEF2A MA0052 3.20941 0.000657227	0.810217 0.777574		60				
Hand1-Tcfe2a MA0092 3.19081 0.00069 Nobox MA0125 3.15645 0.000790445	97277 0.895392 0.8793 0.880691 0.854103		1 60 60				
FOXI1 MA0042 3.15094 0.000804377	0.85506 0.825768 0.0653		00				
PBX1 MA0070 3.02199 0.00124224	0.802727 0.781876		60				
SRF MA0083 3.02072 0.00124647	0.759912 0.740766		60				
Evil MA0029 3.01105 0.00128699	0.769179 0.746618	0.0546341	60				
TEAD1 MA0090 2.85352 0.00212538	0.827634 0.810446	0.0565813	60				
Lhx3 MA0134 2.7417 0.00303459	0.834887 0.804852	0.0683236	60				
Foxq1 MA0040 2.68955 0.00355502	0.825721 0.802203		60				
Prrx2 MA0075 2.58254 0.00486451	0.92434 0.89143 0.0897038	60					
Lhx3 MA0135 2.55439 0.00527407	0.798641 0.773954		60				
NKX3-1 MA0124 2.51437 0.00590862			60				
NFIL3 MA0025 2.48463 0.00642618	0.80459 0.783263 0.0663 0.8843 0.869993 0.0500						
REL MA0101 2.46099 0.00685234 Pax6 MA0069 2.42112 0.00765503	0.8843 0.869993 0.0500 0.778947 0.766632		60				
$Foxd3 2/472012 \cdot 4171 \cdot 0.00776631$							
1000000000000000000000000000000000000	0.790719 0.77094gga Bi	iomedical forma	at les				48

Matrix Info								
ID	MA0047							
Name	Foxa2							
Class	FORKHEAD							
Species	Rattus norvegicus							
Inf. Content	12.43							
SuperGroup	vertebrate							
Protein Acc.	<u>P32182</u>							
Туре	COMPILED							
PMID	<u>8139574</u>							
Report Occurrences	Go!							

p-value

Bonferror Mean

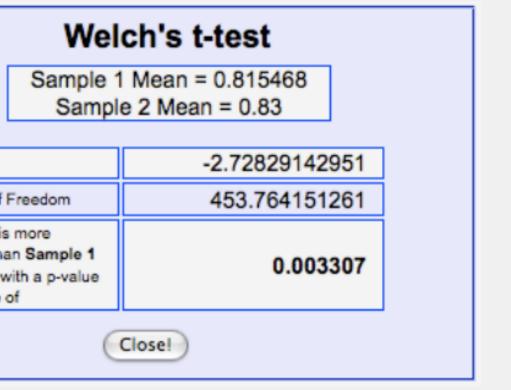
Std Dev Size

	<u>MA0047</u>			1	2	з	4	5	6	7	8	9	10	11	12
	Foxa2		А	6	11	8	0	11	0	0	0	9	0	1	0
	FORKHEAD		с	7	З	З	1	0	1	1	0	0	9	1	5
	Rattus norvegicus		G	3	1	1	0	6	0	0	6	8	0	1	0
nt	12.43	l	Т	1	2	5	16	0	16	16	11	0	8	14	12
up	vertebrate	<												]	>
CC.	<u>P32182</u>		-		_	_									_
	COMPILED	S	amp	ole l	viea	n s	core	•					_		
	<u>8139574</u>										0	.86			
ces	Go!	0.	.975	0.9	95	0.92	5 0	.9	0.8	75 (	9.85		825 836	0.8	6
		<	1	1111									1		>
	Sackground Score Distribution														
Sample	e Statistics		с	om	oare	e wi	th	(us	ing	We	ch's	s t-t	est)	hel	Þ
	0.000274079	1	Mea	n										_ r	Go!
ii p-∨alue	0.026585663	3	Std I	Dev										יך	<u> </u>
	0.861172		Size											٦	
	0.0563177														
	60														
									_						

MA0047

### **Comparing different input gene sets**:

- gene set (or vice versa).
- 3. value computed with a Welch t-test.


Mat	rix Info	MA0047	1	Sam	ple Statistics
ID	<u>MA0047</u>	1 2 3 4 5 6 7 8 9 10 11 12		San	iple statistics
Name	Foxa2	<b>A</b> 6 11 8 0 11 0 0 0 9 0 1 0		Mean	
Class	FORKHEAD	<b>C</b> 7 3 3 1 0 1 1 0 0 9 1 5		Wear	
Species	Rattus norvegicus	<b>G</b> 3 1 1 0 6 0 0 6 8 0 1 0		Std Dev	0
Inf. Content	12.43	<b>T</b> 1 2 5 16 0 16 16 11 0 8 14 12		Cine	
SuperGroup	vertebrate			Size	
Protein Acc.	<u>P32182</u>				
Туре	COMPILED	Sample Mean Score			
PMID	<u>8139574</u>	0.861			
Report Occurrences	Go!	0.975 0.95 0.925 0.9 <mark>0.875 0.85 0.825 0.8 0</mark>			
		Sackground Score Distribution			
Sample	Statistics	Compare with (using Welch's t-test) <u>help</u>			
p-∨alue	0.000274079	Mean		1	
Bonferroni p-∨alue	0.026585663	Go!			
Mean	0.861172	Size			
Std Dev	0.0563177				+
Size	60				
	27				Degrees of
		A TACTT G G G G G G G G G G G G G G G G G G G			Sample 2 enriched th (this one) confidence
2/2	4/2012		Jeg	ga Biomedical Int	formatics

1. In the detailed output for a given matrix, you can compare the results obtained with the matrix on the gene set just submitted with the results the matrix had produced on another gene set. The latter could be a "negative"

2. To perform the comparison, you have to fill in the "Compare with..." box fields with mean, standard deviation and sample size values of the other analysis for the current one you can find them in the "Sample Data Statistics" box or in the overall text output that can be downloaded from the main output page. <u>Warning</u>: Make sure that the values you input are correct, and especially that they were obtained by using the same matrix. Once you have clicked the "Go!" button, an output window will pop up and report if either of the two means is significantly higher than the other, together with a confidence p-

	Compare with	(using Welch's t-test) <u>help</u>
0.815468	Mean	0.83 Go!
.0541239	Std Dev	0.07
334	Size	250

49



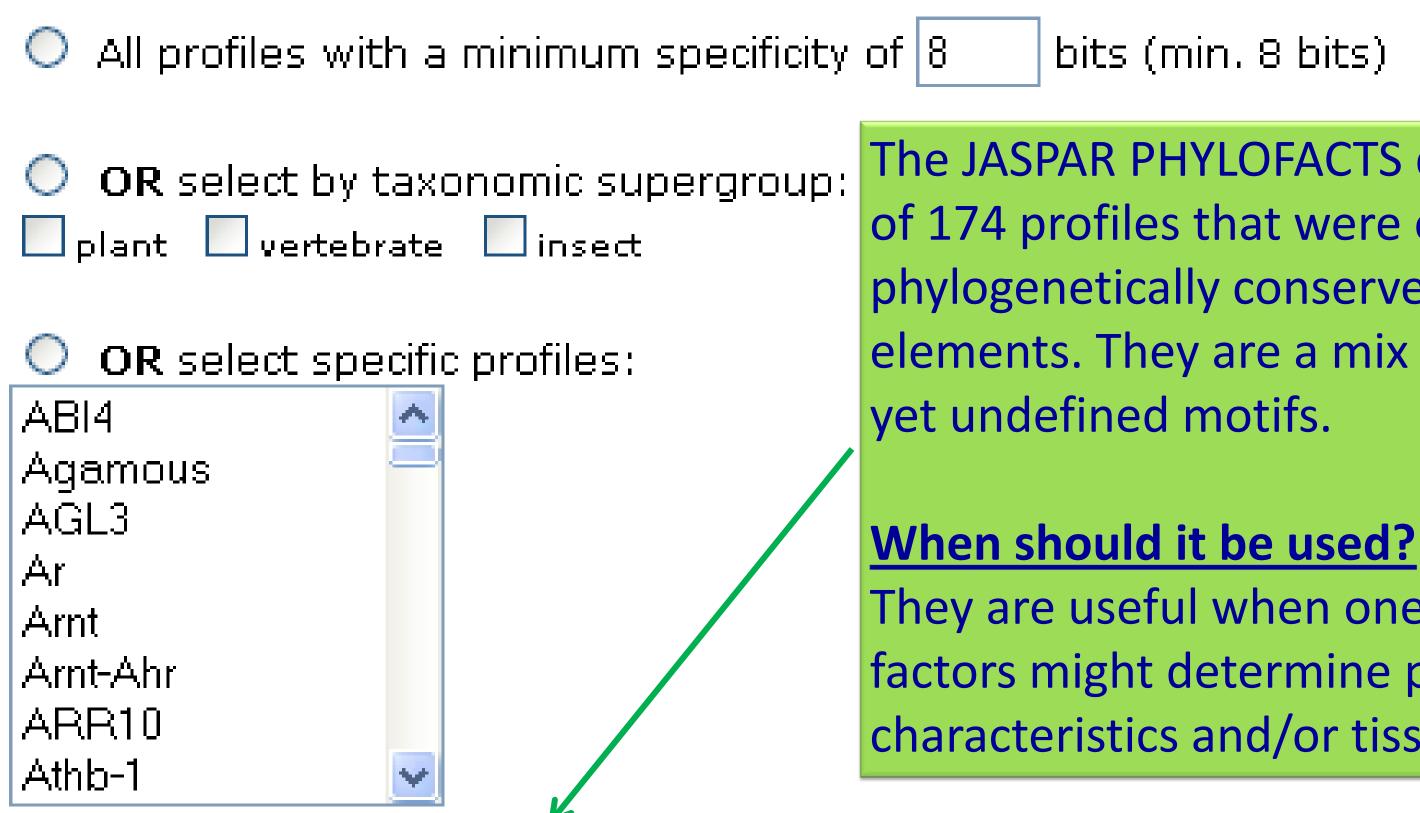
## I have a list of co-expressed mRNAs (Transcriptome).... I want to find the shared cis-elements – Known and Novel Known transcription factor binding sites (TFBS)

- - Conserved
    - oPOSSUM
    - Dire
  - Non-conserved
    - Pscan
    - MatInspector (*Licensed)
- Unknown TFBS or Novel motifs
  - Conserved
    - oPOSSUM
    - Weeder-H

Weeder

- Non-conserved
  - MEME

2/24/2012


**Jegga Biomedical Informatics** 



Select Analysis Parameters								
STEP 1: Enter a list of co-expressed genes								
Species: <pre> • human • mouse •  •  •  •  •  •  •  •  •  •  •  •  •</pre>								
Gene ID type: <ul> <li>Ensembl</li> <li>HUGO/MGI Symbol/Alias</li> <li>RefSeq</li> <li>Entrez Gene</li> </ul> <li>Paste gene IDs: <ul> <li>Use sample genes</li> <li>Clear</li> </ul></li>								
259 5265 350 335 335 1558	~							
O OR upload a file containing a list of gene identifiers: Browse								

### STEP 2: Select transcription factor binding site matrices

### JASPAR CORE Profiles



### JASPAR PhyloFACTS Profiles

All profiles with a minimum specificity of 8 bits (min. 8 bits)

bits (min. 8 bits)

The JASPAR PHYLOFACTS database consists of 174 profiles that were extracted from phylogenetically conserved gene upstream elements. They are a mix of known and as of

They are useful when one expects that other factors might determine promoter characteristics and/or tissue specificity.

### STEP 3: Select parameters

Level of conservation:

Top 10% of conserved regions (min. conservation 70%) 🔽

Matrix match threshold:

<u>Amount of upstream</u> / downstream sequence:

Number of results to display: Top 10 results OR only results with Z-score >= 10 results and Fisher score <= 0.01

OZ-score Sisher score

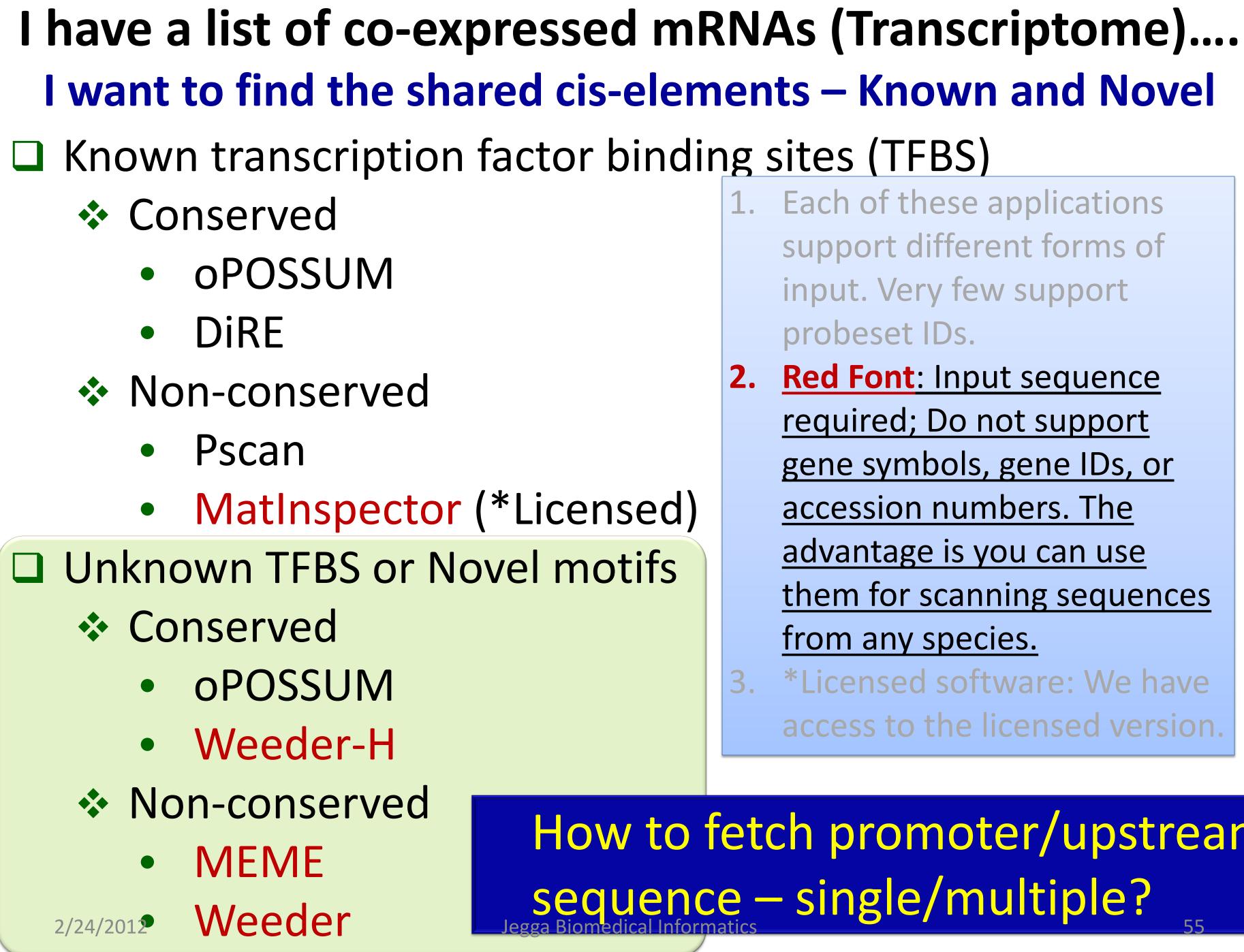
Press the **Submit** button to perform the analysis or **Reset** to reset the analy seconds to a minute or more to perform. Please be patient.

Submit

2000/2000

Reset

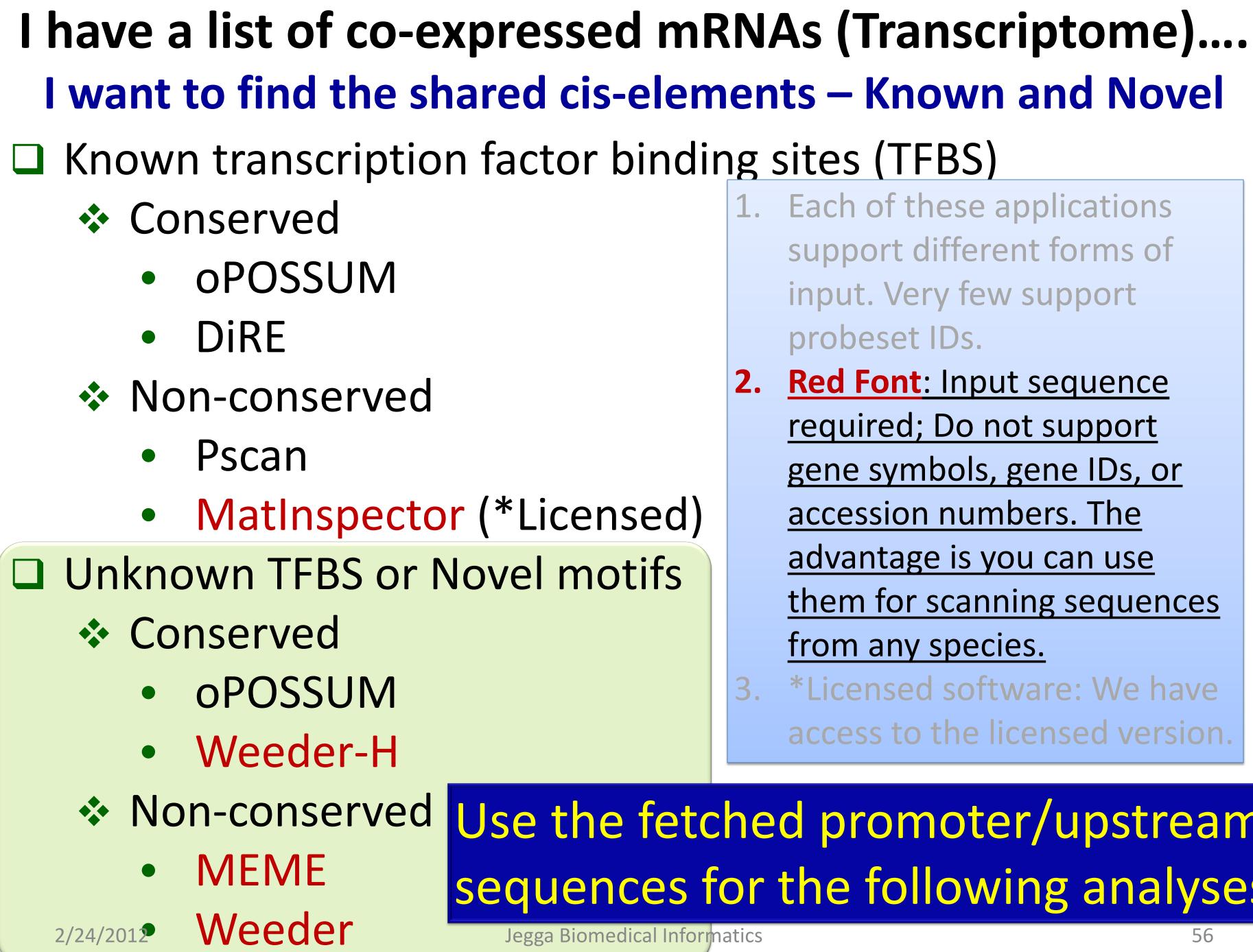
2/24/2012




### oPOSSUM Analysis

TF 🛰	TF Class	TF Supergroup	IC 🛰	Background gene hits	Background gene non-hits	Target gene hits	Target gene non-hits	Background TFBS hits	Background TFBS rate	Target TFBS hits	Target TFBS rate	Z-score 🛰	Fisher score
RYTAAWNNNTGAY	Unknown	mammals	16.655	2636	12514	<u>9</u>	6	3909	0.0041	<u>15</u>	0.0237	27.75	2.676e-04
<u>TAATTA</u>	Unknown	mammals	12.000	7400	7750	<u>13</u>	2	27227	0.0132	<u>31</u>	0.0226	7,458	2.848e-03
<u>TATAAA</u>	Unknown	mammals	12.000	9219	5931	<u>14</u>	1	47951	0.0232	<u>47</u>	0.0342	6.638	6.209e-03
RGTTAMWNATT	Unknown	mammals	17.072	2277	12873	<u>6</u>	9	3189	0.0028	<u>8</u>	0.0107	13.33	1.705e-02
RTAAACA	Unknown	mammals	13.000	7918	7232	<u>12</u>	3	25209	0.0142	<u>29</u>	0.0246	7.953	2.670e-02
YATTNATC	Unknywn	mammals	13.061	6858	8292	<u>11</u>	4	18528	0.0119	<u>19</u>	0.0185	5.394	2.682e-02
<u>CTTTGA</u>	Unknown	mammals	12.000	10591	4559	<u>14</u>	1	54148	0.0262	<u>47</u>	0.0342	4.553	3.478e-02
YCATTAA	Unknown	mammals	13.004	7484	7666	<u>11</u>	4	22958	0.0129	<u>22</u>	0.0187	4.57	5.404e-02
AACWWCAANK	Unknown	mammals	15.858	3060	12090	<u>6</u>	9	4631	0.0037	<u>8</u>	0.0097	8.817	6.381e-02
TGGAAA	Unknown	mommals	12.000	11182	3968	<u>14</u>	1	67892	0.0328	<u>43</u>	0.0313	-0.7882	6.656e-02

### Genes Containing Conserved RYTAAWNNNTGAY Binding Sites:


Gene ID	Ensembl ID	Chr	Strand	TSS	Promoter Start	Promoter End	TFBS Sequence	TFBS Start	TFBS Rel. Start	TFBS End	TFBS Rel. End	TFBS Orientation	TFBS Score
1356	ENSG0000047457	З	-1	150422269	150420270	20424269	ACTAAATTGTGTC	150422362	-93	150422375	-106	-1	8.802
383	ENSG00000118520	6	1	131936059	131934059	131938058	GTACAAGTTTGAC	131937518	1460	131937531	1473	1	6.292
3273	ENSG0000113905	3	1	187866487	187864487	187868486	ACTAATCATTTAC	187866344	-143	187866357	-130	1	8.969
462	ENSG00000117601	1	-1	172146654	172144655	172148654	CTTAATATCTGTC	172144991	1664	172145004	1651	1	6.144
				172153139	172151140	172155139	GTCAAAGGCTGAT	172153165	-26	172153178	-39	1	11.059
1571	ENSG0000130649	10	1	135190857	135188857	135192856	TTCAAAGGCTGAT	135190716	-141	135190729	-128	-1	6.038
5105	ENSG00000124253	20	1	55569543	55567543	55571542	ACTAAACCTTGAC	55569306	-237	55569319	-224	-1	13.603
				55569543	55567543	55571542	GTTAATGAATGCT	55569374	-169	55569387	-156	-1	8.174
				55569543	55567543	55571542	GATAATCATTGAA	55569396	-147	55569409	-134	-1	6.601
325	ENSG0000132703	1	1	157824239	157822239	157825284	ATTAAATACAGAC	157822921	-1318	157822934	-1305	-1	10.324
2168	ENSG0000163586	2	-1	88208693	88206694	88210693	GTTAATGTTTGAA	88208792	-99	88208805	-112	-1	12.880
				88208693	88206694	88210693	CTTTATCATTGAC	88208819	-126	88208832	-139	-1	6.066
				88208693	88206694	88210693	ATTAATGTTTGCT	88208867	-174	88208880	-187	-1	11.146
2244	ENSG0000171564	4	1	155703596	155701596	155705595	GTTAATATTTAAT	155703524	-72	155703537	-59	-1	11.267
				155703596	155701596	155705595	GCTAATGTAAGAT	155703971	376	155703984	389	1	7.064



Each of these applications support different forms of input. Very few support probeset IDs.

- Red Font: Input sequence required; Do not support
- gene symbols, gene IDs, or
- accession numbers. The
- advantage is you can use
- them for scanning sequences
- from any species.
- *Licensed software: We have access to the licensed version.

### How to fetch promoter/upstream Sequence – single/multiple? 55



Each of these applications support different forms of input. Very few support probeset IDs.

Red Font: Input sequence required; Do not support

gene symbols, gene IDs, or

accession numbers. The

advantage is you can use

them for scanning sequences

from any species.

*Licensed software: We have access to the licensed version.

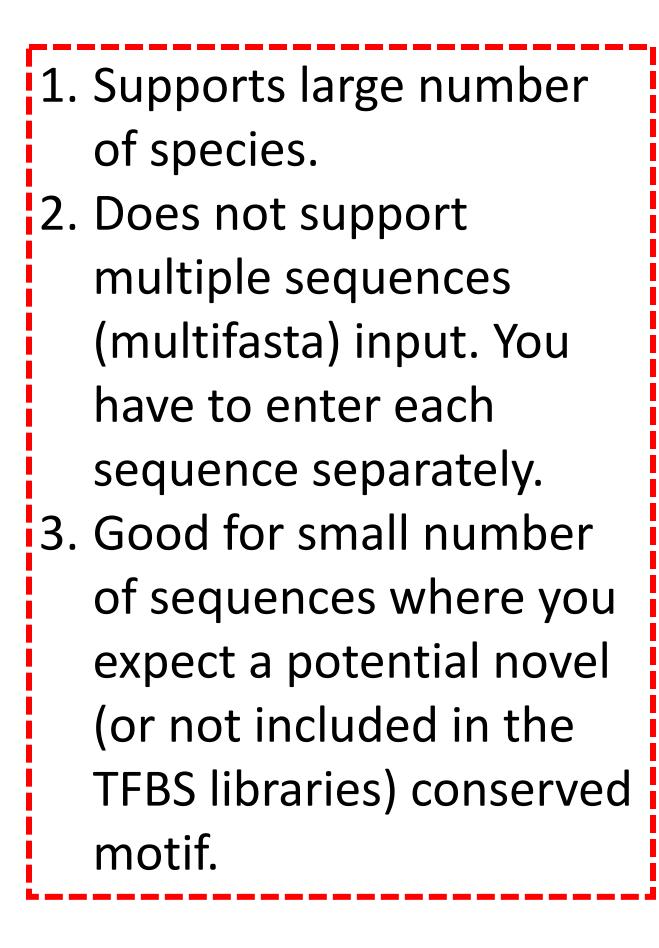
# Use the fetched promoter/upstream sequences for the following analyses

# WeederH (http://159.149.109.9/pscan)

### WeederH

Motif discovery in sequences from **homologous** genes Version **beta** running.

### Click here to switch to Weeder


Please, avoid submitting a large number of jobs (> 5) simultaneously. For large-scale analyses, you're welcome to download the standalone version.

**NEW** If you are looking for over-represented motifs in promoter sequences, perhaps you can also find our brand new tool, Pscan useful.

Enter your **e.mail** address

Input exactly one sequence in each box

(FASTA)       Image: Constraint of this job:         Homologous       from         sequence n. 2       from         Homologous       from         Homologous       Homo sapiens         Sequence n. 3       Homologous         (FASTA)       Homologous         sequence n. 3       Rathus norvegicus         Canis familiaris       Yeast (any)         Drosophila (any)       Caenorhabditis (any)         Caenorhabditis (any)       Anopheles gambiae         Arabidopsis thaliana       Ciona intestinalis         Your sequences are       Upstream         Name of this job:       WeederWeb	<b>Reference</b> sequence (FASTA)			from Homo sapiens 💌
sequence n. 2 (FASTA)       Homo sapiens         Homologous sequence n. 3 (FASTA)       Homo sapiens         add another sequence       remove last sequence         For technical reasons, it's better that you directly paste sequence in the text boxes, rather than uploading a file.       Cona intestinalis Danio rerio         Your sequences are       Upstream         Name of this job:       WeederWeb	sequence n. 1			
Homologous sequence n. 3 (FASTA)Rattus norvegicus Canis familiaris Yeast (any) Drosophila (any) Caenorhabditis (any) Anopheles gambiae Arabidopsis thaliana Ciona intestinalis Danio rerioYour sequences are UpstreamImage: Comparison of this job: WeederWebImage: Comparison of this job: Comparison of this job: Comparison of this job: WeederWebImage: Comparison of this job: Comp	sequence n. 2			Homo sapiens 🔽
add another sequenceremove last sequenceArabidopsis thalianaFor technical reasons, it's better that you directly paste sequence in the text boxes, rather than uploading a file.Ciona intestinalis Danio rerioYour sequences areUpstreamVName of this job:WeederWebXenopus tropicalis P. falciparum	sequence n. 3			Rattus norvegicus Canis familiaris Yeast (any) Drosophila (any) Caenorhabditis (any)
Your sequences are Upstream       Image: Construction of this provided and the text boxes, failler than opporting a file.       Dario rerio         Name of this job: WeederWeb       Image: Construction of the text boxes, failler than opporting a file.       Dario rerio         Fugu rubripes       Gallus gallus       Stenopus tropicalis         P. falciparum       P. falciparum	add another sequenc	e remove last sequence		
Your sequences areUpstreamFugu rubripesName of this job:WeederWebGallus gallus Xenopus tropicalis P. falciparum	For technical reasons, it's be	tter that you directly paste sequence in	the text boxes, rather than uploading a fib	Ciona intestinalis
	Your sequences are Ups	tream 💌		Danio rerio Fugu rubripes Gallus gallus Xenopus tropicalis
	1/2012		Jegga Biomed	



## Weeder (http://159.149.109.9/modtools/)

Home	20012	Weeder Motif discovery in sequences i Version 1.3.1 running.
On-line tools: <u>Weeder &amp; WeederH</u>	Tools for MOtif Discovery in nucleotide sequences	
<u>RNAprofile</u>	G.Pave Motif discovery in sequences from co-regulated genes	Click here to switch to Weede
Additional tools:	Version 1.3.1 running.       Click here to switch to WeederH	Please note: submitting simulta down the server, for your jobs
<u>Motif locator</u> <u>Motif p-value</u> <u>calculator</u>	Please note: submitting simultaneously a large (> 10) number of jobs has the effect of slowing down the server, for your jobs, as well as the jobs submitted by other users. If you plan to use Weeder extensively, you can download the stand-alone version. Client IPs and e-mail addresses generating high workloads on the server (as defined in the previous sentence) might have their jobs terminated before completion without notice.	Weeder extensively, you can d generating high workloads on t jo terminated before comple
Downloads: <u>Weeder 1.3.1</u> <u>RNAprofile 2.2</u>	Enter your e.mail address Input at least two sequences (FASTA) from From From From From From From From F	Enter your <b>e.mail</b> address and Input at least two sequences
	Check here if you want to look for motifs in both strands of the input sequences	Input sequences (FASTA)
		To upload a file, first locate it by using the Check here if you want to look for
Wee		Check here if you want notifs to a Hint : don't try this option even if you're
Thank you	ted 33 sequences from Homo sapiens	Check here if you think that the m one occurrence per sequence)
You submi		
You asked	to process both strands of the input sequences for a normal scan	And, finally, you'd like: O a quick scan (short motifs, no los

Jegga Biomer interference interference and the fields.

from co-regulated genes

### rН

aneously a large (> 10) nu lownload the stand-alone tion without notice.

egga@gmail.com

Do not use Groupwise mail when submitting large number of sequences because the results are sent "in the mail" and not as an attachment. And Groupwise , as well as the jobs subm mail truncates messages if the server (as defined in they are very long. Use Gmail instead. A link to the results page used to be sent earlier.

actaatetgtgteeatgaggeacagageeaaggaagaga ^ gcccagaaggccgcctgtgatcatgcacagtacactgga from  $\mathbf{v}$ Homo sapiens ~ Upload Browse. browse button, then click on Upload. motifs in both strands of the input sequences ppear in all the sequences (default is in some) pretty much sure that all your sequences share a motif.

otif might appear more than once in a single sequence (without, you expect zero or

onger than 8 nts) of	<ul> <li>a normal scan of your sequences</li> </ul>	<ul> <li>a complete and thorough scan</li> </ul>
----------------------	---------------------------------------------------------	------------------------------------------------------

mited to quick analysis. For larger jobs, you can download the source code by following the link

ninutes Normal scan: results will be ready in one-two hours Thorough scan: results will be mal scan first. If nothing interesting comes out, try the thorough one.

### Weeder (http://159.149.109.9/modtools/)

### ******* Your Weeder Web Results *******

The name of this job was Fetal Liver 33 27

Input sequences from H. sapiens

You asked to include both strands of the input sequences You asked for a normal scan of your sequences

Confused about this output? Click here

Searching for motifs of length 6 with 1 mutations.....

1) CAATTA 0.81 TAAACG 0.70 3) ATTGAT 0.67 4) TATGAT 0.63 5) GATTTA 0.61 ATGGTA 0.60 TCATTG 0.59 TGGTAT 0.59 9) TGATTA 0.59 10) TGATAT 0.58

Searching for motifs of length 8 with 2 mutations.....

 CGTTTAGA 0.93 2) ACTAAACG 0.88 3) GATAAACT 0.87 TATGGTAT 0.87 5) CTAAACGT 0.87 6) AGTATTTC 0.84 7) ACATTGAT 0.82 8) GTAATACT 0.80 9) CTAGCAAT 0.79 10) ATACTION 20.78

### ******* Interesting motifs (highest-ranking) seem to be :

$\begin{array}{c} 5 + [\mathbf{AATAAATT}] & 393 (85.29) \\ 5 - [\mathbf{GAGAAAT}] & 260 (85.24) \\ 6 + [\mathbf{TATAAAAT}] & 733 (87.56) \\ 4 & 201 & 6 & 21 & 14 \mid 25 & 0 & 1 & 0 \\ \hline 7 & . & \mathbf{GATAAAAT} & 430 & (94.77) \\ 8 + [\mathbf{AATAAAAT}] & 307 (87.13) \\ 8 + [\mathbf{AATAAAAT}] & 791 (87.13) \\ 6 & 198 & 10 & 13 & 21 \mid 25 & 0 & 0 & 1 \\ \hline 8 - [\mathbf{AATAAAAT}] & 808 (85.19) \\ 8 - [\mathbf{AATAAAAT}] & 808 (85.19) \\ 8 - [\mathbf{AATAAAAT}] & 808 (85.19) \\ 8 - [\mathbf{AATAAAAT}] & 808 (85.24) \\ 8 - [\mathbf{TATAAAAT}] & 13 (87.56) \\ 9 + & \mathbf{GATAAAAT} & 438 (94.77) \\ 10 + & \mathbf{GATAAAAT} & 613 (100.00) \\ 9 + [\mathbf{GAGAAAAT}] & 615 (85.24) \\ 9 - & \mathbf{GATAAAAT} & 438 (94.77) \\ 11 + [\mathbf{GATAAAT} & 118 (85.10) \\ 11 + [\mathbf{GATAAAT} & 1205 (85.77) \\ 12 + & \mathbf{GATAAAT} & 1271 (92.79) \end{array}$	ilts ***	Incorcoting motillo (nigheot lunking) beem to be .
ns       0 redundant motify found:         sequences       Itest cocurrences (match percentage): Seq St oligo pos match 1 + :0AAAAAT1 205 (92.94) 1 + :0ATAAAT1 205 (92.94) 1 + :0ATAAAT1 205 (92.94) 1 - :AATAAAT1 205 (92.94) 1 - :AATAAAT1 205 (92.94) 1 - :AATAAAT1 205 (92.94) 2 - :0ATAAAT1 205 (92.94) 2 - :0ATAAAAT1 205 (92.94) 2 - :0ATAAAT1 205 (92.94)		
sequences       Best courrences (match percentage):         sequences       1 + .0AAAAACT. 205 (92.69) 1 + LOATTAACT. 766 (92.79) 1 + .0ATTAACT. 766 (92.79) 1AATAAACT. 766 (92.79) 1AATAAACT. 766 (92.79) 20ATGAACT. 657 (92.38) 20ATGAACT. 652 (90.33) 20ATGAACT. 652 (90.33) 20ATGAACT. 652 (90.33) 20ATGAACT. 652 (90.33) 30ATGAACT. 652 (90.33) 50ATGAACT. 652 (90.33) 50ATGAACT. 652 (90.33) 50ATGAACT. 652 (90.33) 50ATGAACT. 652 (90.33) 50ATGAACT. 652 (90.33) 60ATGAACT. 652 (90.37) 6 + .0ATGAACT. 653 (91.77) 70ATGAACT. 603 (100.00) 9 + .0ATGAACT. 603 (100.00) 9 + .0ATG		
Sequences          Sequences       Sequences       Sequences       Sequences       Sequences         1 + GAAMAACT, 200 (92.89)       Sequences       Sequences       Sequences         1 - TATAAACT, 786 (92.79)       Sequences       Sequences       Sequences         1 - CATAAACT, 786 (92.79)       Sequences       Sequences       Sequences         1 - CATAAACT, 786 (92.79)       Sequences       Sequences       Sequences         1 - CATAAACT, 950 (92.89)       Sequences       Sequences       Sequences       Sequences         1 - CATAAACT, 950 (92.89)       Sequences       Sequences       Sequences       Sequences       Sequences         1 - CATAAACT, 950 (92.89)       Sequences       Sequences       Sequences       Sequences       Sequences         1 - CATAAACT, 950 (92.89)       Sequences       Sequences       Sequences       Sequences       Sequences         1 - SATAAACT, 950 (92.89)       Sequences       Sequences       Sequences       Sequences       Sequences         1 - SATAAACT, 950 (92.89)       Sequences       Sequences       Sequences       Sequences       Sequences         1 - SATAAACT, 900 (92.71)       Sequences       Sequences       Sequences       Sequences       Sequences         1 - SATAAACT, 900 (92.71)       Seq		0 redundant motifs found:
$ns = \begin{bmatrix} 1 & (IATAAAAT) & 169 & (85.17) \\ 2 + (TAAAAAT) & 508 & (85.63) \\ 2 + (TATAAAT) & 956 & (85.28) \\ 2 - (AATAAAT) & 956 & (85.28) \\ 2 - (AATAAAT) & (552 & (90.33) \\ 1 & (AATAAAT) & 766 & (85.24) \\ 2 - (AATAAAT) & 766 & (85.24) \\ 3 + (IATAAAT) & 260 & (85.24) \\ 3 + (IATAAAAT) & 260 & (85.24) \\ 5 + (IATAAAAT) & 260 & (85.24) \\ 6 + (IATAAAAT) & 260 & (85.24) \\ 7 + (AATAAAT) & 260 & (85.24) \\ 8 + (IATAAAAT) & 260 & (85.19) \\ 8 + (IATAAAAT) & 260 & (85.19) \\ 8 + (IATAAAAT) & 260 & (100.00) \\ 16 + (IATAAAAT) & 260 & (100.00) \\ 16 + (IATAAAAT) & 260 & (100.00) \\ 10 + (IATAAAAT) & 260 & (100.00) \\ 11 + (IATAAAAT) & 260 & (100.00) \\ 12 + (IATAAAAT) & 260 & (100.00) \\ 13 + (IATAAAAT) & 260 & (100.00) \\ 13 + (IATAAAAT) & 260 & (100.00) \\ 13 + (IATAAAAT) & 270 & (100.20) \\ 13 + (IATAAAAT) & 270 & (100.20) \\ 13 + (IATAAAAT) & 270 & (100.20) \\ 14 + (IATAAAT) & 250 & (100.00) \\ 15 + (IATAAAAT) & 250 & (100.00) \\ 14 + (IATAAAT) & 250 & (100.00) \\ 15 + (IATAAAAT) & 270 & (100.20) \\ 15 + (IATAAAT) & 270 & (100.20) \\ 16 + (IATAAAT) & 270 & (1$	sequences	<pre>Seq St oligo pos match 1 + .GAAAAACT. 205 (92.84) 1 + [AATAAATT] 676 (85.29) 1 + [GATTAACT] 922 (88.60) 1TATAAACT. 786 (92.79)</pre>
$ns = \begin{cases} 2 + [TATAAATT] 944 (85.73) \\ 2 - [GATGAAGT] 576 (85.29) \\ 2 - [GATGAAGT] 576 (85.29) \\ 2 - [GATGAAGT] 576 (85.29) \\ 2 - [GATAAATT] 576 (85.29) \\ 2 - [GATAAATT] 576 (85.29) \\ 2 - [GATAAATT] 576 (85.29) \\ 3 - [GATGAAGT] 776 (85.29) \\ 4 + [GACGAAAAT] 776 (85.29) \\ 5 - [GAGAAAAT] 776 (85.29) \\ 5 - [GAGAAAAT] 776 (85.29) \\ 5 - [GAGAAAAT] 775 (95.29) \\ 5 - [GAGAAAAT] 771 (90, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1$		
$IIS IIS = \begin{bmatrix} 2 - [CAAAACT] 956 (85.28) \\ 2 - [AATAAATT] 76 (85.28) \\ 4 - [CATCAACT. 652 (90.33) \\ 4 + [CACTAAACT] 546 (87.13) \\ 4 + [CACTAAACT] 766 (85.29) \\ 5 + [CAACAAATT] 766 (85.29) \\ 5 + [CAACAAATT] 766 (85.29) \\ 5 + [CAACAAATT] 798 (85.29) \\ 6 + [TATAAAATT] 733 (97.56) \\ 4 + [CACTAAAAT, 1733 (97.56) \\ 4 + [CACTAAAAT, 1733 (97.56) \\ 4 + [CAACAAAT] 791 (87.13) \\ 8 + [CAATAAAAT] 791 (87.13) \\ 8 + [CAATAAAAT] 791 (87.13) \\ 8 - [CAAAAATT] 791 (87.13) \\ 8 - [CAAAAATT] 791 (87.13) \\ 8 - [CAAAAATT] 791 (87.13) \\ 8 - [CATAAAATT] 791 (87.56) \\ 8 - [CATAAAATT] 791 (87.56) \\ 9 + [CACTAAAATT] 791 (87.56) \\ 9 + [CACTAAAATT] 791 (85.29) \\ 8 - [CATAAAATT] 791 (85.29) \\ 10 - (CATAAAATT] 791 (85.29) \\ 11 + [CACTAAAATT] 795 (95.29) \\ 12 + [CATAAAATT] 791 (85.29) \\ 12 + [CATAAAATT] 791 (85.29) \\ 12 + [CATAAAATT] 797 (85.29) \\ 13 + CATAAACT, 896 (91.77) \\ 12 + [CATAAAATT] 797 (85.29) \\ 13 + CATAAACT, 896 (91.77) \\ 12 + [CATAAACT] 797 (85.29) \\ 13 - [CATAAACT] 822 (85.39) \\ 14 - [CATAAACT] 822 (85.39) \\ 15 - [CATAAACT] 823 (92.30) \\ 15 - [CATAAACT] 823 (92.30) \\ 15 - [CATAAACT] 823 (92.30) \\ 15 - [CATAAACT] 814 (95.29) \\ 15 - [CATAAACT] 814 (85.29) \\ 15 - [CATAACCT] 823 (86.39) \\ 15 - [CATAACCT] 816 (92.17) \\ 16 + [CATAAACT] 814 (85.29) \\ 16 - [CATAACCT] 813 (80.40) \\ 16 + [CATAAACT] 814 (85.29) \\ 16 - [CATAACCT] 813 (80.40) \\ 16 + [CATAACT] 814 (85.29) \\ 16 - [CATAACCT] 813 (80.40) \\ 16 + [CATAACT] 814 (85.29) \\ 16 - [CATAACCT] 813 (80.40) \\ 16 + [CATAACT] 814 (85.29) \\ 16 + [CATAACT] 814 (85.29$		2 + [TAAAAACT] 508 (85.63) Frequency Matrix
$ns ns. = \begin{bmatrix} 2 & - & [AATAAAT] & 776 & (85.29) \\ 2 & - & (ATCAACT) & 652 & (90.38) \\ 4 & + & [AATAAAT] & 546 & (87.13) \\ 4 & + & [AATAAAT] & 546 & (87.13) \\ 4 & + & [AATAAAT] & 546 & (87.13) \\ 4 & + & [AATAAAT] & 393 & (55.29) \\ 5 & - & [(ACAAAAT] & 200 & (55.24) \\ 5 & - & [(ACAAAAT] & 200 & (55.24) \\ 6 & + & [TATAAAT] & 393 & (55.29) \\ 8 & - & [(ACAAAAT] & 430 & (94.77) \\ 8 & + & [(AATAAAT] & 731 & (77.56) \\ 4 & 201 & 6 & 21 & 14 & 25 & 0 & 1 \\ 8 & - & [(AATAAAT] & 731 & (77.56) \\ 4 & 201 & 6 & 21 & 14 & 25 & 0 & 1 \\ 8 & - & [(AATAAAT] & 731 & (77.56) \\ 8 & - & [(AATAAAT] & 731 & (77.13) \\ 8 & - & [(AATAAAT] & 731 & (77.13) \\ 8 & - & [(AATAAAT] & 731 & (77.13) \\ 8 & - & [(AATAAAT] & 731 & (77.13) \\ 8 & - & [(AATAAAT] & 731 & (77.13) \\ 8 & - & [(AATAAAT] & 188 & (55.19) \\ 9 & - & (AATAAAT] & 138 & (77.13) \\ 18 & - & [(AATAAAT] & 138 & (94.77) \\ 11 & + & [(CATAAAT] & 138 & (94.77) \\ 11 & + & [(CATAAAT] & 138 & (94.77) \\ 11 & + & [(CATAAAT] & 148 & (95.29) \\ 12 & - & (ATAAAT] & 148 & (95.29) \\ 12 & - & (ATAAAT] & 148 & (92.92) \\ 12 & + & (ATAAAT] & 148 & (92.92) \\ 12 & + & (ATAAAT] & 148 & (92.92) \\ 12 & + & (ATAAAT] & 148 & (92.92) \\ 13 & - & (ATAAAT] & 148 & (92.92) \\ 14 & - & (ATAAAT] & 148 & (92.92) \\ 14 & - & (ATAAAT] & 148 & (92.92) \\ 14 & - & (ATAAAT] & 148 & (92.92) \\ 14 & - & (ATAAAT] & 148 & (92.92) \\ 14 & - & (ATAAAT] & 148 & (92.92) \\ 14 & - & (ATAAAT] & 148 & (92.92) \\ 14 & - & (ATAAAT] & 148 & (92.92) \\ 14 & - & (ATAAAT] & 148 & (92.92) \\ 15 & - & (ATAAAT] & 148 & (92.92) \\ 14 & - & (ATAAAT] & 148 & (92.92) \\ 15 & - & (ATAAAT] & 148 & (92.92) \\ 16 & - & (ATAAAT] & 168 & (94.71) \\ 16 & + & (ATAAAT] & 168 & (94.71) \\ 16 & + & (ATAAAT] & 168 & (94.71) \\ 16 & + & (ATAAAT] & 168 & (94.71) \\ 16 & + & (ATAAAT] & 168 & (94.71) \\ 16 & + & (ATAAAT] & 168 & (94.71) \\ 16 & + & (ATAAAT] & 168 & (94.71) \\ 16 & + & (ATAAAT] & 168 & (94.71) \\ 16 & + & (ATAAAT] & 168 & (94.71) \\ 16 & + & (ATAAAT] & 168 & (94.71) \\ 16 & + & (ATAAAT] & 168 & (94.71) \\ 16 & + & (ATAAAT] & 168 & (94.71) \\ 16 & + & (ATAAAT] & 168 & ($		
$ns = \begin{bmatrix} 2 & - & (ATGAAAT) & 652 & (90.33) \\ 4 & + & (AATAAAT) & 766 & (55.24) \\ 5 & + & (AATAAT) & 793 & (85.29) \\ 5 & - & (GAGAAAT) & 260 & (85.24) \\ 6 & + & (TATAAAT) & 733 & (87.56) \\ 6 & + & (TATAAAT) & 733 & (87.56) \\ 7 & - & (ATAAAT) & 733 & (87.56) \\ 8 & + & (AATAAAT) & 733 & (87.56) \\ 4 & 201 & 6 & 21 & 14 & 25 & 0 & 1 & 0 \\ 7 & - & (ATAAAAT) & 307 & (87.13) \\ 8 & + & (AATAAAAT) & 307 & (87.13) \\ 8 & + & (AATAAAAT) & 307 & (87.13) \\ 8 & - & (AATAAAAT) & 914 & (87.13) \\ 8 & - & (AATAAAT) & 918 & (87.13) \\ 8 & - & (AATAAAT) & 188 & (85.19) \\ 8 & - & (ATAAAT) & 186 & (85.29) \\ 8 & - & (TATAAAT) & 1285 & (85.24) \\ 8 & - & (TATAAAT) & 1285 & (85.24) \\ 8 & - & (TATAAAT) & 128 & (87.56) \\ 9 & - & (ATAAAAT) & 458 & (94.77) \\ 10 & + & (OATAAAAT) & 458 & (94.77) \\ 10 & + & (OATAAAAT) & 458 & (94.77) \\ 11 & + & (OATAAAAT) & 458 & (94.77) \\ 12 & + & (OATAAAAT) & 138 & (94.77) \\ 12 & + & (OATAAAAT) & 138 & (94.77) \\ 12 & + & (OATAAAT) & 138 & (94.77) \\ 12 & + & (OATAAAAT) & 205 & (85.77) \\ 12 & + & (OATAAAAT) & 205 & (85.77) \\ 12 & + & (OATAAAT) & 128 & (92.79) \\ 12 & + & (OATAAAT) & 128 & (92.79) \\ 12 & + & (OATAAAT) & 228 & (94.71) \\ 12 & + & (OATAAAT) & 228 & (94.71) \\ 12 & + & (OATAAAT) & 228 & (94.71) \\ 12 & + & (OATAAAT) & 148 & (85.29) \\ 13 & - & (OATAAAT) & 148 & (85.29) \\ 14 & + & (OATAAAT) & 148 & (85.19) \\ 14 & + & (OATAAAT) & 148 & (85.19) \\ 14 & + & (OATAAAT) & 147 & (85.29) \\ 13 & - & (OATAACT) & 529 & (92.36) \\ 14 & - & (OATAACT) & 549 & (92.36) \\ 14 & + & (OATAACT) & 549 & (92.36) \\ 14 & + & (OATAACT) & 549 & (92.36) \\ 14 & + & (OATAACT) & 549 & (92.36) \\ 14 & + & (OATAACT) & 549 & (92.36) \\ 14 & + & (OATAACT) & 549 & (92.36) \\ 14 & + & (OATAACT) & 549 & (92.36) \\ 14 & + & (OATAACT) & 549 & (92.36) \\ 14 & + & (OATAACT) & 549 & (92.36) \\ 14 & + & (OATAACT) & 549 & (92.36) \\ 14 & + & (OATAACT) & 549 & (92.36) \\ 14 & + & (OATAACT) & 549 & (92.36) \\ 14 & + & (OATAACT) & 549 & (92.36) \\ 14 & + & (OATAACT) & 549 & (92.36) \\ 14 & + & (OATAACT) & 549 & (92.36) \\ 14 & + & (OATAACT) & 549 & (92.36) \\ 14 &$		
$n_{3} \\ \begin{array}{l} 4 + \begin{bmatrix} CACAAAAT \\ T & F \\ AATAAATT \\ 3 & F \\ T & ATAAATT \\ 2 & C & F \\ F & T & T & T & T & T & T & T & T & T &$		2GATGAACT. 652 (90.33)
ns $s + [AATAAATT] seg (ss.29) = 2 to t t t 19 to t t 0 t 0 t 0 t 0 t 0 t 0 t 0 t 0 t$		
ns for a constant is const	ns	5 + [AATAAATT] 393 (85.29)
ns for the second state is a second state		5 - [GAGAAAAT] 260 (85.24) 3 33 14 19 176   1 0 0 25
ns $s + [AATAAAAT] 307 (87.13) = 208 = 6 = 9 = 19 = 26 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =$		
$II3 III3  \begin{array}{l} \textbf{s} + \textbf{[AATAAAAT]} \textbf{791} (\textbf{g7.13}) & \textbf{6} & \textbf{198} & \textbf{10} & \textbf{13} & \textbf{21} & \textbf{25} & \textbf{0} & \textbf{0} & \textbf{1} \\ \textbf{s} - \textbf{[AATAAAT]} & \textbf{808} (\textbf{85.19}) & \textbf{7} & \textbf{43} & \textbf{146} & \textbf{25} & \textbf{28} & \textbf{7} & \textbf{16} & \textbf{2} & \textbf{1} \\ \textbf{s} - \textbf{[TATAAACT]} & \textbf{285} (\textbf{85.24}) & \textbf{8} & \textbf{22} & \textbf{17} & \textbf{5} & \textbf{198} & \textbf{1} & \textbf{0} & \textbf{0} & \textbf{25} \\ \textbf{s} - \textbf{[TATAAACT]} & \textbf{285} (\textbf{85.24}) & \textbf{8} & \textbf{22} & \textbf{17} & \textbf{5} & \textbf{198} & \textbf{1} & \textbf{0} & \textbf{0} & \textbf{25} \\ \textbf{s} - \textbf{[TATAAACT]} & \textbf{603} (100.00) \\ \textbf{9} + \textbf{[GATAAACT} & \textbf{603} (100.00) \\ \textbf{9} + \textbf{[GATAAACT} & \textbf{603} (100.00) \\ \textbf{10} + \textbf{[GATAAACT} & \textbf{603} (100.00) \\ \textbf{10} + \textbf{[GATAAACT} & \textbf{603} (100.00) \\ \textbf{10} + \textbf{[GATAAACT} & \textbf{603} (100.00) \\ \textbf{11} + \textbf{[GATAAACT} & \textbf{603} (100.00) \\ \textbf{11} + \textbf{[GATAAACT} & \textbf{615} (\textbf{85.24}) \\ \textbf{10} - \textbf{.GATAAACT} & \textbf{438} (\textbf{94.77}) \\ \textbf{12} + \textbf{.GATAAACT} & \textbf{143} (\textbf{92.79}) \\ \textbf{12} + \textbf{.GATAAACT} & \textbf{138} (\textbf{92.79}) \\ \textbf{12} + \textbf{.GATAAACT} & \textbf{271} (\textbf{92.79}) \\ \textbf{12} + \textbf{.GATAAACT} & \textbf{596} (\textbf{94.77}) \\ \textbf{12} - \textbf{[GATAAACT} & \textbf{596} (\textbf{94.77}) \\ \textbf{12} - \textbf{[GATAAACT} & \textbf{596} (\textbf{94.77}) \\ \textbf{13} - \textbf{[GATAAACT} & \textbf{596} (\textbf{94.77}) \\ \textbf{14} + \textbf{.AATAAACT} & \textbf{596} (\textbf{94.77}) \\ \textbf{14} + \textbf{.AATAAACT} & \textbf{596} (\textbf{94.77}) \\ \textbf{14} + \textbf{.GATAAACT} & \textbf{596} (\textbf{94.77}) \\ \textbf{16} + \textbf{[GATAAACT] & \textbf{577} (\textbf{88.34}) \\ \textbf{14} + \textbf{IGATAAACT} & \textbf{576} (\textbf{92.36}) \\ \textbf{14} + \textbf{IGATAAACT} & \textbf{576} (\textbf{92.36}) \\ \textbf{14} + \textbf{IGATAAACT} & \textbf{577} (\textbf{92.36}) \\ \textbf{16} + \textbf{IGATAAACT} & \textbf{977} (\textbf{92.36}) \\ \textbf{16} + \textbf{IGATAAACT} & \textbf{976} (\textbf{92.36}) \\ $		
$IIS \begin{cases} s = [AATAAATT] 484 (85.29) \\ s = [TATAAACT] 265 (85.24) \\ s = [TATAAAATT] 265 (85.24) \\ s = (TATAAAAT] 13 (87.56) \\ 9 + .CATAAACT. 603 (100.00) \\ 9 + [CACAAAAT] 615 (85.24) \\ 9 = .CATAAAAT. 438 (94.77) \\ 10 + .CATAAAAT. 603 (100.00) \\ 10 + [CACAAAT] 615 (85.24) \\ 10CATAAAAT. 88 (94.77) \\ 11 + [CATAAATT] 126 (85.10) \\ 11 + [CATAAATT] 126 (85.10) \\ 11 + [CATAAATT] 126 (85.77) \\ 12 + .CATAAAATT 143 (92.93) \\ 12 + .TATAAACT. 271 (92.79) \\ 12 + .CATAAAATT] 266 (87.13) \\ 12 + .CATAAAATT 236 (87.13) \\ 12 + .CATAAAATT 236 (87.13) \\ 12 + .CATAAACT. 523 (90.60) \\ 12 + .CATAAACT. 529 (92.36) \\ 13 - [CATAAACT] 632 (88.34) \\ 13 - [CATAAACT] 632 (88.34) \\ 14 + .AATAAACT 632 (82.36) \\ 14 - [CATAAACT] 822 (88.34) \\ 14 + .CATAAACT 134 (85.29) \\ 16 + .CATAAACT 136 (89.17) \\ 16 + [CATAAACT 336 (90.40) \\ 18 - [CATAAACT 937 (82.36) \\ 16CATAAACT 937 (82.36) \\ 16CATAACT 937 (82.36) \\ 16CATAACT 933 (90.40) \\ 18 - [CTTAAACT 937 (82.36) \\ 10CATAATCT 933 (90.40) \\ 18 - [CTTAAACT 937 (82.36) \\ 10CATAATCT 933 (90.40) \\ 18 - [CTTAAACT 933 (90.40) \\ 18 - [CTTAACT 933 $		
$ns \qquad \begin{array}{lllllllllllllllllllllllllllllllllll$		
$ns = \begin{bmatrix} s - [TATAAAAT] 13 (87.56) \\ s + .GATAAAAT. 603 (100.00) \\ s + [GACAAAT] 615 (85.24) \\ sGATAAAAT. 438 (94.77) \\ 10 + .GATAAAAT. 615 (85.24) \\ 10GATAAAAT. 438 (94.77) \\ 11 + [GATGAAAT] 148 (85.10) \\ 11 + [GATGAAAT] 1205 (85.77) \\ 12 + .GATAAAAT. 123 (92.93) \\ 12 + .TATAAACT. 271 (92.79) \\ 12 + .GATAAAAT. 286 (87.13) \\ 12 + .GATAAAAT. 286 (94.77) \\ 12 + .GATAAAAT. 896 (94.77) \\ 12 + .GATAAAAT. 896 (94.77) \\ 12 + .GATAAAAT. 549 (92.36) \\ 13 + .AATAAACT. 549 (92.36) \\ 13 - [GATAACT. 549 (92.36) \\ 13 - [GATAACT. 549 (92.36) \\ 14 + .GATAAACT. 549 (92.36) \\ 14 - [GATAACCT] 82 (88.34) \\ 14 + .AATAAACT. 549 (92.36) \\ 16 + .GATAAACT. 316 (94.77) \\ 16 + [GACAAACT] 316 (89.17) \\ 16 + .GATAAACT. 967 (92.36) \\ 16AATAAACT. 943 (90.40) \\ 18 - [GTAAACT. 943 (90.40) \\ 18 - [GTAA$		
$IS \begin{cases} 9 + [OAGAAAAT] 615 (85.24) \\ 9GATAAAAT. 438 (94.77) \\ 10 + .GATAAAAT. 603 (100.00) \\ 10 + [GAGAAAAT] 615 (85.24) \\ 10GATAAAAT. 438 (94.77) \\ 11 + [GAAAAAT] 148 (85.10) \\ 11 + [GATAAAAT. 1205 (85.77) \\ 12 + .GATAAAAT. 271 (92.93) \\ 12 + .TATAAACT. 271 (92.79) \\ 12 + .GATAAAAT. 286 (87.13) \\ 12 + .GATAAAAT. 286 (87.13) \\ 12 + .GATAAAAT. 896 (94.77) \\ 12 - [AATAAAAT. 896 (94.77) \\ 12 - [AATAAAAT. 896 (94.77) \\ 12 - [AATAAAAT. 896 (94.77) \\ 13 + .AATAAACT. 549 (92.36) \\ 13 - [GATAACCT] 832 (88.34) \\ 13 - [GATAACCT] 832 (88.34) \\ 14 + .AATAAACT. 549 (92.36) \\ 14 + [GATAACCT] 812 (88.34) \\ 16 + .GATAAACT. 577 (88.34) \\ 16 + .GATAAACT. 316 (89.17) \\ 16 + [AATAAATT] 814 (85.29) \\ 16AATAAACT. 967 (92.36) \\ 16GATAAACT. 967 (92.36) \\ 16GATAACT. 967 (92.36) \\ 16GATAACC$		
$ns = \begin{cases} 9GATAAAAT. 438 (94.77) \\ 10 + .GATAAAAT. 603 (100.00) \\ 10 + [GACAAAAT] 615 (85.24) \\ 10GATAAAAT. 438 (94.77) \\ 11 + [GATCAAAT] 148 (85.10) \\ 11 + [GATCAAAT] 148 (85.10) \\ 11 + [GATAAAAT] 205 (85.77) \\ 12 + .GATAAAAT. 143 (92.93) \\ 12 + .TATAAAAT. 271 (92.79) \\ 12 + [AATAAAAT] 286 (97.13) \\ 12 + .GATAAAAT. 896 (94.77) \\ 12 - [AATAAAAT. 896 (94.77) \\ 12 - [AATAAAAT. 896 (94.77) \\ 12 - [AATAAAAT. 896 (94.77) \\ 13 - [GATAACCT. 819 (92.36) \\ 13 - [GATAACCT] 832 (86.34) \\ 13 - [GATAACCT] 832 (86.34) \\ 13 - [GATAACCT] 812 (86.34) \\ 14 + .AATAAACT. 549 (92.36) \\ 14 - [GATAACCT] 812 (86.34) \\ 14 + .GATAAACT 161 (94.77) \\ 16 + [GATAACCT] 816 (89.17) \\ 16 + [GATAACCT] 816 (89.17) \\ 16 + [GATAACCT] 816 (89.17) \\ 16 + [GATAAACT 1814 (85.29) \\ 16AATAAACT 867 (92.36) \\ 16GATAAACT 867 (92.36) \\ 16GATAACT 867 (92.36) \\ 16GATAAACT 867 (92.36) \\ 16GATAACT 867 (92.36) \\ 16GATAAACT 867 (92.36) \\ 16GATAACT 867 (9$		
$ns = \begin{bmatrix} 10 + .GATAAACT. 603 (100.00) \\ 10 + [GAGAAAAT] 615 (85.24) \\ 10GATAAAAT] 148 (94.77) \\ 11 + [GATGAAAT] 148 (85.10) \\ 11 + [GAAAAATT] 205 (85.77) \\ 12 + .GATAAACT. 271 (92.93) \\ 12 + .GATAAACT. 271 (92.93) \\ 12 + .GATAAAAT] 286 (87.13) \\ 12 + .GATAAAAT. 896 (94.77) \\ 12 - [AATAAAAT. 896 (94.77) \\ 12 - [AATAAAAT. 896 (94.77) \\ 12 - [AATAAAAT. 519 (92.36) \\ 13 - [GATAACCT] 832 (88.34) \\ 13 - [GATAACCT] 832 (88.34) \\ 14 + .AATAAACT. 549 (92.36) \\ 14 + .GATAAACT 549 (92.36) \\ 14 - [GATAACCT] 577 (88.34) \\ 14 - [GATAACCT] 577 (88.34) \\ 16 + .GATAAAAT. 161 (94.77) \\ 16 + [AATAAATT] 316 (85.29) \\ 16AATAAACT. 967 (92.36) \\ 16GATAACT. 967 (92.36) \\ 16GATAACT. 97 (89.47) \\ 16 + [CATAAACT. 967 (92.36) \\ 16GATAACT. 943 (90.40) \\ 18 - [CTTAAACT. 943 (90.40) \\ 18 - [CTTAACT. 943 (90.40) \\ 18 - [CTTA$		
10      GATAAAAT. 438 (94.77)         11 + [GATGAAAT] 148 (85.10)         11 + [GATAAAT] 205 (85.77)         12 + .GATAAAT. 143 (92.93)         12 + .TATAAACT. 271 (92.79)         12 + .GATAAAAT] 286 (87.13)         12 + .GATAAAAT. 896 (94.77)         12 + .GATAAAAT. 896 (94.77)         12GATAAACA. 523 (90.60)         12 + .GATAAAAT. 896 (94.77)         12GATAAACT. 549 (92.36)         13 - [GATAACCT] 832 (88.34)         14GATAAACT. 549 (92.36)         14GATAAACT. 549 (92.36)         14GATAAACT. 577 (88.34)         16 + .GATAAAAT. 161 (94.77)         16 + .GATAAAAT. 161 (94.77)         16 + .GATAAAAT. 161 (94.77)         16 + .GATAAAAT. 967 (92.36)         16AATAAACT. 967 (92.36)         16GATAAACT. 91 (92.36)         16GATAACCT. 91 (92.36)         16GATAACCT. 91 (92.36) <td></td> <td></td>		
11 + [GATGAAAT] 148 (85.10)         11 + [GAAAAATT] 205 (85.77)         12 + .GATAAATT. 143 (92.93)         12 + .TATAAACT. 271 (92.79)         12 + .GATAAAAT] 206 (87.13)         12 + .GATAAAAT. 271 (92.79)         12 + .GATAAAAT. 396 (94.77)         12GATAAAAT. 896 (94.77)         12GATAAACT. 549 (92.36)         13 - [GATAAGCT] 832 (88.34)         13 - [GATAAGCT] 577 (88.34)         14GATAAACT. 549 (92.36)         14 - [GATAAGCT] 832 (88.34)         14 - [GATAAACT. 549 (92.36)         14 - [GATAAACT. 549 (92.36)         14 - [GATAAACT. 549 (92.36)         16 + .GATAAACT. 316 (89.17)         16 + [AATAAATT] 814 (85.29)         16AATAAACT. 967 (92.36)         16GATAAACT. 943 (90.40)         18 - [CTTAAACT. 943 (90.40)         18 - [CTTAAACT. 943 (90.40)         18 - [CTTAAACT. 943 (90.40)		
11 + [GAAAAATT] 205 (85.77)         12 + .GATAAATT. 143 (92.93)         12 + .TATAAACT. 271 (92.79)         12 + [AATAAAAT] 286 (87.13)         12 + .GATAAACA. 523 (90.60)         12 + .GATAAAAT. 896 (94.77)         12 - [AATAAATT] 347 (85.29)         13 + .AATAAACT. 549 (92.36)         13 - [GATAAGCT] 832 (88.34)         13 - [GATAAGCT] 577 (88.34)         14 + .GATAAACT. 549 (92.36)         14 + .GATAAACT. 549 (92.36)         14 + .GATAAACT] 577 (88.34)         14 - [GATAAGCT] 577 (88.34)         16 + .GATAAACT] 316 (89.17)         16 + [AATAAAT] 814 (85.29)         16AATAAACT. 967 (92.36)         16GATAAACT] 316 (89.17)         16 = .GATAAACT 967 (92.36)         16 = .GATAAACT 963 (90.40)         18 = [GTTAAACT 943 (90.40)		
12 + .TATAAACT. 271 (92.79) $12 + [AATAAAAT] 286 (87.13)$ $12 + .GATAAACA. 523 (90.60)$ $12 + .GATAAAAT. 896 (94.77)$ $12 - [AATAAACT. 549 (92.36)$ $13 + .AATAAACT. 549 (92.36)$ $13 - [GATAAGCT] 832 (88.34)$ $13 - [GATAAGCT] 577 (88.34)$ $14 + .AATAAACT. 549 (92.36)$ $14 - [GATAAGCT] 832 (88.34)$ $14 - [GATAAGCT] 577 (88.34)$ $16 + .GATAAAAT. 161 (94.77)$ $16 + [GACAAACT] 316 (89.17)$ $16 + [AATAAACT. 943 (90.40)$ $18 - [GTTAAACT] 637 (89.17)$		
<pre>12 + [AATAAAAT] 286 (87.13) 12 + .GATAAACA. 523 (90.60) 12 + .GATAAAAT. 896 (94.77) 12 - [AATAAATT] 347 (85.29) 13 + .AATAAACT. 549 (92.36) 13 - [GATAACCT] 832 (88.34) 13 - [GATAACCT] 577 (88.34) 14 + .AATAAACT. 549 (92.36) 14 - [GATAACCT] 832 (88.34) 14 - [GATAACCT] 577 (88.34) 16 + .GATAAAAT. 161 (94.77) 16 + [GACAAACT] 316 (89.17) 16 + [GATAAACT. 943 (90.40) 18 - [GATAACCT] 637 (89.17)</pre>		
12 + .GATAAACA. 523 (90.60) 12 + .GATAAAAT. 896 (94.77) 12 - [AATAAATT] 347 (85.29) 13 + .AATAAACT. 549 (92.36) 13 - [GATAAGCT] 832 (88.34) 13 - [GATAAGCT] 577 (88.34) 14 + .AATAAACT. 549 (92.36) 14 - [GATAAGCT] 832 (88.34) 14 - [GATAAGCT] 577 (88.34) 16 + .GATAAAAT. 161 (94.77) 16 + [GACAAACT] 316 (89.17) 16 + [AATAAATT] 814 (85.29) 16AATAAACT. 943 (90.40) 18 - [GTTAAACT] 637 (89.17)	ns	
12 - [AATAAATT] 347 (85.29) $13 + .AATAAACT. 549 (92.36)$ $13 - [GATAAGCT] 832 (88.34)$ $13 - [GATAAGCT] 577 (88.34)$ $14 + .AATAAACT. 549 (92.36)$ $14 - [GATAAGCT] 832 (88.34)$ $14 - [GATAAGCT] 577 (88.34)$ $16 + .GATAAAAT. 161 (94.77)$ $16 + [GACAAACT] 316 (89.17)$ $16 + [AATAAAAT] 814 (85.29)$ $16AATAAACT. 967 (92.36)$ $16GATAATCT. 943 (90.40)$ $18 - [GTTAAACT] 637 (89.17)$		
13 + .AATAAACT. 549 (92.36) $13 - [GATAAGCT] 832 (88.34)$ $13 - [GATAAGCT] 577 (88.34)$ $14 + .AATAAACT. 549 (92.36)$ $14 - [GATAAGCT] 832 (88.34)$ $14 - [GATAAGCT] 577 (88.34)$ $16 + .GATAAAAT. 161 (94.77)$ $16 + [GACAAACT] 316 (89.17)$ $16 + [AATAAATT] 814 (85.29)$ $16AATAAACT. 967 (92.36)$ $16GATAATCT. 943 (90.40)$ $18 - [GTTAAACT] 637 (89.17)$		
13 - [GATAAGCT] 832 (88.34) 13 - [GATAAGCT] 577 (88.34) 14 + .AATAAACT. 549 (92.36) 14 - [GATAAGCT] 832 (88.34) 14 - [GATAAGCT] 577 (88.34) 16 + .GATAAAAT. 161 (94.77) 16 + [GACAAACT] 316 (89.17) 16 + [AATAAATT] 814 (85.29) 16AATAAACT. 967 (92.36) 16GATAATCT. 943 (90.40) 18 - [GTTAAACT] 637 (89.17)		
14 + .AATAAACT. 549 (92.36) 14 - [GATAAGCT] 832 (88.34) 14 - [GATAAGCT] 577 (88.34) 16 + .GATAAAAT. 161 (94.77) 16 + [GACAAACT] 316 (89.17) 16 + [AATAAATT] 814 (85.29) 16AATAAACT. 967 (92.36) 16GATAATCT. 943 (90.40) 18 - [GTTAAACT] 637 (89.17)		
14 - [GATAAGCT] 832 (88.34) 14 - [GATAAGCT] 577 (88.34) 16 + .GATAAAAT. 161 (94.77) 16 + [GACAAACT] 316 (89.17) 16 + [AATAAATT] 814 (85.29) 16AATAAACT. 967 (92.36) 16GATAATCT. 943 (90.40) 18 - [GTTAAACT] 637 (89.17)		
14 - [GATAAGCT] 577 (88.34) 16 + .GATAAAAT. 161 (94.77) 16 + [GACAAACT] 316 (89.17) 16 + [AATAAATT] 814 (85.29) 16AATAAACT. 967 (92.36) 16GATAATCT. 943 (90.40) 18 - [GTTAAACT] 637 (89.17)		
16 + [GACAAACT] 316 (89.17) 16 + [AATAAATT] 814 (85.29) 16AATAAACT. 967 (92.36) 16GATAATCT. 943 (90.40) 18 - [GTTAAACT] 637 (89.17)		
16 + [AATAAATT] 814 (85.29) 16AATAAACT. 967 (92.36) 16GATAATCT. 943 (90.40) 18 - [GTTAAACT] 637 (89.17)		
16AATAAACT. 967 (92.36) 16GATAATCT. 943 (90.40) 18 - [GTTAAACT] 637 (89.17)		
18 - [GTTAAACT] 637 (89.17)		
Jegga Biomedica Information 555 (94.77) 537 (89.17)		
	Jegga Biomed	icalinformaticat. 555 (94.77) 59

# **MEME (http://meme.sdsc.edu)**

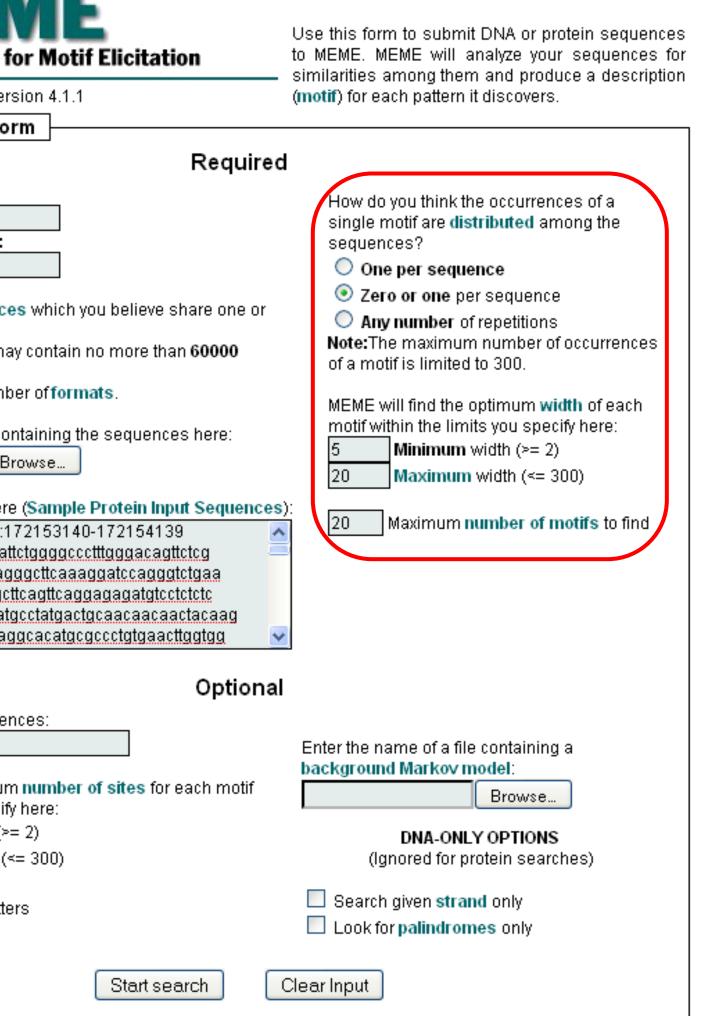
MEME takes as input a group of DNA or protein sequences and outputs as many motifs as requested. MEME uses statistical modeling techniques to automatically choose the best width, number of occurrences, and description for each motif.

Your MEME results consist of:

- your MEME results in HTML format
- your MEME results in XML format
- your MEME results in TEXT format
- and the MAST results of searching your input sequences for the motifs found by MEME using MAST.

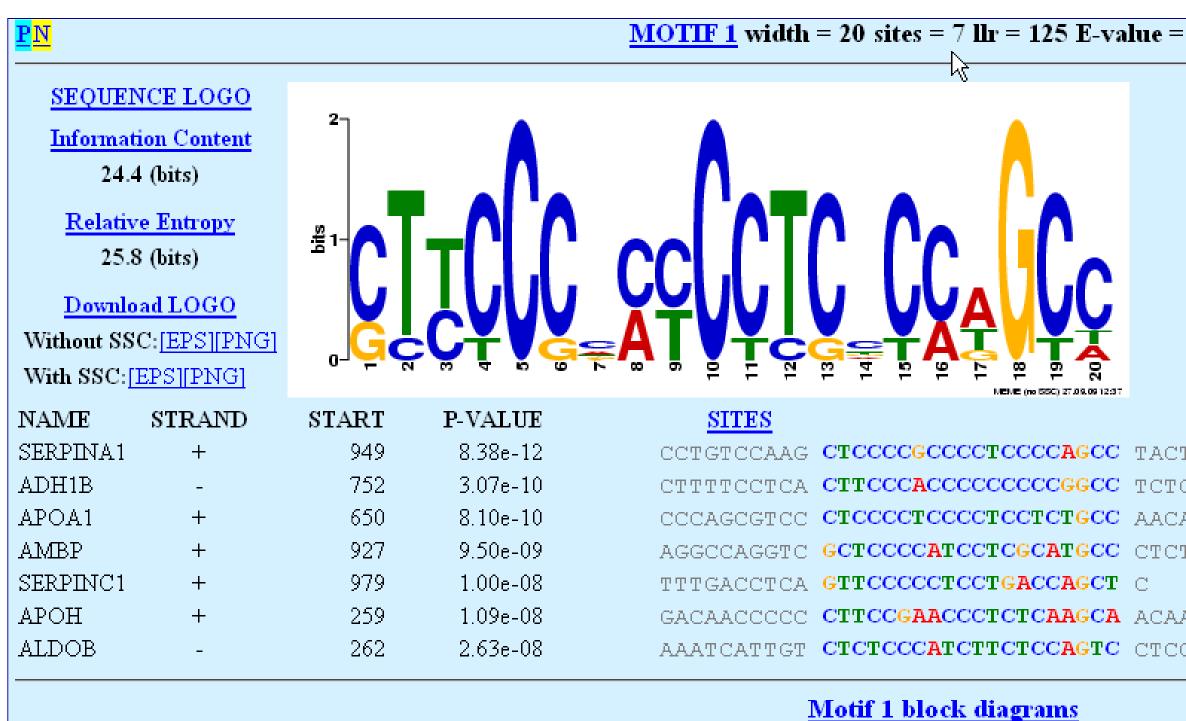
### Your job id is: app1254080196482

You can view your job results at: http://meme.nbcr.net/meme4_1_1/cgi-bin/querystatus.cgi?jobid=app1254080196482&service=MEME You can view server activity here.


2

- Sequence file: pasted sequences
- Distribution of motif occurrences: Zero or one per sequence
- Number of different motifs: 20
- Minimum motif width: 5
- Maximum motif width: 20
- Statistics on your dataset:

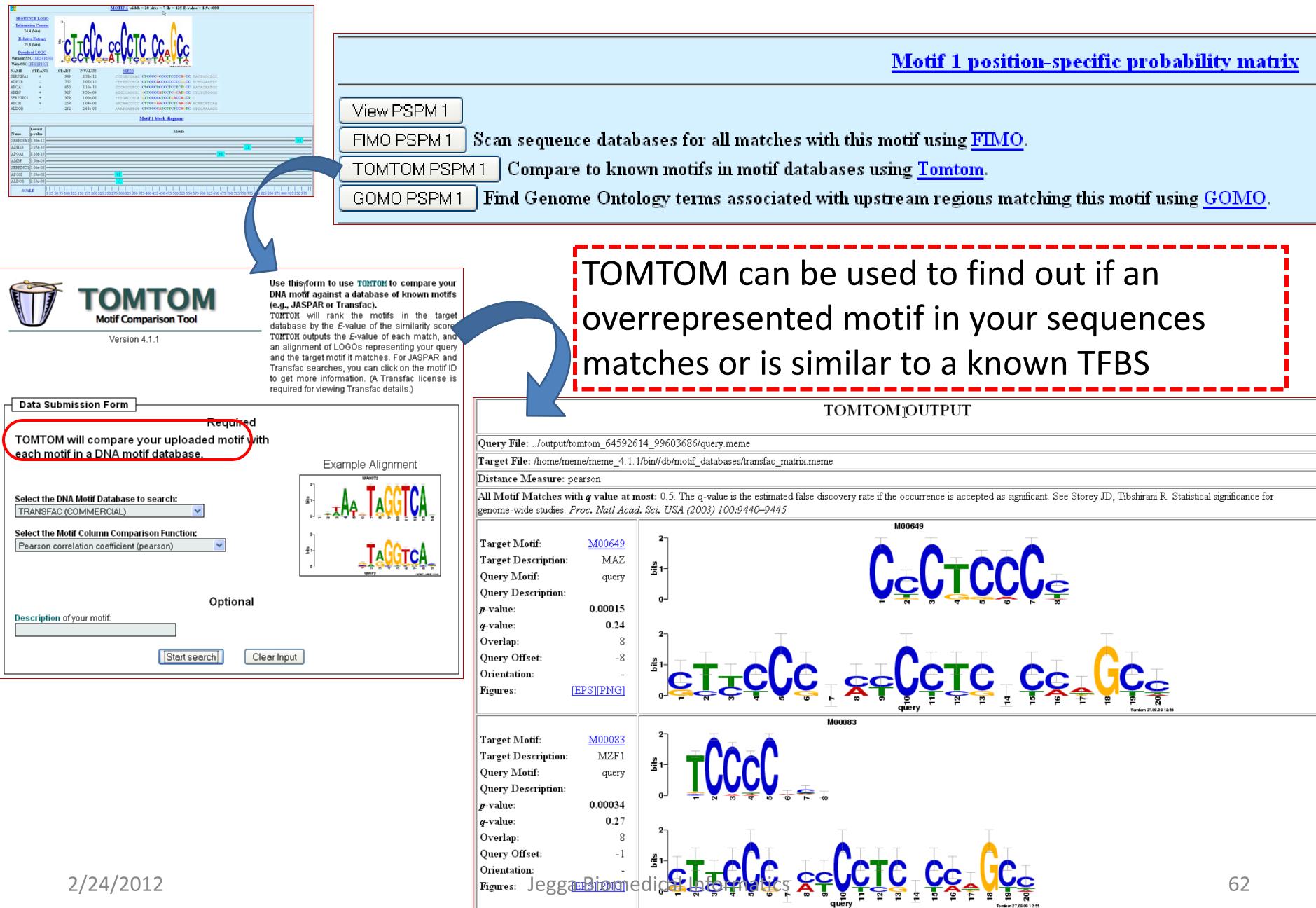
type of sequence	dna
number of sequences	20
shortest sequence (residues)	1000
longest sequence (residues)	1000
average sequence length (residues)	1000.0
total dataset/size (residues)	20000




(	
	Multiple Em f
	Ver
Г	Data Submission Fo
	Your e-mail address:
	anil.jegga@cchmc.org
	Re-enter e-mail address:
	anil.jegga@cchmc.org
	Please enter the sequence
	more
	motifs. The sequences ma
	characters total in any of a large numb
	totar in any or a large nume
	Enter the name of a file co
	В
	or
	the actual sequences here >SERPINC1 range=chr1:1
	ggtgacagatgagcctctgggcat
	gctactgttcacactgcacatggac
	tcagccaagaacttagacacagc
	atgaacgaagagctctcgaaaat gagtccttgatcacacagcaggag
	gagiceligaicacadagagagag
	Description of your operation
	Description of your sequer
	MEME will find the optimum
	within the limits you specify
	Minimum sites (>
	Maximum sites («
	🔲 Shuffle sequence lette



h


### MEME (http://meme.sdsc.edu)



### Lowest Motifs Name p-value SERPINA1 8.38e-12 3.07e-10 ADH1B APOA1 8.10e-10 AMBP 9.50e-09 SERPINC1 1.00e-08 1.09e-08 APOH +1ALDOB 2.63e-08 SCALE 2/24/2012 1 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 50 575 6

	MEME Job app1254080196482	
	<ul> <li>/home/install/usr/apps/meme_4.1.1/bin/meme sequences -sf past</li> </ul>	
1.9e+000	Results	
	<u>MEME output as HTML</u> <u>MEME output as plain text</u>	
	<ul> <li><u>MEME output as XML</u></li> <li><u>XSLT Stylsheet for converting MEME XML to HTML</u>.</li> </ul>	
	<u>MAST output as HTML</u> <u>input sequences</u>	
	Messages	
	Processing Messages	
	• Error Messages	
GCCICC		
GGAATTC		
GIGGGG		
ACATCAG		
	<mark>+1</mark>	
	1	
	75 700 725 750 775 800 825 850 875 900 925 850 975	

## **MEME (http://meme.sdsc.edu)**



# Summary Cis-Element Finding Matrix

	CONSERVED
<b>KNOWN TFBS</b>	oPOSSUM
	DIRE
<b>NOVEL/UNKNOWN</b>	oPOSSUM
TFBS OR MOTIFS	WEEDER-H

Jegga Biomedical Informatics

### NON-CONSERVED Pscan MatInspector* MEME WEEDER

## **RESOURCES - URLs: Summary**

### **Application/Resource**

oPOSSUM	http://burgundy.cmr
DIRE	http://dire.dcode.org
Weeder-H	http://159.149.109.9
Weeder	http://159.149.109.9
Pscan	http://159.149.109.9
MEME	http://meme.sdsc.e
MatInspector	http://www.genoma
Genome Browser	http://genome.ucsc
ECR Browser	http://ecrbrowser.do

### Additional exercise available at: http://anil.cchmc.org/grn.html

Jegga Biomedical Informatics

### URL

### mt.ubc.ca/oPOSSUM/

- g/ 9/modtools/
- 9/modtools/
- 9/pscan
- du/
- atix.de/
- c.edu
- code.org