Cincinnati Children's Network Medicine: Systems biology based approach to human disease

Anil Jegga Division of Biomedical Informatics Cincinnati Children's Hospital & Medical Center Departments of Pediatrics & Computer Sciences University of Cincinnati, USA http://anil.cchmc.org


Acknowledgements Cheng Zhu Minlu Zhang Chao Wu Divya Sardana Jagadeesh Patchala Jing Chen Eric Bardes Bruce Aronow

Cincinnati Children's®

2

About Cincinnati Children's

- Cincinnati Children's, a nonprofit academic medical center established in 1883, is one of the oldest and most distinguished pediatric hospitals in the United States.
- With nearly 600 registered beds, Cincinnati Children's had more than 1.1 million patient encounters and served patients from all 50 states in the USA and 53 countries in fiscal 2013.

- Foundation
- pediatric institutions.

CHRF - Children's Hospital Research

Sabin oral **polio vaccine** to the development of surfactant to the latest in genomics and molecular medicine, Cincinnati Children's has a rich history of research achievement. >million square feet of lab space and core services such as transgenic mouse models, high-throughput DNA analysis, biomedical informatics, a pluripotent stem cell facility, viral vector development and much more. **Research funding** has increased more than 400 percent from \$49 million in 2000 to more than \$200 million in FY 2014. - Rank No. 2 in research grants from the NIH to

Outline

- Brief Overview
- Rare/Orphan Disease Networks
 - Gene-based networks
 - Functional linkage networks
 - Literature-based networks

Characteristics of orphan disease causing mutant genes Candidate gene discovery and prioritization Functional enrichment-based approaches

- Model organism phenotype
- Drug repositioning
 - Gene- and pathway- based networks
 - Phenotype-based networks

Facts & Figures 1. Orphan Diseases (OD) or Rare diseases (RD) are life-threatening or chronically debilitating diseases with a low prevalence and a high level of complexity.

- 2. A disease is termed as orphan or rare if there is a prevalence of <200,000 (or 1 in 1500) in the US each year (US Rare Disease Act of 2002).
- ~7000 distinct, known RDs or ODs.
 About 30 million (~1 in 10; cumulative prevalence) people in the US and about 350 million people globally suffer from a rare disease.

- 5. Most of the rare diseases are genetic diseases, the others being rare cancers, auto-immune diseases, congenital malformations, toxic and infectious diseases.
- 6. More than 50% of rare diseases affect children (NIH) and about 30% of rare disease patients die before the age of five (Orphanet)
- 7. A disease may be considered rare in one part of the world, or in a particular group of people, but still be common in another (e.g., tuberculosis, malaria).

Orphan Disease - Genes 1. Exact cause for many ODs remains unknown. 2. For a significant number of ODs, the problem can be traced to single gene mutations (genetic diseases). Many of these are inheritable. 3. Environmental factors also known to play a role. 4. A significant number are infectious or parasitic diseases - Some major progress in genomics recently. E.g., malaria, schistosomiasis, leishmaniasis, trypanosomiasis (also classified as neglected diseases). 5. About 2900 of the known ~7000 human ODs have at least one known gene (orphan disease causing mutant gene - ODMG) mutation associated with them. 10

Rare Diseases - India

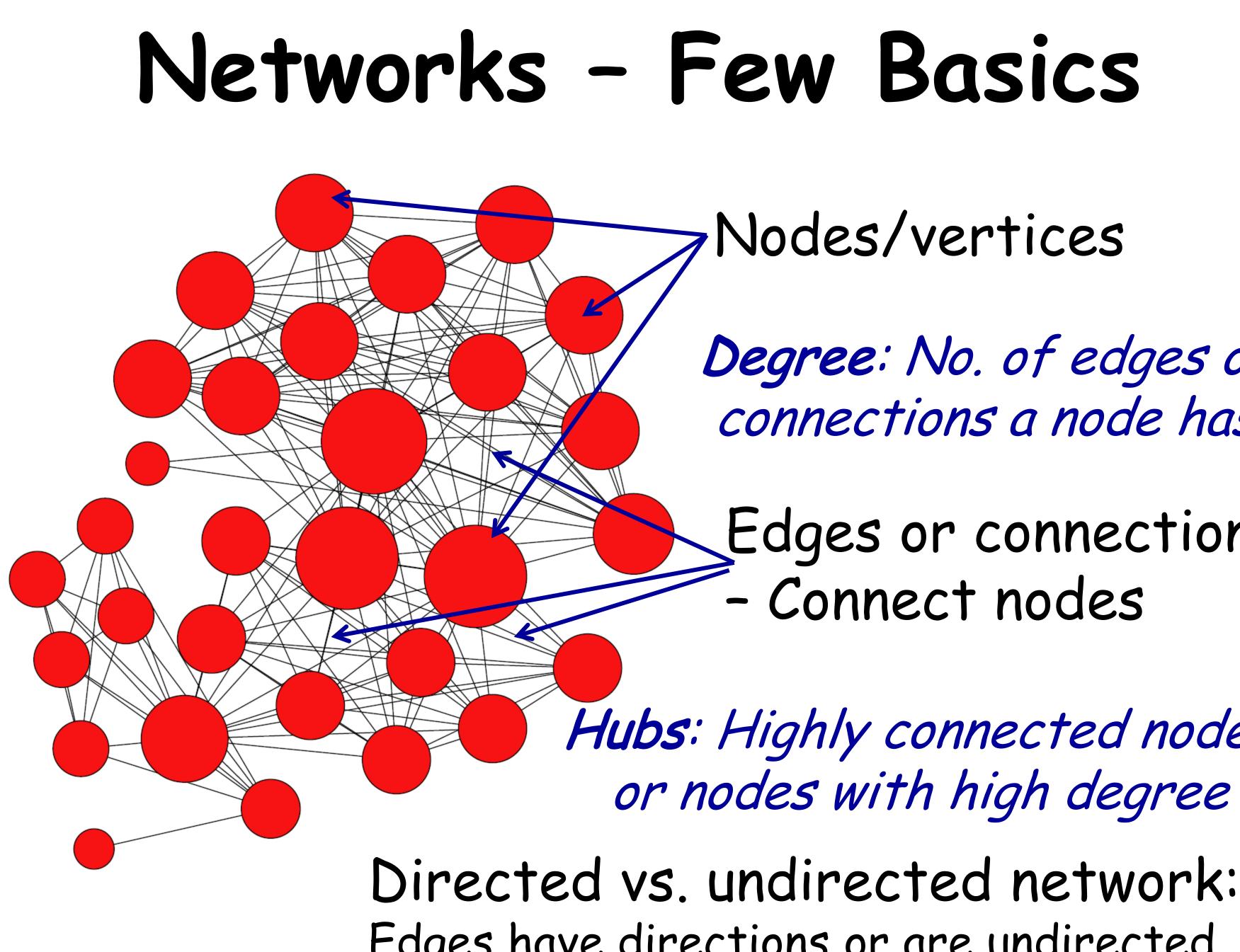
Countries in South Asia	Rare Diseases and Disorders Population ¹⁻⁸
Afghanistan	1,530,006
Bangladesh	9,151,081
Bhutan	44,099
India	72,611,605
Maldives	19,037
Nepal	1,589,670
Pakistan	10,999,800
Sri Lanka	1,216,656

- Rare Disease: fewer than 100 patients per 100,000 population
- Ultra rare disease: fewer than 2 patients per 100,000

http://www.rarediseasesindia.org

LIUIU
States
(India)
Andhra Pradesh
Arunachal Prade
Assam
Bihar
Chhattisgarh
Goa
Gujarat
Haryana
Himachal Prade
Jammu and Kasl
Jharkhand
Karnataka
Kerala
Madhya Prades
Maharashtra
Manipur
Meghalaya
Mizoram
Nagaland
Orissa
Punjab
Rajasthan
Sikkim
Tamil Nadu
Tripura
Uttar Pradesh
Uttarakhand
West Bengal

(2011)


	Rare Diseases and Disorders Population ⁴		
(AP & TS)	5,079,932		
esh	82,957		
	1,870,156		
	6,228,278		
	1,532,412		
	87,463		
	3,623,018		
	1,521,185		
sh	411,391		
hmir	752,936		
	1,977,974		
	3,667,842		
	2,003,261		
h	4,355,854		
	6,742,378		
	163,305		
	177,840		
	65,461		
	118,836		
	2,516,841		
	1,662,254		
	4,117,261		
	36,461		
	4,328,337		
	220,262		
	11,974,891		
	607,005		
	5,480,864		

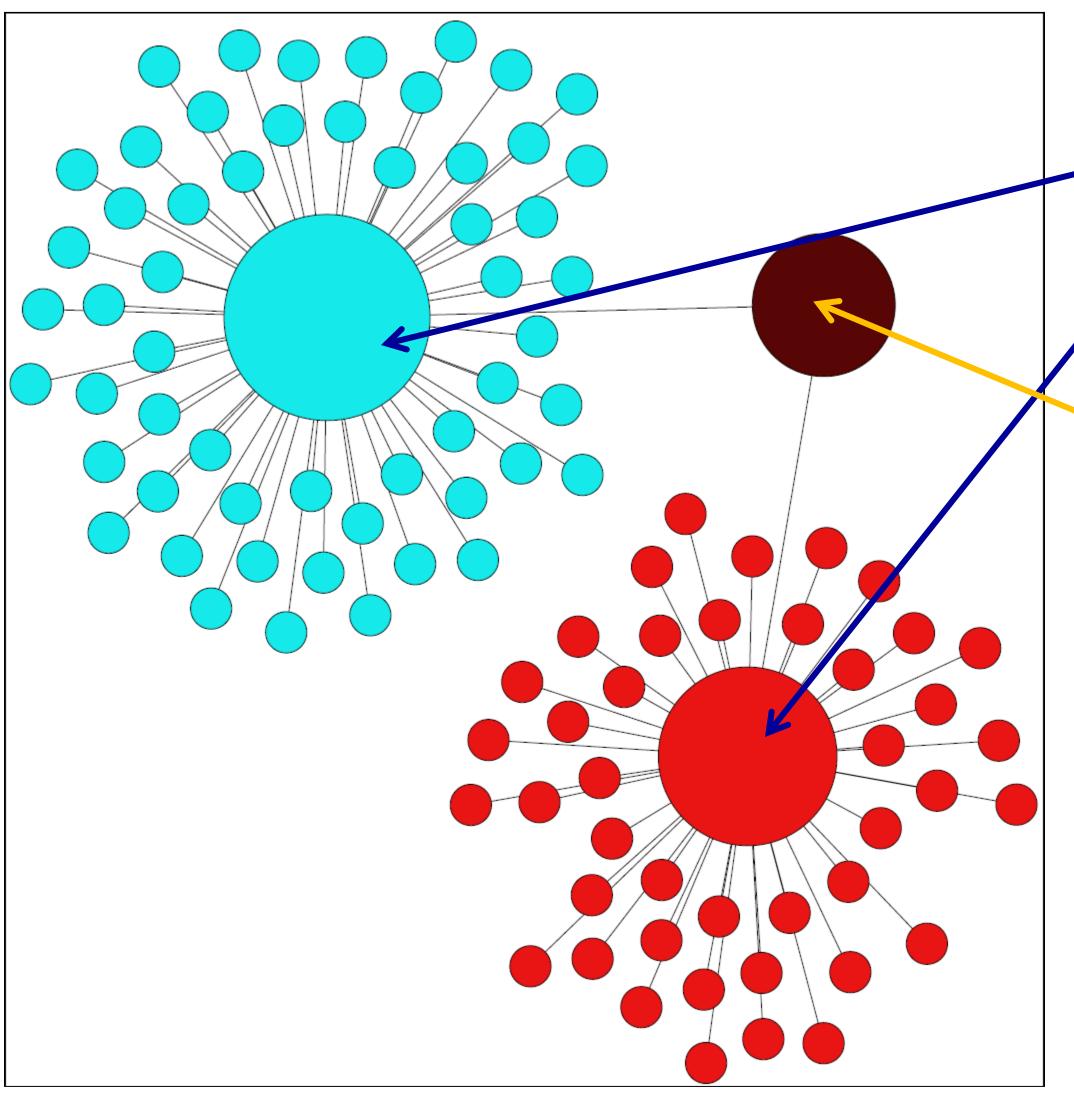
Orphan Disease Networks

Motivation

- Relatively few efforts have addressed scientific or technical questions <u>across a spectrum of orphan</u> diseases.
- Finding <u>common</u> genes, pathways, and targets is critical if we have to make progress in orphan disease research.
- Studies of biological networks can identify common pathways or processes for multiple orphan diseases that are related.
 - Understanding such molecular basis could provide opportunities for interventions that are beneficial for an array of related orphan diseases.
 - Drug repositioning or repurposing
 - Common drug for orphan disease
 - Orphan drug for another orphan disease
 - Orphan drug for common disease

How are ODs and ODMGs different from more common diseases and non-ODMGs (or those causing common diseases)?

Nodes/vertices

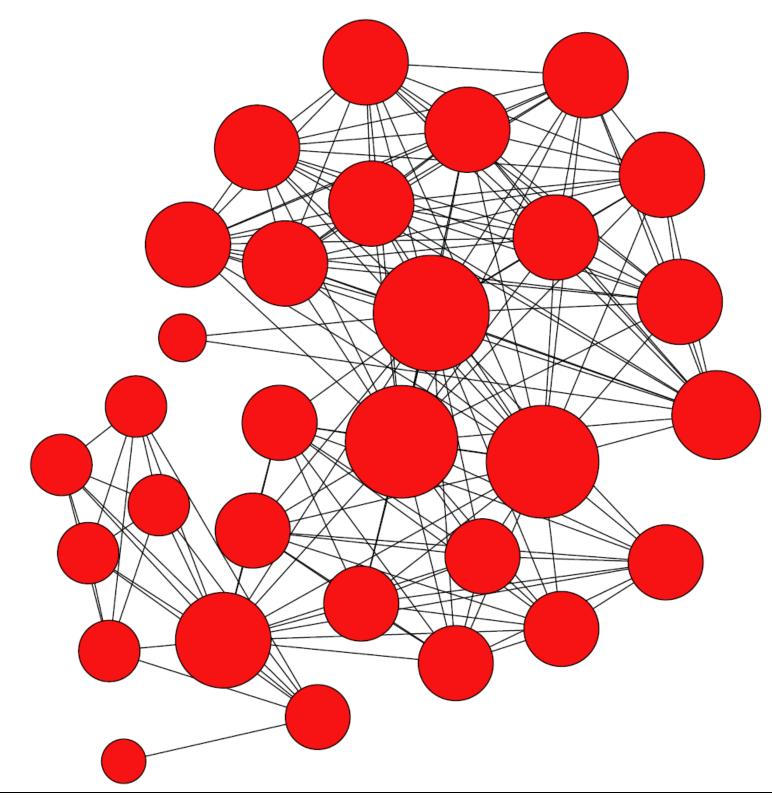

Degree: No. of edges or connections a node has

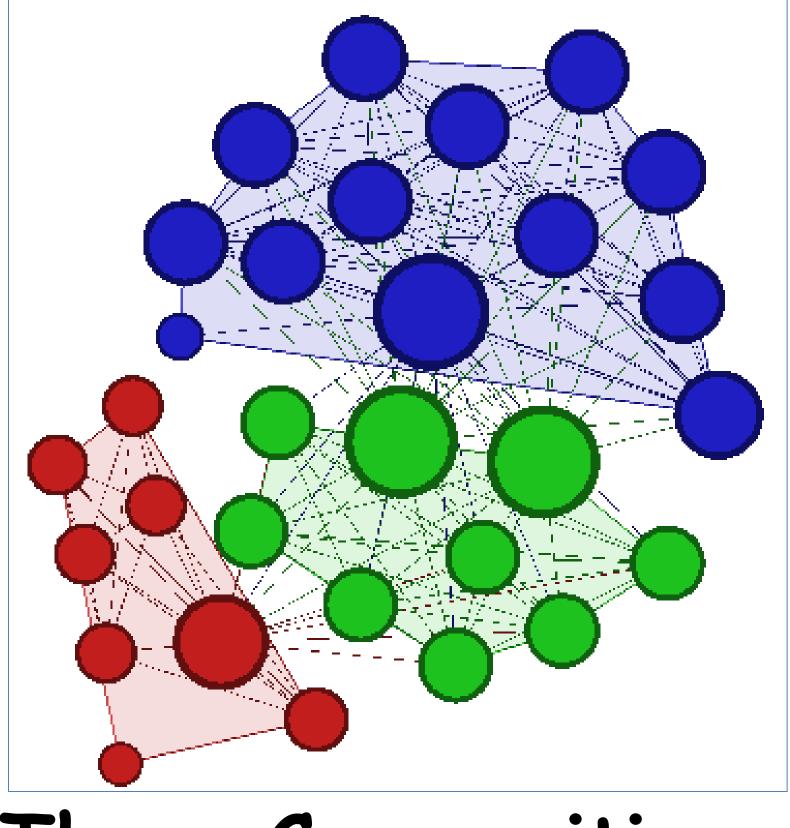
Edges or connections - Connect nodes

Hubs: Highly connected nodes or nodes with high degree

Edges have directions or are undirected

Networks - Few Basics

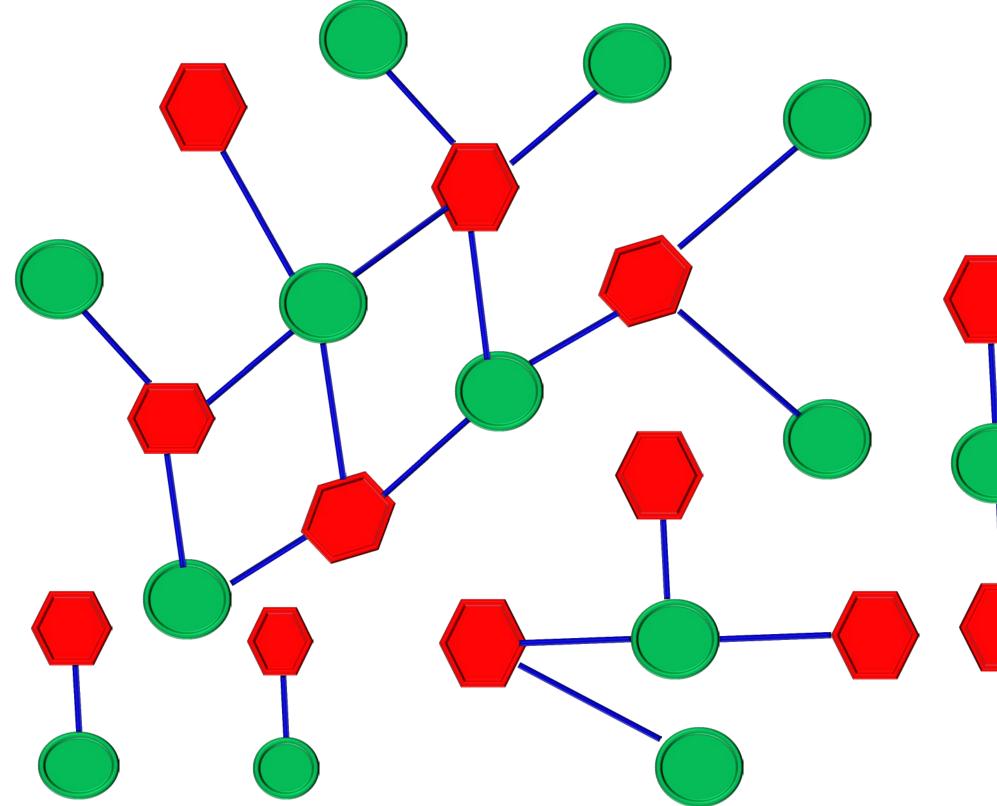



Jubs

Super-Hubs <u>or</u> bottlenecks

Networks - Few Basics

Sub-network or connected component or loosely connected network

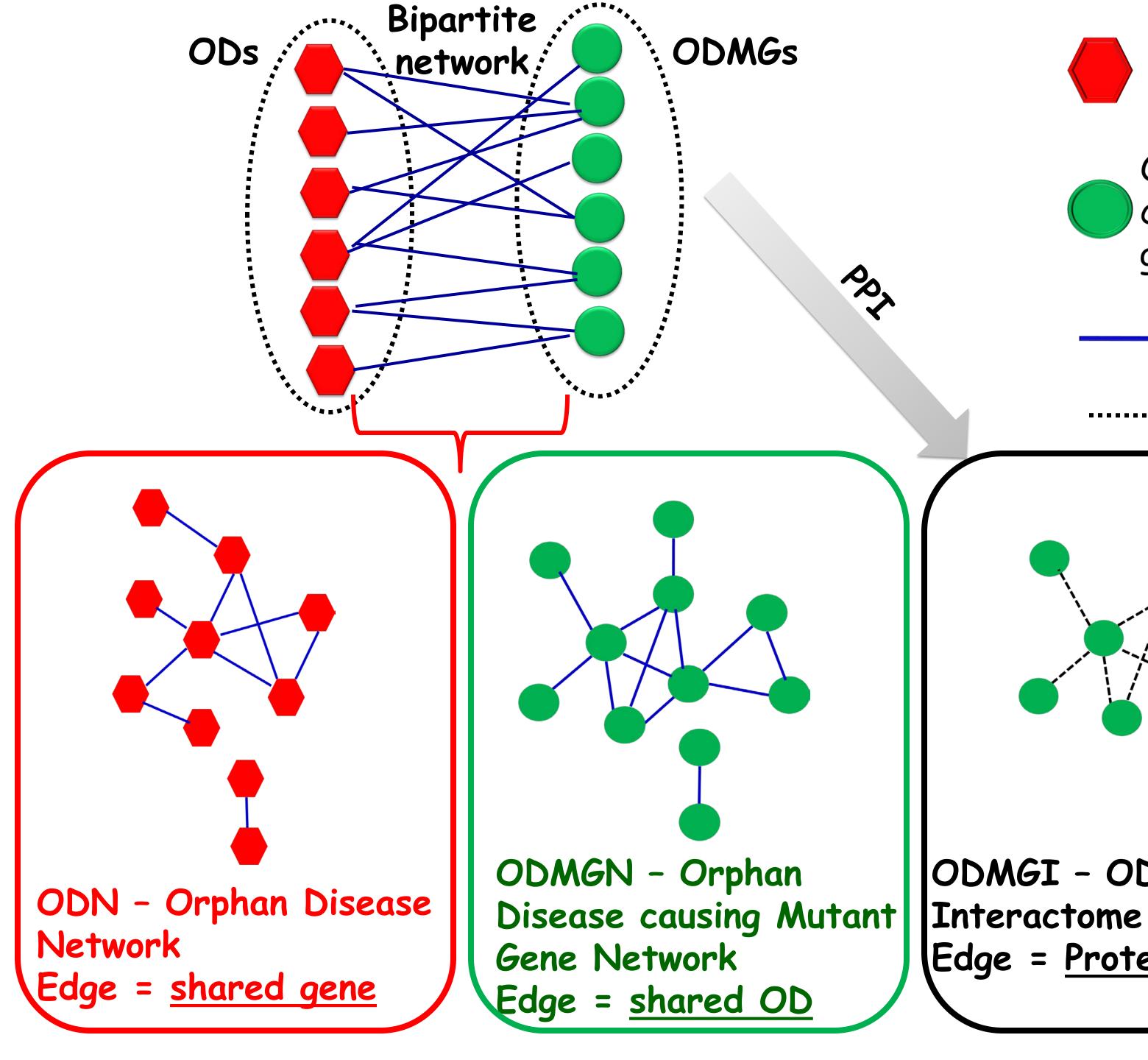


Three Communities or modules or highly interconnected networks

Constructing the networks

An orphan disease and an OD-causing mutant gene are connected by a link if mutations in that gene are implicated in that disorder.

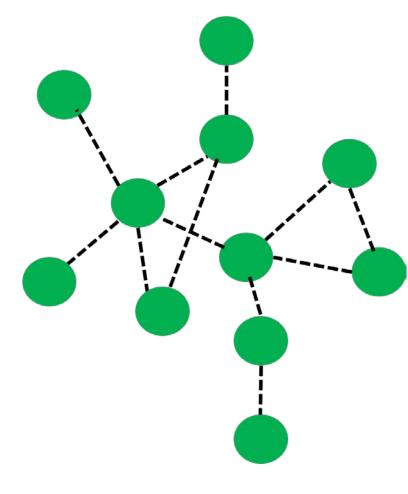
The list of ODs, Orphan Disease-causing Mutant Genes (ODMG), and associations between them were obtained from the **Orphanet database** and the **OMIM**.



Orphan disease (OD)

Orphan disease causing mutant gene (ODMG)

_Shared OD or ODMG

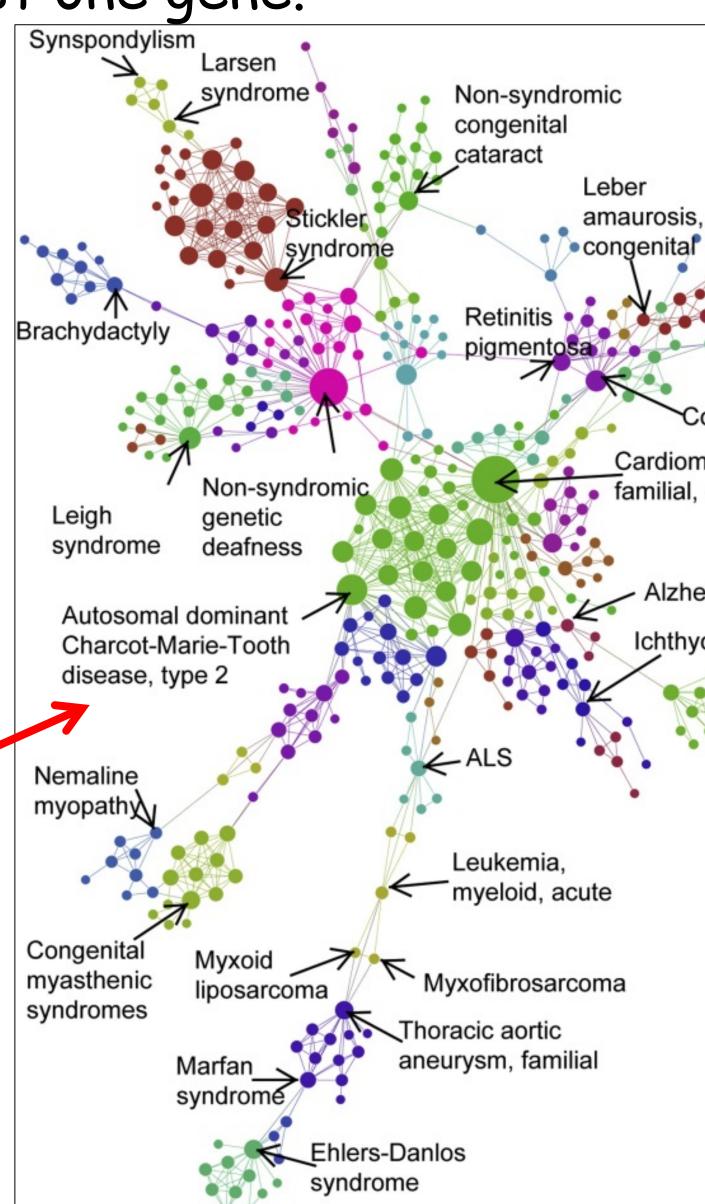


Orphan disease (OD)

Orphan disease causing mutant gene (ODMG) Shared OD or ODMG

PPI

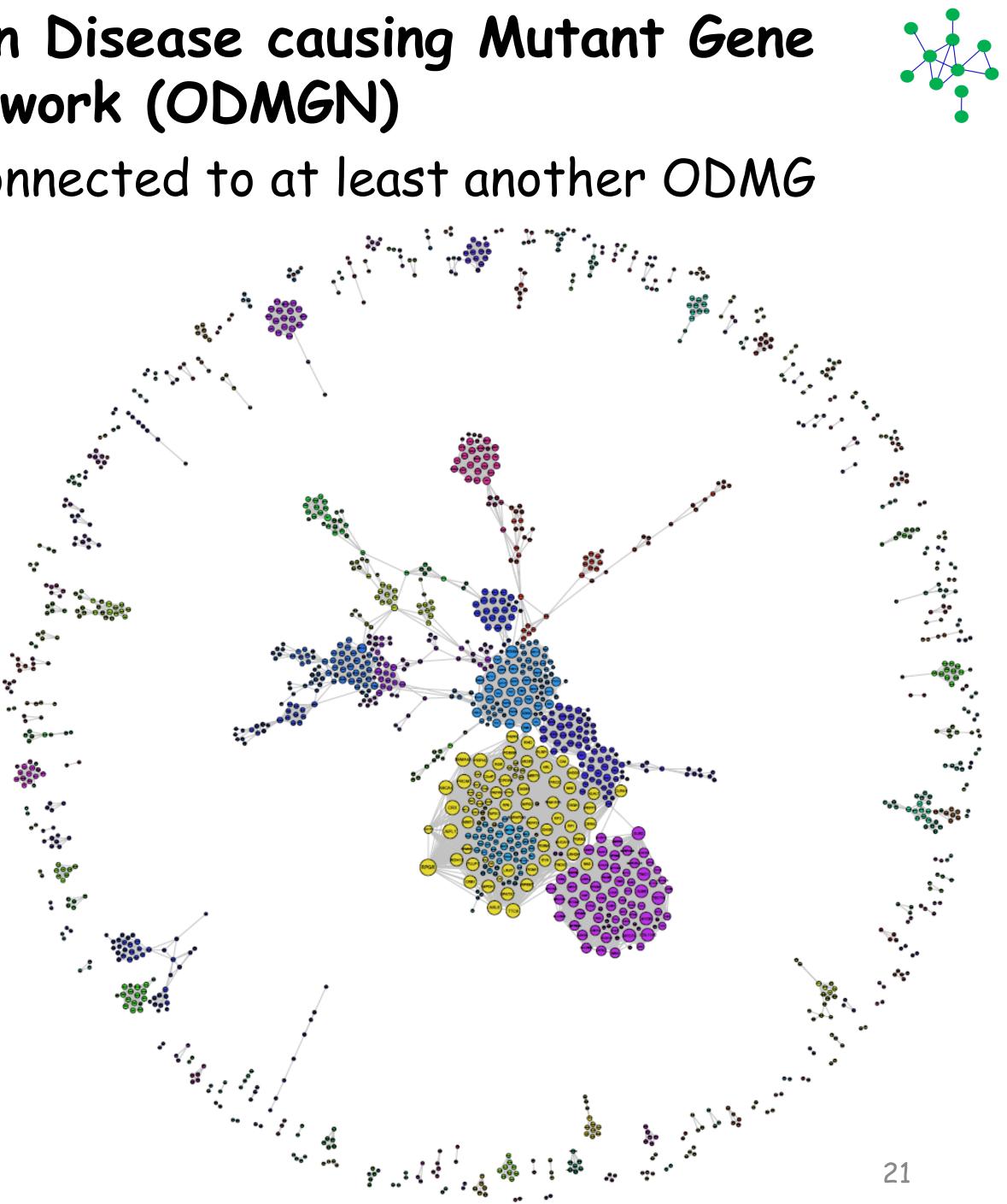
ODMGI - ODMG Edge = <u>Protein interaction</u>


18

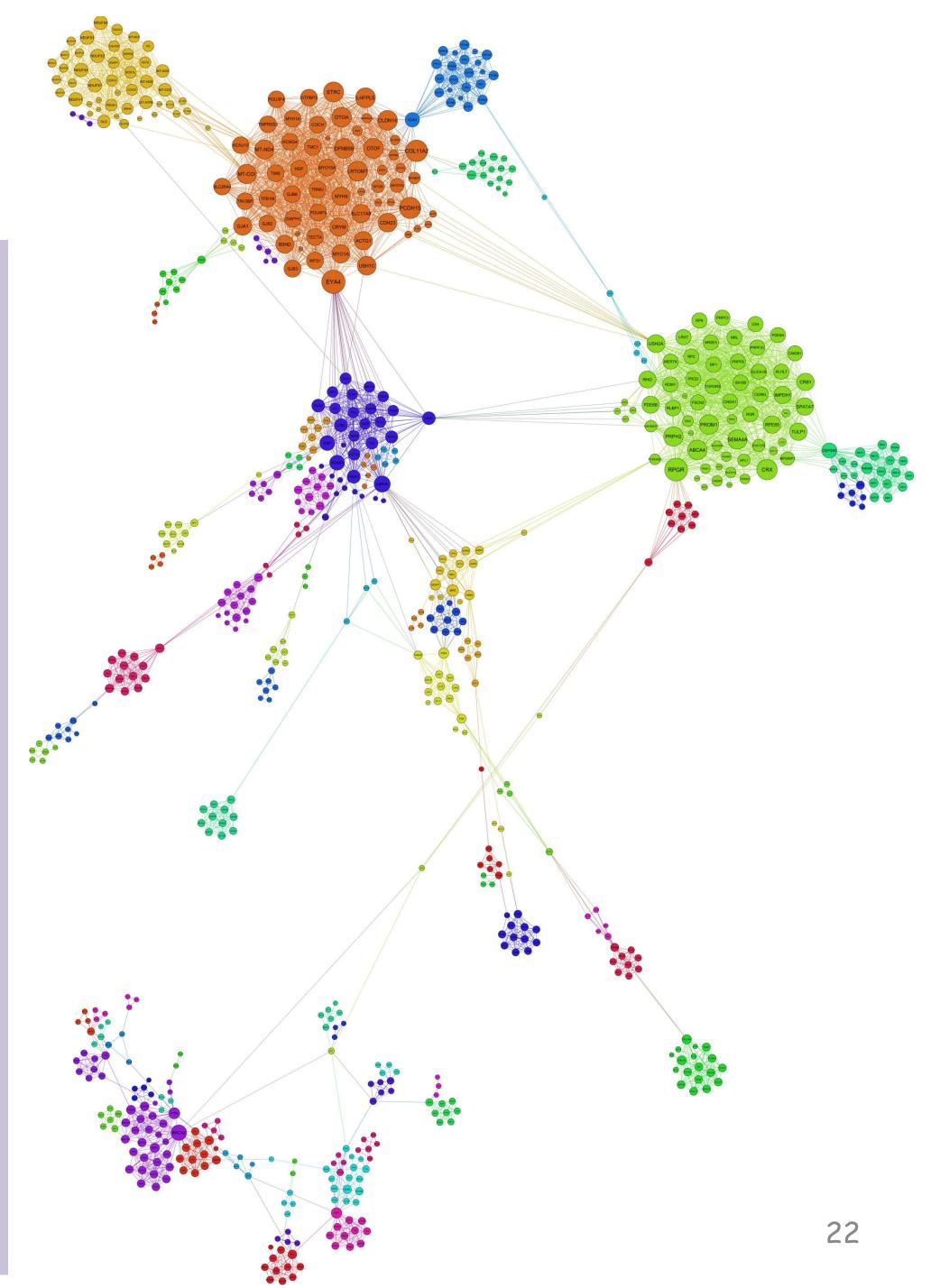
Orphan Diseases <u>3 Types of Networks:</u>

- 1. Orphan Disease Network (ODN):
 - Nodes = Orphan diseases
- 2. Orphan Disease Gene Network (ODMGN): Nodes = Orphan disease-causing mutant genes Edge = shared orphan disease(s)
- 3. Orphan Disease Gene Interactome (ODMGI) Nodes = Orphan disease-causing mutant genes Edge = Protein-protein interaction

Gene-based Orphan Disease Network (ODN) 1170/1772 (~66%) ODs are connected to at least another OD through at least one gene. Synspondylism - Pallister-Hall syndrome Larsen Polydactyly, syndrome Non-syndromic preaxial Peters anomaly congenital Prostatic cataract Simpson-Ocular cancer. Leber Golabitamilial coloboma Noonan amaurosis, Behmel syndrome congenital syndrome Retinitis Brachydactyly Nephroblastoma pigmentos Cone rod dystrophy Hirschsprung Waardenburg syndrome disease Cardiomyopathy, Non-syndromic familial, dilated Renal cell Leigh genetic Prader-Willi carcinoma. syndrome deafness syndrome familial Alzheimer disease, familial Familial Autosomal dominant Gastric _adenomatous, Ichthyosis, lamellar Charcot-Marie-Tooth cancer. polyposis familial disease, type 2 Tangier disease ALS Nemaline myopathy Leukemia, myeloid, acute Congenital Myxoid myasthenic Myxofibrosarcoma liposarcoma syndromes horacic aortic aneurysm, familial Marfan syndrom


- 1170 nodes (ODs)
- 2259 edges (shared genes)
- 184 connected components
- Largest connected component has 530 ODs & -1396 edges
- 274 closely connected modules or communities

Constructing Orphan Disease causing Mutant Gene Network (ODMGN)


1521/2124 ODMGs are connected to at least another ODMG through at least one OD.

- 1521 nodes (ODMG)
- 6855 edges (shared ODs)
- 183 connected components
- Largest connected component has 734 nodes & 4817 edges
- 277 communities

Largest subnetwork or connected component of ODMGN based on shared OD

- High connectivity among different orphan diseases or OD-causing mutant genes - Infer the common mechanism and targeted pathways.
- Find candidates for <u>drug</u> <u>repositioning</u> or <u>drug</u> <u>repurposing</u> (i.e., to extrapolate or suggest novel applications for already approved drugs), especially when one or more than one orphan disease in the community has an approved drug.

Constructing ODMG Interactome (ODMGI) Previous studies on disease gene networks

- Disease genes are nonessential
- Show no tendency to encode hubs

Are ODMGs also similar to common diseasecausing mutant genes?

ODMG interactome (ODMGI)

Human protein interactome - Resources used

- U. Stelzl, U. Worm, M. Lalowski, C. Haenig, F.H. Brembeck, H. Goehler, M. Stroedicke, M. Zenkner, A. Schoenherr and 1. S. Koeppen, et al. A human protein-protein interaction network: A resource for annotating the proteome. *Cell*, **122** (2005), pp. 957-968
- J.F. Rual, K. Venkatesan, T. Hao, T. Hirozane-Kishikawa, A. Dricot, N. Li, G.F. Berriz, F.D. Gibbons, M. Dreze and N. 2. Ayivi-Guedehoussou, et al. Towards a proteome-scale map of the human protein-protein interaction network. *Nature*, **437** (2005), pp. 1173-1178.
- A.K. Ramani, R.C. Bunescu, R.J. Mooney and E.M. Marcotte, Consolidating the set of known human protein-protein 3. interactions in preparation for large-scale mapping of the human interactome. *Genome Biol.*, 6 (2005), p. R40.
- T.S. Prasad, K. Kandasamy and A. Pandey, Human Protein Reference Database and Human Proteinpedia as discovery 4. tools for systems biology. Methods Mol. Biol., 577 (2009), pp. 67-79
- G. Joshi-Tope, M. Gillespie, I. Vastrik, P. D'Eustachio, E. Schmidt, B. de Bono, B. Jassal, G.R. Gopinath, G.R. Wu and L. 5. Matthews, et al. Reactome: A knowledgebase of biological pathways. Nucleic Acids Res., 33 Database issue (2005), pp. D428-D432.
- C. Alfarano, C.E. Andrade, K. Anthony, N. Bahroos, M. Bajec, K. Bantoft, D. Betel, B. Bobechko, K. Boutilier and E. 6. Burgess, et al. The Biomolecular Interaction Network Database and related tools 2005 update. Nucleic Acids 23 *Res.*, **33** Database issue (2005), pp. D418-D424.

12,260 proteins 70,576 interactions

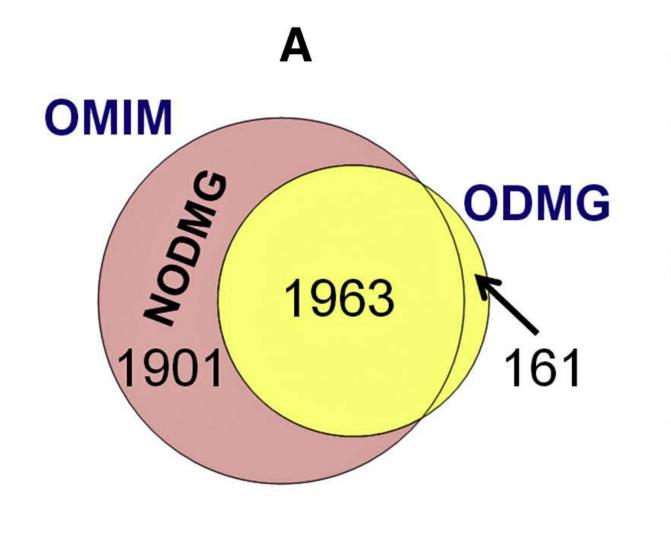
ODMGs have high connectivity

- 507/1811 (28%) ODMGs are hubs in PPI network which is higher than 20% cutoff definition for all hubs
- Average degree of ODMGs in the PPIN (15.4) is significantly higher than that of other proteins in the PPIN (10.8).
- Previous studies, in contrast, reported a weak correlation between hubs and disease genes

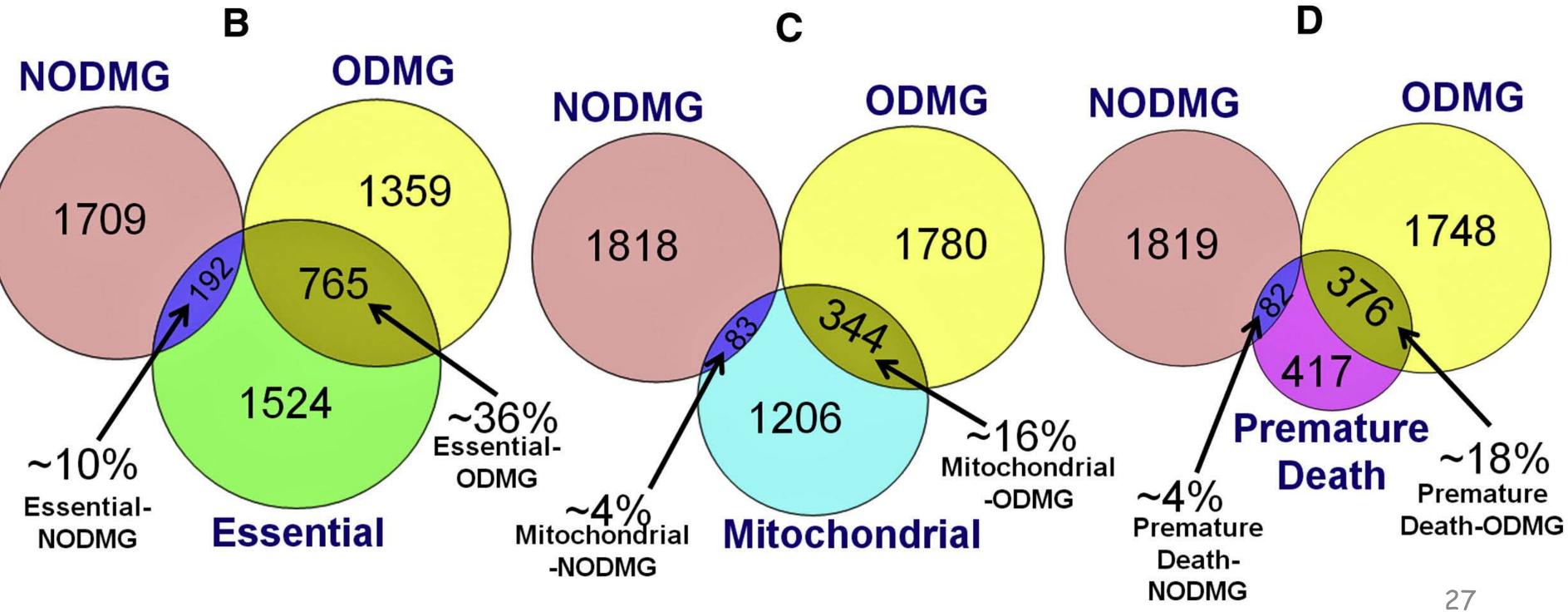
Summary: ODMG vs other proteins (Interactome minus OD

	Average degree
ODMG in PPI (1811)	1
Other proteins in PPI (10449)	1
All proteins (12260)	1
degree difference	Wilcoxon rank sum
ODMG_in_PPI vs Others_in_PPI	2.20
betweenness difference	Wilcoxon rank sum
ODMG_in_PPI vs Others_in_PPI	2.20
	•

MG) in the PPI network			
	Average betweenness		
5.39	3.97E+04		
0.84	12706.09		
1.51	1.67E+04		
test			
E-16			
test			
E-16			


ODMGs encode proteins that tend to be essential

Direct comparison with essential genes to confirm that ODMGs tend to encode hub proteins and therefore could be essential.


- ~36% (765/2124) of the ODMGs are essential genes whose ortholog gene knockout in mice is lethal.
- This is much higher than the 22% (398/1777) of essential genes in the disease network reported by a previous study (Goh et al. 2007).
- ~18% (376/2124) of the ODMGs cause premature deaths in mouse ortholog gene knockout models.
- Together ~43% (907/2124) of the 2124 ODMGs result in either premature death and/or lethality in mouse gene knockout models.
- This is even more significant and specific to ODs because Goh et al.'s diseasome comprised several ODs, and the reported 22% is probably due to the presence of some of the ODs and related genes in their dataset.

ODMG Vs. Non-ODMG (NODMG)

- Separated all ODMGs from the entire set of OMIM disease genes (Morbid Map of the OMIM database), resulting in two classes of disease genes: 2124 ODMGs and 1901 non-ODMGs (NODMG) or common disease genes.
- NODMGs: Genes whose mutant forms are not associated with any orphan disease (based on current knowledge).
- Compared to NODMGs, ODMGs are significantly enriched for lethality and mitochondrion, as well as premature death ($p < 1.0 \times 10^{-5}$; Fisher's exact test).
- A total of 765 (~36% of 2124) of ODMGs are essential, whereas only 10% (192/1901) of NODMGs are essential.

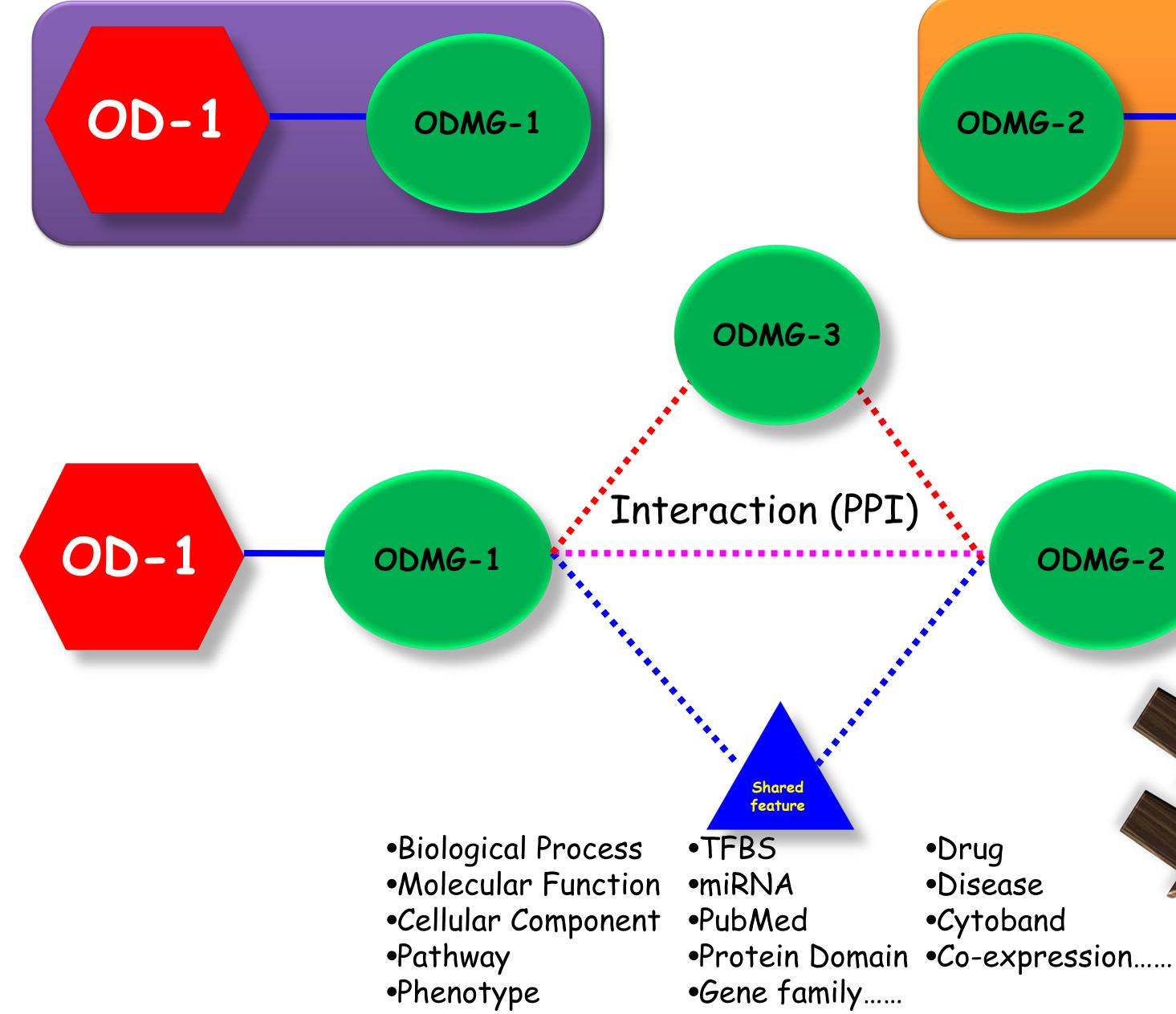
MG NODMG	Fisher's exact test
765 192	n < 10 F
359 1709	p < 1e-5
344 83	
780 1818	p < 1e-5
376 82	
	p < 1e-5
	765192359170934483780181837682

How specific is this finding?

- Overlap of essential genes with the <u>entire set of disease</u> genes from OMIM Morbid Map (as in Goh et al. 2007 but with updated disease and essential gene lists)
- 920 (24%) essential disease genes, which is similar to the original 22% reported by Goh et al. 2007. Confirms two things:
- Findings of Goh et al., whose study was based on all disease genes, still hold good despite the increase in the database sizes of human disease genes (from 1776 to 3864) and the essential genes (from 1267 to 2481).
- It also strengthens our conclusion that the enrichment of essential genes is something specific to ODMGs because the percentage of essential ODMGs is higher when compared to either NODGMs or all disease genes from OMIM.

28

Partitioning disease genes as ODMG and NODMG Is it justifiable or just oversimplification?


1. Helped in gaining insights into the relationship between the orphan disease characteristics (rare, lethal, and syndromic in nature) and the underlying causal mutant gene. 2. By an evolutionary argument, the partition could explain the *rarity of orphan diseases* in a population because mutations in hubs might not be compatible with survival and hence less likely to be maintained in a population.

Partitioning disease genes as ODMG and NODMG Is it justifiable or just simplification?

3. The partition could also explain the *severity and* <u>lethality</u> associated with most of the ODs because mutations in hubs could have wider repercussions and larger consequences on entire system than those in non-hubs. Additionally, functional enrichment analysis of ODMGs showed that a majority result in premature deaths or are lethal in the orthologous mouse gene knockout models. 4. Because hubs through their multiple interacting proteins connect heterogeneous cellular processes, the partition might explain the *complex phenotypic* or syndromic nature of ODs that have an impact on multiple physiological systems.

Orphan Diseases Functional Enrichment Analysis

Two orphan diseases <u>may not share</u> genes but <u>may share</u> pathways, processes, phenotype, TFBS, miRNA, etc.

ODMG-2

OD-2 ODMG-2 •Biological Process

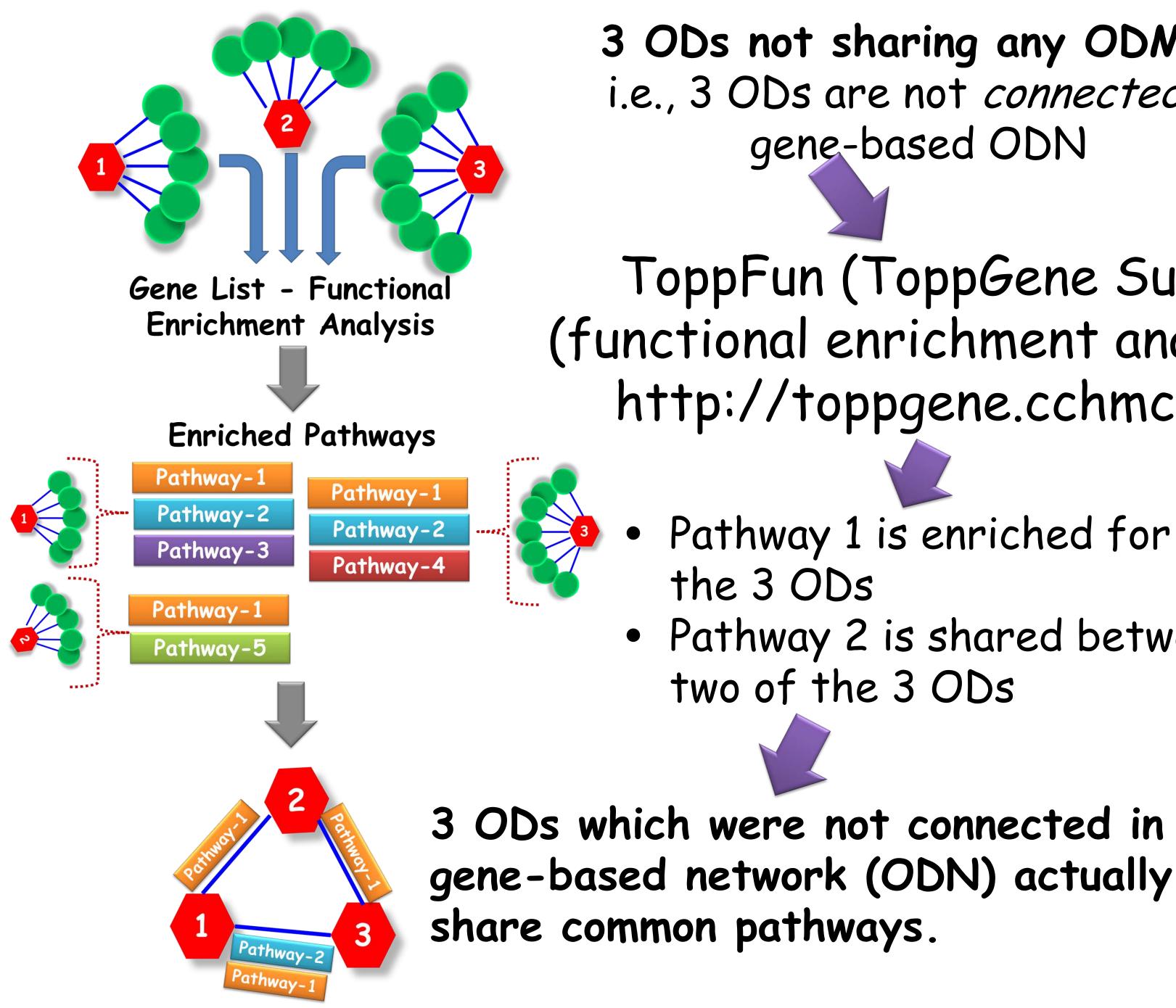
OD-2

 Molecular Function •Cellular Component

32

Pathway

 PubMed Protein Domain •Gene family


•Drug

•Disease •Cytoband

Co-expression.

 Phenotype •TFBS •miRNA

•Drug •Disease •Cytoband

3 ODs not sharing any ODMGs i.e., 3 ODs are not connected in gene-based ODN

ToppFun (ToppGene Suite) (functional enrichment analyses) http://toppgene.cchmc.org

- Pathway 1 is enriched for all
- Pathway 2 is shared between two of the 3 ODs

Function-based ODN Vs. Gene-based ODN

- The gene-based OD network (153 OD nodes and 191 edges; an edge indicates shared ODMG) is largely different from various function-based OD networks
 - BP-based OD network (176 OD nodes and 2244 edges; edges are shared BP or Biological Process terms)
 - CC-based OD network (153 OD nodes and 1135 edges; edges are shared CC or Cellular Component terms)
 - MP-based OD network (155 OD nodes and 745 edges; edges are shared MP or Mammalian Phenotype terms)
 - pathway-based OD network (159 OD nodes and 511 edges; edges are shared pathways)
- The node agreement between the gene-based ODN and function-based ODNs was higher (Jaccard indices ranged from 0.647 to 0.732)
- The edge agreement was much lower (Jaccard indices ranged from 0.0592 to 0.162)

34

Literature-based ODN Vs. gene-based ODN

- Regenerated the ODN with the edge as a shared published <u>article</u> instead of a shared gene.
- To avoid potential false positives, we used the corresponding OMIM records of ODs, which summarize results from publications about gene-disease relationships, instead of mining literature.
- Specifically, we used the cited literature (the links to PubMed records for the references cited in an OMIM entry) in the OMIM records.
- For 1461 ODs there is a corresponding OMIM record (obtained from Orphanet). Of the 1475 mapped OMIM records, 1370 had at least one cited article (indicated by presence of at least one PubMed ID). We used this subset of 1370 ODs to compare the gene-based OD network with the literature-based OD network.

#612219

EWING SARCOMA; ES 🔉

Other entities represented in this entry:

NEUROEPITHELIOMA, PERIPHERAL, INCLUDED; PNE, INCLUDED

ASKIN TUMOR, INCLUDED

Phenotype Gene Relationships

Location	Phenotype	Phenotype MIM number	Gene/Locus	Gene/Locus MIM number	
22q12.2	Neuroepithelioma	612219	EWSR1	133450	
22q12.2	Ewing sarcoma	612219	EWSR1	133450	

TEXT

A number sign (#) is used with this entry because the Ewing sarcoma family of tumors (ESFT) involve translocations of the EWS gene (133450) on chromosome 22q12 with various members of the ETS (see 164720) family of transcription factors.

Description

The Ewing sarcoma family of tumors (primitive neuroectodermal tumors; PNET) comprise morphologically heterogeneous tumors that are characterized by nonrandom chromosomal translocations involving the EWS gene on chromosome 22q12 and one of several members of the ETS family of transcription factors. The tumors include Ewing sarcoma, peripheral neuroepithelioma, and Askin tumor. In approximately 90% of cases of ESFT, the FLI1 gene (193067) on chromosome 11 is the fusion partner of EWS; in approximately 10%, the EWS fusion partner is the ERG gene (165080) on chromosome 22. Many other ETS family members have been identified as fusion partners of EWS, but these cases are rare (Khoury, 2005).

Clinical Features

Ewing Sarcoma

Ewing sarcoma is a highly malignant, metastatic, primitive small round cell tumor of bone and soft tissue that affects children and adolescents. It was first described by Ewing (1921) as a diffuse endothelioma of bone.

In a study of 5 Ewing sarcoma cell lines established from 4 patients, Turc-Carel et al. (1984) found a consistent reciprocal translocation t(11;22)(q24;q12). In 4 patients, Aurias et al. (1984) studied fresh tumor cells derived by biopsy of primary or metastatic tumors. Abnormal karyotypes with translocations involving 22q12 were found in all. In 2 cases, t(11;22)(q24;q12) was found. Histologic differentiation of ES from several other childhood tumors is often difficult; the marker chromosome may be very useful to precise diagnosis.

Among 13 cases of Ewing sarcoma, Douglass et al. (1986) found that 9 had t(11;22) and that 2 additional cases had only a deleted chromosome 22. Griffin et al. (1986) could distinguish the cytologically indistinguishable tumorrelated t(11;22) by doing in situ hybridization with probes for the constant region of the lambda light chain located at 22q11 and the ETS1 oncogene (164720) located at 11q23.3-q24.

REFERENCES

- 1. Aurias, A., Rimbaut, C., Buffe, D., Zucker, J.-M., Mazabraud, A. Translocation involving chromosome 22 in Ewing's sarcoma: a cytogenetic study of four fresh tumors. Cancer Genet. Cytogenet. 12: 21-25, 1984. [PubMed: 6713357, related citations] [Full Text: Pubget]
- 2. Bielack, S. S., Paulussen, M., Kohler, G. A patient with two Ewing's sarcomas with distinct EWS fusion transcripts. (Letter) New Eng. J. Med. 350: 1364-1365, 2004. [PubMed: 15044653, related citations] [Full Text: Atypon, Pubget]
- 3. Budarf, M., Sellinger, B., Griffin, C., Emanuel, B. S. Comparative mapping of the constitutional and tumor-associated 11;22 translocations. Am. J. Hum. Genet. 45: 128-139, 1989. [PubMed: 2741943, related citations] [Full Text: Pubget]
- 4. Burchill, S. A., Wheeldon, J., Cullinane, C., Lewis, I. J. EWS-FLI1 fusion transcripts identified in patients with typical neuroblastoma. Europ. J. Cancer 33: 239-243, 1997. [PubMed: 9135495, related citations] [Full Text: Elsevier Science, Pubget]
- 5. Douglass, E. C., Valentine, M., Green, A. A., Hayes, F. A., Thompson, E. I. t(11;22) and other chromosomal rearrangements in Ewing's sarcoma. J. Nat. Cancer Inst. 77: 1211-1213, 1986. [PubMed: 3467113, related citations] [Full Text: Pubget]
- 6. Ewing, J. Diffuse endothelioma of bone. Proc. N. Y. Path. Soc. 21: 17-24, 1921.

_

......

Literature-based ODN Vs. gene-based ODN

- Although a large number of common nodes exist between the gene- and literature-based ODNs, common edges are fewer.
- literature-based ODN identified additional relationships for those diseases sharing no known disease genes but having potential functional links between their corresponding disease gene sets.
- A large number (672 edges; ~72%) share no known disease genes, and their relationships are identified solely on the basis of literatureconnectivity.
 - Tay-Sachs disease (mutant HEXA and GM2A) and Sandhoff syndrome (mutant HEXB) do not share any disease genes and hence are not connected in sharedgene-based studies. However, Tay-Sachs disease and Sandhoff disease are connected in the literature-based OD network, which is not surprising because these two disorders arise because of the failure of the same metabolic pathway.
 - Rubinstein-Taybi syndrome (CREBP and EP300 mutants) and ICF syndrome (mutant DNMT3B), which are both syndromes of chromatin modeling
 - ornithine transcarbamylase deficiency, arginosuccinic aciduria, and citrullinemia, which are all urea cycle disorders
 - Prader-Willi syndrome and Angelman syndrome, which are both genomicimprinting disorders (paternal and maternal)
 - Lathosterolosis, Smith-Lemli-Opitz syndrome, and Greenberg dysplasia, which are all inborn errors of cholesterol synthesis.

Summary

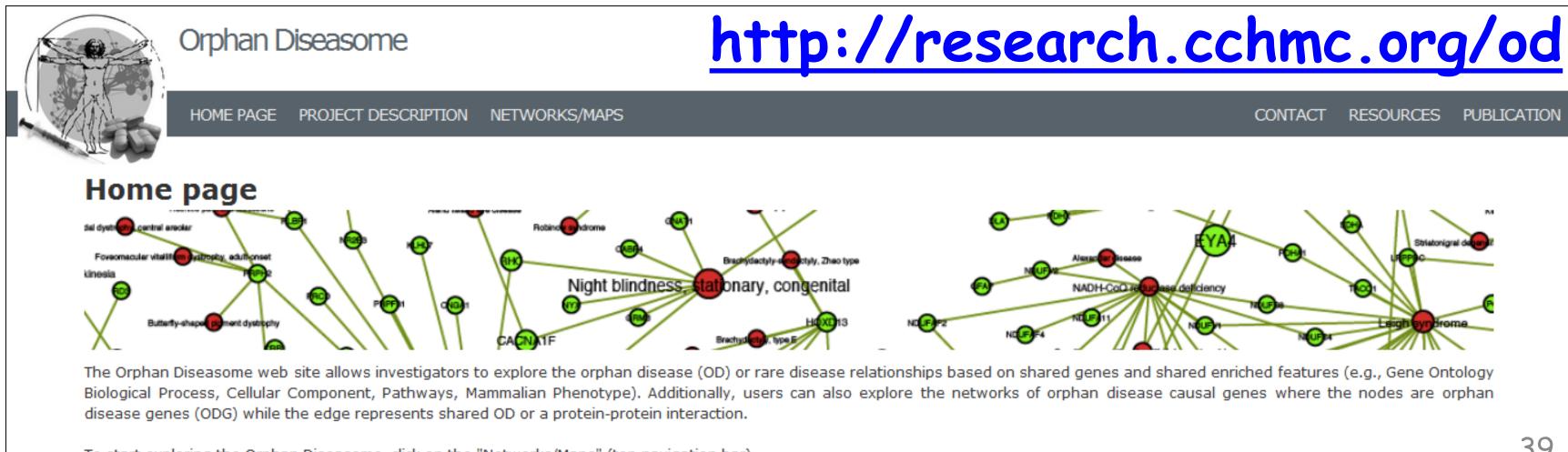
- 1. A large number of orphan disease-causing mutant genes are <u>essential</u>. In confirmation of this finding, we also found that OD-causing mutant genes tend to be topologically important in the protein interactome. 2. Functional enrichment analysis of those genes in which mutations cause ODs showed that a majority result in premature death or are <u>lethal</u> in the orthologous mouse
- gene knockout models. 3. Analyzing these functionally-linked OD networks, we
 - both phenotypically similar and phenotypically diverse.
- 4. Surprisingly, we also observed that the wiring of the genebased and other feature-based OD networks are largely different; this suggests that the relationship between ODs cannot be fully captured by the gene-based networks alone.

identified several additional OD-OD relations that are

AJHG

Volume 88, Issue 6, 10 June 2011, Pages 755–766

Article

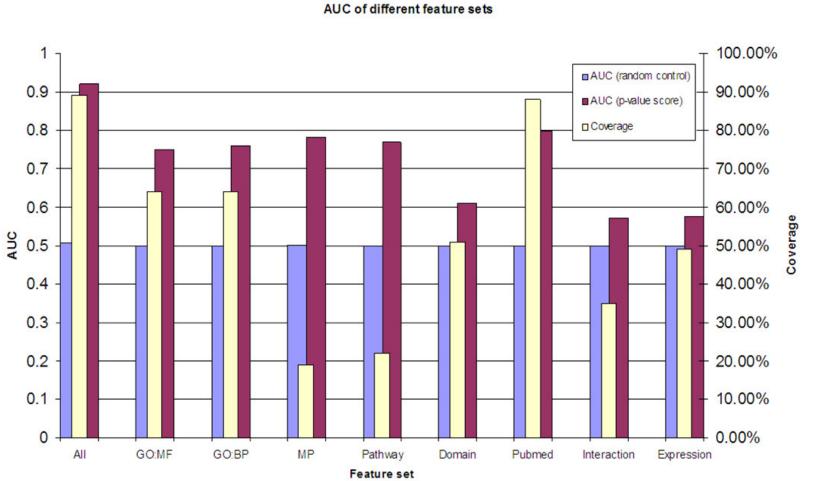

The Orphan Disease Networks

Minlu Zhang^{1, 3, 5}, Cheng Zhu^{1, 5}, Alexis Jacomy⁴, Long J. Lu^{1, 2, 3}, Anil G. Jeqqa^{1, 2, 3}, 📥 🔤 ¹ Department of Computer Science, University of Cincinnati, Cincinnati, OH 45229, USA.

² Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA

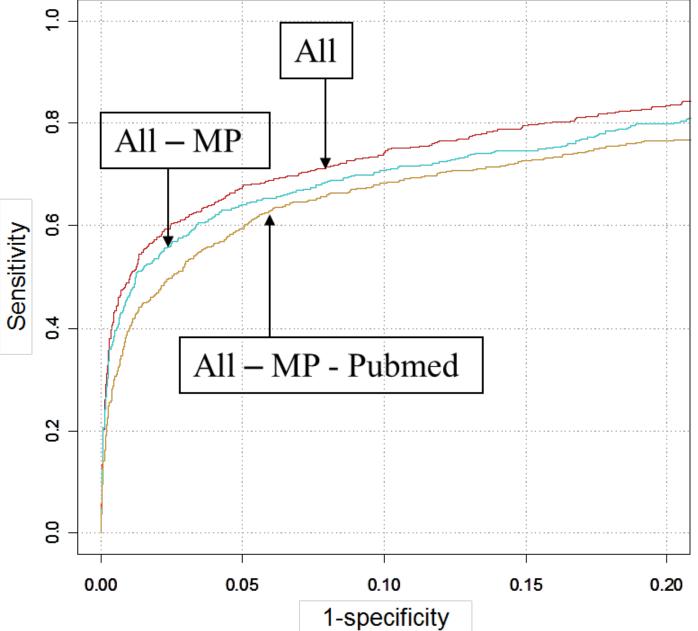
³ Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA

⁴ Gephi, WebAtlas, Paris 75011, France


To start exploring the Orphan Diseasome, click on the "Networks/Maps" (top navigation bar).

Orphan Disease Genes Computational Discovery & Prioritization

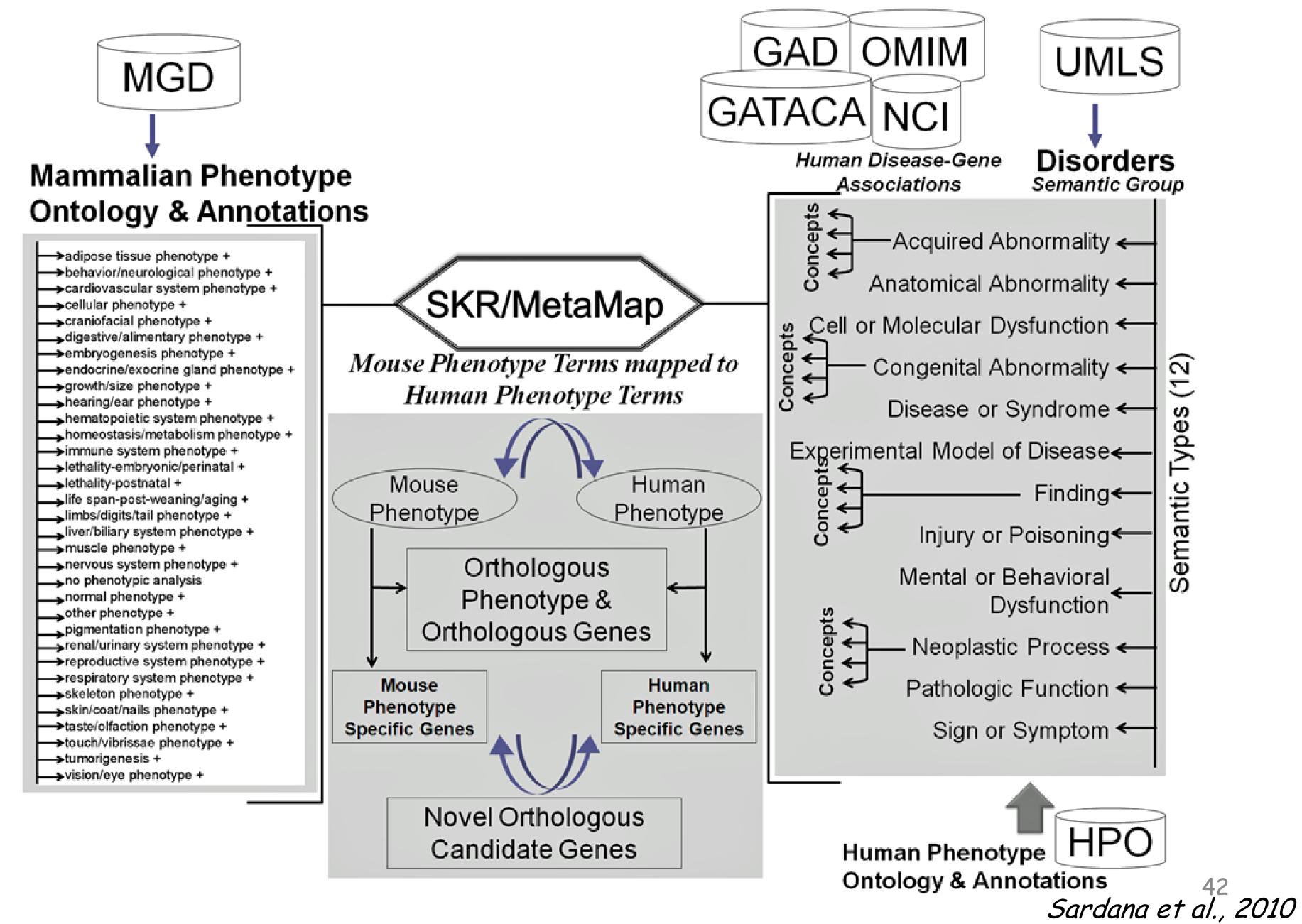
Orphan Disease Gene Discovery and Ranking Using Model organism data

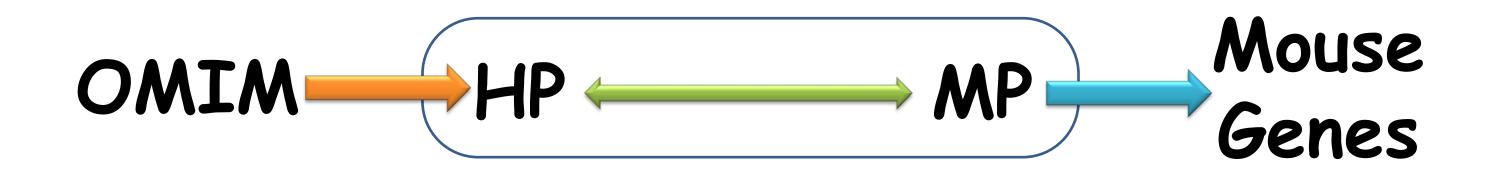

The incorporation of phenotype information for mouse orthologs of human genes greatly improves the human disease candidate gene analysis and prioritization (Chen et al., 2007)

AUC of different feature sets.

- Red bars AUC scores based on each feature set
- blue bars corresponding random controls
- Yellow bars Coverage of each feature set in the whole genome.

For example, mouse phenotype (MP) has AUC score 0.78 and covers 19% of genes in the whole genome.


Random gene cross-validation: Leaveone-feature-out - Overall performance

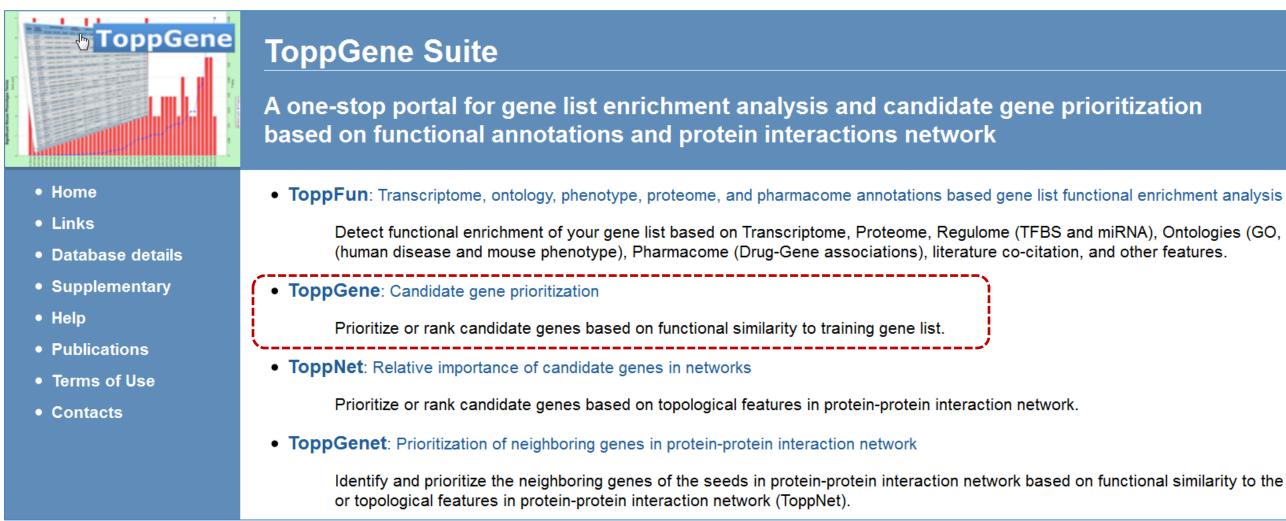

41

Chen *et al.* 2007

- All features: 0.913
- All MP: 0.893
- All MP PubMed: 0.888

PhenoHM: http://phenome.cchmc.org

#190900 TRITANOPIA: BLUE COLORBLINDNESS caused by heterozygous mutation in the OPN1SW gene


 Are the human orthologs of these mouse genes novel candidates for tritanopia? Can these phenotype-matched mouse genes be used as a training set to rank candidate genes for tritanopia?

http://www.sanger.ac.uk/resources/databases/phenodigm

Smedley et al., 2013 43 Chao et al., under preparation

Training set: Crb1 Vldlr Tulp1 Rho Atp1b2 Uchl3 Prph2 Aipl1 Rs1 Nr2e3

ToppGene: Candidate gene prioritization

Select your gene identifier type, paste your training and test gene sets below or select example sets, then submit.

Symbol Types HGN	NC Symbol	•	HGNC Symbol	•
raining Gene Set: Vldl Tulp Rho Atp1 Uch1 Prph Aip1 Rs1 Nr2e	dlr 1p1 o p1b2 h13 ph2 p11 1	Test gene set:	OPN1SW Cllorf86 KPTN ZNF197 SUMO2P5 ROCK1P1 PTPRJ DPRXP3 GLI4 TRIP13 HCG4P7 TLX3 SPTA1 CASP16 Clorf54 DNAJA1 ADORA1 TGM5 HNRNPA1P25 DSG4 FOXA1	

Test set: OPN1SW + 99random genes

Detect functional enrichment of your gene list based on Transcriptome, Proteome, Regulome (TFBS and miRNA), Ontologies (GO, Pathway), Phenotype

Identify and prioritize the neighboring genes of the seeds in protein-protein interaction network based on functional similarity to the "seed" list (ToppGene)

Training set (10 / 10)

Test set (100 / 100)

FOXA1 FO							
Vidir VLDLR 7436 C11orf86 C11orf86 254439 I Tulp1 TULP1 7287 KPTN KPTN 11133 I Rho RHO 6010 ZNF197 ZNF197 10168 I Atp1b2 ATP1B2 482 SUMO2P5 SUMO2P5 100526738 I UcH3 7347 ROCK1P1 ROCK1P1 727758 I	Entered	Human Symbol	Gene ID	Entered	Human Symbol	Gene ID	Â
Tulp1 TULP1 7287 KPTN KPTN 11133 Rho RHO 6010 ZNF197 ZNF197 10168 Atp1b2 ATP1B2 482 SUMO2P5 SUMO2P5 100526738 Uchl3 UCHL3 7347 ROCK1P1 ROCK1P1 727758 Prpb2 PRPH2 5961 PTPRJ PTPRJ 5795 Aip11 AIPL1 23746 DPRXP3 DPRXP3 503644 Rs1 RS1 6247 GLI4 GLI4 214 2788 Nr2e3 NR2E3 10002 TRIP13 TRIP13 9319 HCG4P7 HCG4P7 353004 1X3 30012 SPTA1 SPTA1 6708 CASP16 197350 C1orf54 C1orf54 70630 DNAJA1 3301 ADORA1 ADORA1 ADORA1 134 TGM5 TG HNRMPA1P25 HN DSG4 DS FOXA1 FO	Crb1	CRB1	23418	OPN1SW	OPN1SW	611	
Rho RHO 6010 ZNF197 ZNF197 10168 Atp1b2 ATP1B2 482 SUMO2P5 SUMO2P5 100526738 Uchl3 UCHL3 7347 ROCK1P1 ROCK1P1 727758 Prph2 PRPH2 5961 PTPRJ PTPRJ 5795 Aipl1 AIPL1 23746 DPRXP3 DPRXP3 503644 Rs1 RS1 6247 GLI4 GLI4 2738 Nr2e3 NR2E3 10002 TRIP13 TRIP13 9319 HCG4P7 HCG4P7 HCG4P7 5795 6708 CASP16 CASP16 197350 610754 79630 DNAJA1 DNAJA1 3301 ADORA1 134 TGM5 TG Training parameters NRSG4 DS FOXA1 FO FO Image: FOXA1 FO Image: FOXA1 FO	Vldlr	VLDLR	7436	C11orf86	C11orf86	254439	Ξ
Atp1b2 ATP1B2 482 SUMO2P5 SUMO2P5 100526738 Uchl3 UCHL3 7347 ROCK1P1 ROCK1P1 727758 Prph2 PRPH2 5961 PTPRJ PTPRJ 5795 Aipl1 AIPL1 23746 DPRXP3 DPRXP3 503644 Rs1 RS1 6247 GLI4 GLI4 2738 Nr2e3 NR2E3 10002 TRIP13 TRIP13 9319 HCG4P7 HCG4P7 HCG4P7 353004 TLX3 TLX3 30012 SPTA1 6708 CASP16 CASP16 CASP16 197350 C1orf54 70630 DNAJA1 DNAJA1 DNAJA1 3301 ADORA1 134 TGM5 TG Training parameters NRNPA1P25 NN SPG4 DS SPA1 FOXA1 FO SP SP <td>Tulp1</td> <td>TULP1</td> <td>7287</td> <td>KPTN</td> <td>KPTN</td> <td>11133</td> <td></td>	Tulp1	TULP1	7287	KPTN	KPTN	11133	
Uchl3 UCHL3 7347 ROCK1P1 ROCK1P1 727758 Prph2 PRPH2 5961 PTPRJ PTPRJ 5795 Aipl1 AIPL1 23746 DPRXP3 DORXP3 503644 Rs1 RS1 6247 GLI4 GLI4 2738 Nr2e3 NR2E3 10002 TRIP13 TRIP13 9319 HCG4P7 HCG4P7 353004 TLX3 30012 SPTA1 SPTA1 6708 6247 GLI4 2738 DNJAJ1 SPTA1 6708 6247 6247 7630 DNAJA1 DNAJA1 S0112 SPTA1 6708 6708 CASP16 CASP16 CASP16 197350 76 DNAJA1 DNAJA1 DNAJA1 3301 ADORA1 ADORA1 134 TGM5 TG Training parameters FOXA1 FO 7 7	Rho	RHO	6010	ZNF197	ZNF197	10168	
Prph2 PRPH2 5961 PTPRJ PTPRJ 5795 Aipl1 AIPL1 23746 DPRXP3 DPRXP3 503644 Rs1 RS1 6247 GLI4 GLI4 2738 Nr2e3 NR2E3 10002 TRIP13 TRIP13 9319 HCG4P7 HCG4P7 353004 TLX3 30012 SPTA1 SPTA1 6708 CASP16 CASP16 197350 C1orf54 C1orf54 C1orf54 197350 134 134 TGM5 TG Training parameters NRNNPA1P25 HN DSG4 DS FOXA1 FO FOXA1 FO Image: Provide term Image:	Atp1b2	ATP1B2	482	SUMO2P5	SUMO2P5	100526738	
Aipl1 AIPL1 23746 DPRXP3 DPRXP3 503644 Rs1 RS1 6247 GLI4 GLI4 2738 Nr2e3 NR2E3 10002 TRIP13 TRIP13 9319 HCG4P7 HCG4P7 353004 TLX3 30012 SPTA1 SPTA1 6708 6247 CASP16 CASP16 197350 C1orf54 C1orf54 79630 DNAJA1 DNAJA1 3301 ADORA1 ADORA1 134 TGM5 TG Training parameters FOXA1 FOXA1 FO 70 70	Uchl3	UCHL3	7347	ROCK1P1	ROCK1P1	727758	
Rs1 RS1 6247 GLI4 GLI4 2738 Nr2e3 NR2E3 10002 TRIP13 TRIP13 9319 HCG4P7 HCG4P7 353004 TLX3 30012 SPTA1 SPTA1 6708 6247 GLI4 2738 CASP16 CASP16 CASP16 197350 610754 79630 DNAJA1 DNAJA1 DNAJA1 3301 ADORA1 134 134 TGM5 TG HNRNPA1P25 HN DSG4 DS FOXA1 FO 1 <td< th=""><td>Prph2</td><td>PRPH2</td><td>5961</td><td>PTPRJ</td><td>PTPRJ</td><td>5795</td><td></td></td<>	Prph2	PRPH2	5961	PTPRJ	PTPRJ	5795	
Nr2e3 NR2E3 10002 TRIP13 TRIP13 9319 HCG4P7 HCG4P7 353004 11,23 30012 SPTA1 SPTA1 6708 SPTA1 SPTA1 SPTA1 6708 CASP16 CASP16 197350 C1orf54 C1orf54 C1orf54 79630 DNAJA1 3301 ADORA1 ADORA1 ADORA1 134 TGM5 TG HNRNPA1P25 HN DSG4 DS FOXA1 FO If in ing parameters If	Aipl1	AIPL1	23746	DPRXP3	DPRXP3	503644	
HCG4P7 HCG4P7 353004 TLX3 TLX3 30012 SPTA1 SPTA1 6708 CASP16 CASP16 197350 C1orf54 C1orf54 79630 DNAJA1 DNAJA1 3301 ADORA1 ADORA1 134 TGM5 TG Training parameters HNRNPA1P25 HN DSG4 DS FOXA1 FO	Rs1	RS1	6247	GLI4	GLI4	2738	
TLX3 TLX3 30012 SPTA1 SPTA1 6708 CASP16 CASP16 197350 C1orf54 C1orf54 79630 DNAJA1 DNAJA1 3301 ADORA1 ADORA1 134 TGM5 TG Training parameters HNRNPA1P25 HN DSG4 DS	Nr2e3	NR2E3	10002	TRIP13	TRIP13	9319	
SPTA1 SPTA1 6708 CASP16 CASP16 197350 C1orf54 C1orf54 79630 DNAJA1 DNAJA1 3301 ADORA1 ADORA1 134 TGM5 TG HNRNPA1P25 HN DSG4 DS FOXA1 FO				HCG4P7	HCG4P7	353004	
CASP16 CASP16 197350 C1orf54 C1orf54 79630 DNAJA1 DNAJA1 3301 ADORA1 ADORA1 134 TGM5 TG HNRNPA1P25 HN DSG4 DS FOXA1 FO				TLX3	TLX3	30012	
C1orf54 C1orf54 79630 DNAJA1 DNAJA1 3301 ADORA1 ADORA1 134 TGM5 TG HNRNPA1P25 HN DSG4 DS FOXA1 FO V C V C V C V C V C V C V C V C				SPTA1	SPTA1	6708	
DNAJA1 DNAJA1 3301 ADORA1 ADORA1 134 TGM5 TG HNRNPA1P25 HN DSG4 DS FOXA1 FO V V V V V V V V V V V V V				CASP16	CASP16	197350	
ADORA1 ADORA1 134 TGM5 TG HNRNPA1P25 HN DSG4 DS FOXA1 FO V C V C V C V C V C V C V C V C				C1orf54	C1orf54	79630	
TGM5 TG HNRNPA1P25 HN DSG4 DS FOXA1 FO V C V C V C V C V C V C V C V C V C V C				DNAJA1	DNAJA1	3301	
HNRNPA1P25 HN DSG4 DS FOXA1 FO V C V C V C V C V C V C V C V C V C V C				ADORA1	ADORA1	134	
HNRNPA1P25 HN DSG4 DS FOXA1 FO				TGM5	TG Training param	eters	
FOXA1 FO				HNRNPA1P25	HN		
FOXA1 FO				DSG4	DS		
				FOXA1	FO	1	

O: Bio iO: Cel uman louse omain Pathway Pubmed Interacti Cytobar Transcri Gene Fa Coexpre Coexpre Comput MicroRN Drug 🗵 Disease

Test parameter

Random sampling size: 1500 (6% of genome) -Min. feature count: 2 -

Home

Feature	Correction	p-Val cuto		Ge	Gene Limits		
	Bonferroni -	0.05 -		1	≤ <i>n</i> ≤	1500	
lolecular Function	Bonferroni -	0.05 -	•	1	≤ <i>n</i> ≤	1500	
iological Process	Bonferroni -	0.05 -	•	1	≤ <i>n</i> ≤	1500	
ellular Component	Bonferroni -	0.05 -	·	1	≤ <i>n</i> ≤	1500	
Phenotype	Bonferroni -	0.05 -	•	1	≤ <i>n</i> ≤	1500	
Phenotype	Bonferroni -	0.05 -	·	1	≤ <i>n</i> ≤	1500	
n	Bonferroni -	0.05 -	•	1	≤ <i>n</i> ≤	1500	
ау	Bonferroni -	0.05 -	•	1	≤ <i>n</i> ≤	1500	
d	Bonferroni -	0.05 -	•	1	≤ n ≤	1500	
tion	Bonferroni -	0.05 -	•	1	≤ <i>n</i> ≤	1500	
and	Bonferroni -	0.05 -		1	≤ n ≤	1500	
ription Factor Binding Site	Bonferroni -	0.05 -	•	1	≤ <i>n</i> ≤	1500	
amily	Bonferroni -	0.05 -		1	≤ n ≤	1500	
ression	Bonferroni -	0.05 -	•	1	≤ n ≤	1500	
ression Atlas	Bonferroni -	0.05 -	•	1	≤ n ≤	1500	
Itational	Bonferroni -	0.05 -	•	1	≤ n ≤	1500	
RNA	Bonferroni -	0.05 -		1	≤ n ≤	1500	
	Bonferroni -	0.05 -		1	≤ <i>n</i> ≤	1500	
e	Bonferroni -	0.05 -		1	≤ <i>n</i> ≤	1500	
ng size: 1500 (6% of geno	me) -						

Modify Query

Start prioritization

45

Input Parameters	Hide Detail				
Number of genes in training set:	10				
Number of genes in test set:	100				
	category	Correction	Cutoff	Min	Max
	GO: Molecular Function	Bonferroni	0.05	1	1500
	GO: Biological Process	Bonferroni	0.05	1	1500
	GO: Cellular Component	Bonferroni	0.05	1	1500
	Human Phenotype	Bonferroni	0.05	1	1500
	Mouse Phenotype	Bonferroni	0.05	1	1500
	Domain	Bonferroni	0.05	1	1500
	Pathway	Bonferroni	0.05	1	1500
	Pubmed	Bonferroni	0.05	1	1500
Correction and Cutoff:	Interaction	Bonferroni	0.05	1	1500
	Cytoband	Bonferroni	0.05	1	1500
	Transcription Factor Binding Site	Bonferroni	0.05	1	1500
	Gene Family	Bonferroni	0.05	1	1500
	Coexpression	Bonferroni	0.05	1	1500
	Coexpression Atlas	Bonferroni	0.05	1	1500
	Computational	Bonferroni	0.05	1	1500
	MicroRNA	Bonferroni	0.05	1	1500
	Drug	Bonferroni	0.05	1	1500
	Disease	Bonferroni	0.05	1	1500
Random sampling size in analysis:	1500				
Minimun feature count in test set:	2				
Analysis took:	1 seconds				
Analysis finished at:	Tue Nov 05 15:58:54 EST 2013				

Training Results [Expand All] [Dov

	ID	Name	Source	P-value	Term in Query	Term in Genome
1	GO:0008020	G-protein coupled photoreceptor activity		4.417E-4	2	7
2	GO:0009881	photoreceptor activity		3.209E-3	2	18
3	GO:0005546	phosphatidylinositol-4,5-bisphosphate binding		1.627E-2	2	40
4	GO:0001918	farnesylated protein binding		4.843E-2	1	1
		······				-

	ID	Name	Source	P-value	Term in Query	Term in Genome
1	GO:0007602	phototransduction		4.502E-8	5	66
2	GO:0060041	retina development in camera-type eye		1.291E-7	6	205
3	GO:0009583	detection of light stimulus		1.746E-7	5	86
4	GO:0007601	visual perception		2.941E-7	6	235
5	GO:0050953	sensory perception of light stimulus		3.094E-7	6	237
Sh	ow 17 more a	nnotations				

3: GO: Cellular Component [Display Chart]

	ID	Name	Source	P-value	Term in Query	Term in Genome
1	GO:0001917	photoreceptor inner segment		1.856E-5	3	31
2	GO:0001750	photoreceptor outer segment		1.141E-2	2	49
3	GO:0060342	photoreceptor inner segment membrane		2.064E-2	1	1
4	GO:0045177	apical part of cell		3.858E-2	3	397

4: Human Phenotype [Display Chart]

	ID	Name	Source	P-value	Term in Query	Term in Genome
1	HP:0000512	Abnormal electroretinogram		1.167E-6	6	98
2	HP:0000510	Retinitis pigmentosa		2.782E-6	6	113
3	HP:0007703	Abnormal retinal pigmentation		4.791E-5	6	181
4	HP:0000662	Night blindness		9.856E-5	5	99
5	HP:0008051	Abnormality of the retinal pigment epithelium		1.040E-4	6	206
SI	low 14 more :	annotations				

5: Mouse Phenotype [Display Chart]

2	b. Mouse r henotype [bisplay chart]						
		ID	Name	Source	P-value	Term in Query	Term in Genome
	1	MP:0003731	abnormal retinal outer nuclear layer morphology		1.296E-16	10	105
	2	MP:0001004	abnormal retinal photoreceptor morphology		1.769E-15	10	135
	3	MP:0003728	abnormal retinal photoreceptor layer morphology		2.773E-15	10	141
ſ	4	MP:0003730	abnormal photoreceptor inner segment morphology		7.486E-15	8	40
	5	MP:0003729	abnormal photoreceptor outer segment morphology		1.351E-14	9	86
\$	sh	ow 51 more a	innotations				

ownload All	Sparse Matrix	Display pValues and Scores as	Scientific (4 sign
			· · · ·

Enriched features of training set

Test Results [Hide Detail] [Download] [Show Network]

Rank (net)	Gene Symbol	Ģ	ene ID	GO: Mo Fund	lecular	GO: Bio Proc	ological cess		ellular onent
				Score	pValue	Score	pValue	Score	pValue
1 🗖	OPN1SW		611	7.887E-1	1.000E-6	9.982E-1	1.308E-3	7.468E-1	1.000E-6
2 🗖	CLCN2		1181	0.000E0	5.677E-1	8.989E-1	1.046E-2	3.593E-1	6.540E-3
3 🗖	ADORA1		134	5.282E-1	1.308E-3	9.727E-1	4.578E-3	3.593E-1	6.540E-3
4 🗖	KPTN		11133	7.303E-2	2.943E-2	3.050E-1	1.236E-1	3.029E-1	1.700E-2
5 🗖	EIF5A		1984	7.303E-2	2.943E-2	4.418E-1	8.633E-2	3.593E-1	6.540E-3
6 🗖	L1CAM		3897	7.303E-2	2.943E-2	7.331E-1	3.401E-2	3.593E-1	6.540E-3
7 🗖	CDK14		5218	7.303E-2	2.943E-2	3.570E-1	1.020E-1	9.989E-2	6.802E-2
8 🗖	CIB2		10518	0.000E0	5.677E-1	8.971E-1	1.046E-2	0.000E0	6.645E-1
9 🗖	RPS6KA4		8986	7.303E-2	2.943E-2	7.331E-1	3.401E-2	2.075E-2	1.622E-1
10 🗖	SH3BGRL2		83699	7.303E-2	2.943E-2	0.000E0	6.037E-1	2.075E-2	1.622E-1

Ranked list of test set genes

Average score	Overall P-value
4.182E-1	4.187E-12
1.801E-1	1.221E-2
1.420E-1	1.534E-2
5.675E-2	2.869E-2
6.243E-2	2.925E-2
1.254E-1	3.221E-2
4.416E-2	3.381E-2
1.284E-1	3.748E-2
5.907E-2	5.464E-2
8.526E-3	5.807E-2
7.823E-2	6.239E-2

Supporting Details

20

Selected genes shown in **bold**

Selected genes shown Feature	ID	Name
GO: Molecular Function	GO:0009881	photoreceptor activity
GO: Biological Process	GO:0007602	photoreceptor activity
GO: Biological Process	GO:0009583	detection of light stimulus
GO: Biological Process	GO:0009582	detection of abiotic stimulus
GO: Biological Process	GO:0009581	detection of external stimulus
GO: Biological Process	GO:0007601	visual perception
GO: Biological Process	GO:0050953	sensory perception of light stimulus
GO: Biological Process	GO:0051606	detection of stimulus
GO: Biological Process	GO:0009416	response to light stimulus
GO: Biological Process	GO:0009314	response to radiation
GO: Biological Process	GO:0007600	sensory perception
GO: Cellular Component	GO:0001750	photoreceptor outer segment
Human Phenotype	HP:0000512	Abnormal electroretinogram
Human Phenotype	HP:0000479	Abnormality of the retina
Human Phenotype	HP:0000504	Abnormality of vision
Human Phenotype	HP:0001098	Abnormality of the fundus
Human Phenotype	HP:0004329	Abnormality of the posterior segment of the eye
Mouse Phenotype	MP:0008585	absent photoreceptor outer segment
Mouse Phenotype	MP:0004022	abnormal cone electrophysiology
Mouse Phenotype	MP:0003729	abnormal photoreceptor outer segment morphology
Mouse Phenotype	MP:0001004	abnormal retinal photoreceptor morphology
Mouse Phenotype	MP:0003728	abnormal retinal photoreceptor layer morphology
Mouse Phenotype	MP:0005551	abnormal eye electrophysiology
Mouse Phenotype	MP:0006069	abnormal retinal neuronal layer morphology
Mouse Phenotype	MP:0003727	abnormal retinal layer morphology
Mouse Phenotype	MP:0005253	abnormal eye physiology
Mouse Phenotype	MP:0001325	abnormal retina morphology
Mouse Phenotype	MP:0002864	abnormal ocular fundus morphology
Mouse Phenotype	MP:0000965	abnormal sensory neuron morphology
Mouse Phenotype	MP:0005195	abnormal posterior eye segment morphology
Mouse Phenotype	MP:0000959	abnormal somatic sensory system morphology
Mouse Phenotype	MP:0002752	abnormal somatic nervous system morphology
Mouse Phenotype	MP:0002092	abnormal eye morphology
Mouse Phenotype	MP:0005391	vision/eye phenotype
Mouse Phenotype	MP:0002882	abnormal neuron morphology
		7

Shared features between training set and ranked test set gene Training set genes

Ranked gene from Test set

Genes
OPN1SW RHO TULP1
AIPL1 NR2E3 OPN1SW RHO RS1 TULP1
AIPL1 NR2E3 OPN1SW RHO RS1 TULP1
AIPL1 NR2E3 OPN1SW RHO RS1 TULP1
AIPL1 NR2E3 OPN1SW RHO RS1 TULP1
AIPL1 NR2E3 OPN1SW PRPH2 RHO RS1 TULP1
AIPL1 NR2E3 OPN1SW PRPH2 RHO RS1 TULP1
AIPL1 NR2E3 OPN1SW RHO RS1 TULP1
AIPL1 NR2E3 OPN1SW RHO RS1 TULP1
AIPL1 NR2E3 OPN1SW RHO RS1 TULP1
AIPL1 NR2E3 OPN1SW PRPH2 RHO RS1 TULP1
OPN1SW RHO TULP1
AIPL1 CRB1 NR2E3 OPN1SW PRPH2 RHO RS1
AIPL1 CRB1 NR2E3 OPN1SW PRPH2 RHO RS1 TULP1
AIPL1 CRB1 NR2E3 OPN1SW PRPH2 RHO RS1 TULP1
AIPL1 CRB1 NR2E3 OPN1SW PRPH2 RHO RS1 TULP1
AIPL1 CRB1 NR2E3 OPN1SW PRPH2 RHO RS1 TULP1
AIPL1 ATP1B2 CRB1 OPN1SW PRPH2 RHO RS1 TULP1
NR2E3 OPN1SW PRPH2 RHO RS1 TULP1
AIPL1 ATP1B2 CRB1 NR2E3 OPN1SW PRPH2 RHO RS1 TULP1 UCHL3
AIPL1 ATP1B2 CRB1 NR2E3 OPN1SW PRPH2 RHO RS1 TULP1 UCHL3 VLDLR
AIPL1 ATP1B2 CRB1 NR2E3 OPN1SW PRPH2 RHO RS1 TULP1 UCHL3 VLDLR
AIPL1 NR2E3 OPN1SW PRPH2 RHO RS1 TULP1
AIPL1 ATP1B2 CRB1 NR2E3 OPN1SW PRPH2 RHO RS1 TULP1 UCHL3 VLDLR
AIPL1 ATP1B2 CRB1 NR2E3 OPN1SW PRPH2 RHO RS1 TULP1 UCHL3 VLDLR
AIPL1 ATP1B2 CRB1 NR2E3 OPN1SW PRPH2 RHO RS1 TULP1 UCHL3
AIPL1 ATP1B2 CRB1 NR2E3 OPN1SW PRPH2 RHO RS1 TULP1 UCHL3 VLDLR
AIPL1 ATP1B2 CRB1 NR2E3 OPN1SW PRPH2 RHO RS1 TULP1 UCHL3 VLDLR
AIPL1 ATP1B2 CRB1 NR2E3 OPN1SW PRPH2 RHO RS1 TULP1 UCHL3 VLDLR
AIPL1 ATP1B2 CRB1 NR2E3 OPN1SW PRPH2 RHO RS1 TULP1 UCHL3 VLDLR
AIPL1 ATP1B2 CRB1 NR2E3 OPN1SW PRPH2 RHO RS1 TULP1 UCHL3 VLDLR
AIPL1 ATP1B2 CRB1 NR2E3 OPN1SW PRPH2 RHO RS1 TULP1 UCHL3 VLDLR
AIPL1 ATP1B2 CRB1 NR2E3 OPN1SW PRPH2 RHO RS1 TULP1 UCHL3 VLDLR
AIPL1 ATP1B2 CRB1 NR2E3 OPN1SW PRPH2 RHO RS1 TULP1 UCHL3 VLDLR
AIPL1 ATP1B2 CRB1 NR2E3 OPN1SW PRPH2 RHO RS1 TULP1 UCHL3 VLDLR

Training set genes

Shared features between training set and ranked test set gene

abnorma (eye physiolog mal photoreceptor o eament morpholog Genes in module_28 ent photoreceptor outer-gegm ecair of the degenerate retina Simultaneous mutation detection 90 retinal disease gènes in multip patients using/a custom-designe 00-kb retinal remequencing chi normality of the posterior segme Abnormality of the fundus Temporal regulirement of th alternative-splicing factor Strs1 f th rod and cone genes in a h del of ekhanded S-cons syndrome. sensory perception of light stimulus abnormal eye electrophysi visual perce Retinal remodeling triggered receptor degens tal corie elect clin D1 fine-tunes the neur output of embryghic /etifial The developments for the development of the second s lenserierdispasis i elemente patterns of PECRA transcription factor and its downstream targets Critical differences during human and mouse of development.

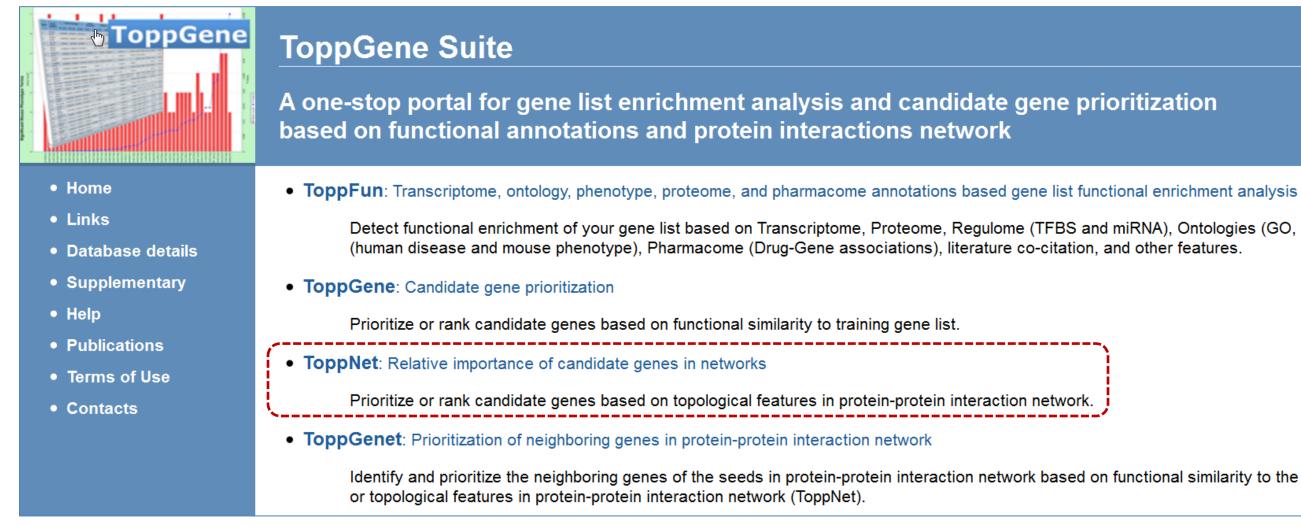
abnormal neuron morphology

abnormal retinal layer morpholog

vision'eye phenotype mai posterion'eye segmer moliphology phormal sensory neuron

al somatic sensory

abnormai rętina morphology abnormai somatic nervous syst motphology abnormai ocular fundus morpho


> ormal retifial photorecepto motohology ormal retifial nebronal laye motohology bnormal eye morphology nal reting photoreceptor is

Ranked gene from Test set

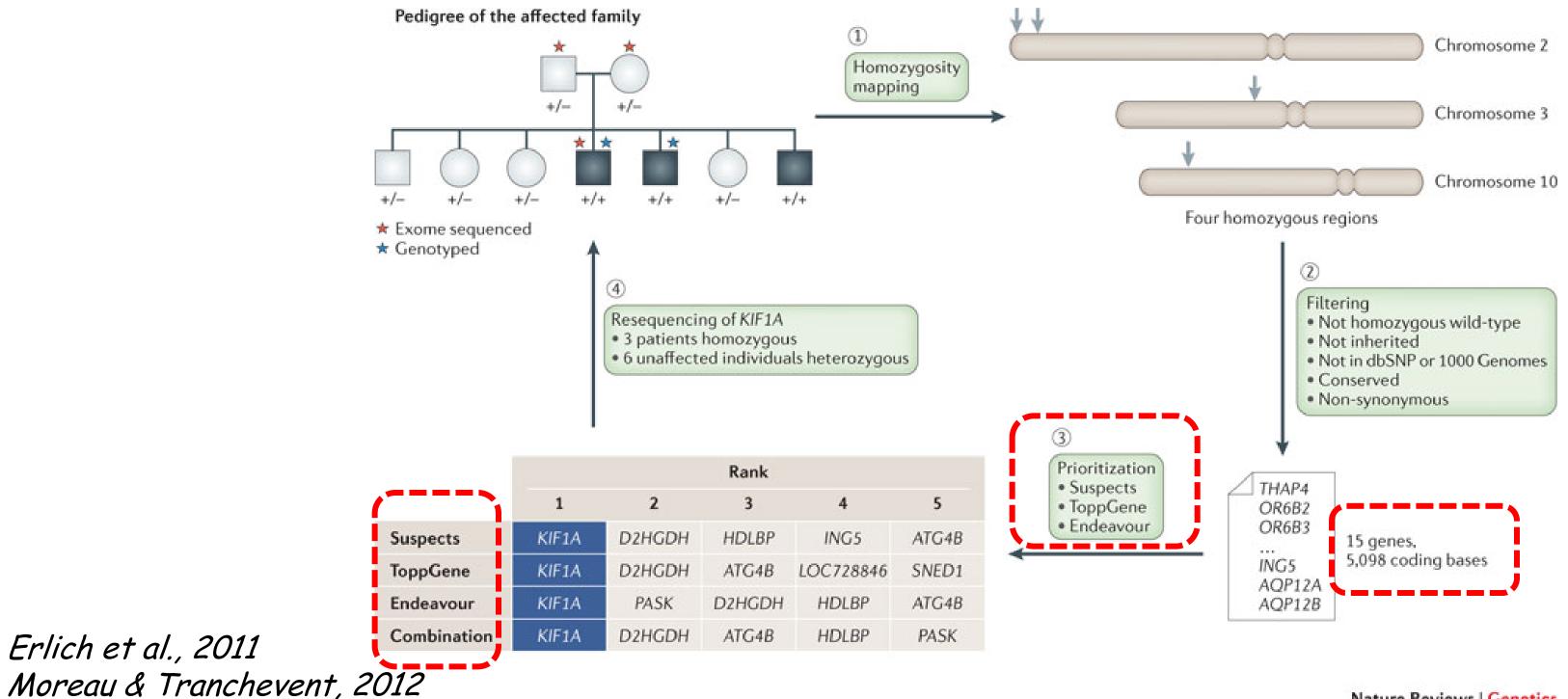
Cytoscape- or Gephi-compatible

Training set: Crb1 Vldlr Tulp1 Rho Atp1b2 Uchl3 Prph2 Aipl1 Rs1 Nr2e3

ToppNet: http://toppgene.cchmc.org

ToppNet: Relative importance of candidate genes in protein-protein interaction network

Example gene sets:	HGNC Symbol Entrez ID (click on "HGNC Symbol" or "Entrez II	D" to use the example training and test s	et of genes)	
Symbol Types	HGNC Symbol	•	Entrez ID	~
Training Gene Set:	Crb1 Vldlr Tulp1 Rho Atp1b2 Uch13 Prph2 Aip11 Rs1 Nr2e3	Test gene set	611 27092 140576 80737 5584 84262 1543 2159 10645 83746 442191 9616	
			4519 8484 9778 1539 26986	
			4674 10013 11131 102725029	

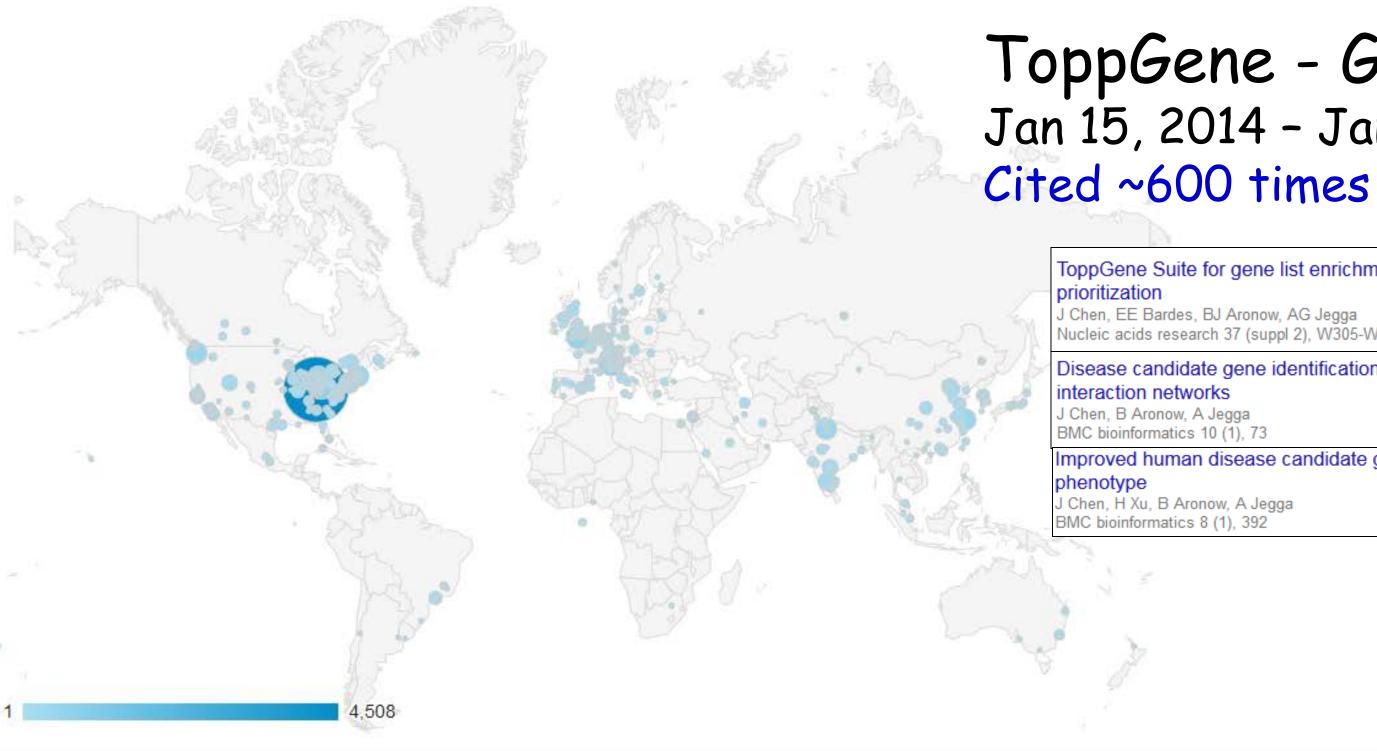

Test set: OPN1SW + 99random genes

Detect functional enrichment of your gene list based on Transcriptome, Proteome, Regulome (TFBS and miRNA), Ontologies (GO, Pathway), Phenotype

to training gene list.	
s in protein-protein interaction network.	

Identify and prioritize the neighboring genes of the seeds in protein-protein interaction network based on functional similarity to the "seed" list (ToppGene)

- Familial case of hereditary spastic paraparesis (HSP) Whole-exome sequencing
- four largest homozygous regions between two of the three affected brothers were considered to be potential disease loci, containing a total of 44 genes.
- After filtering step, 15 candidate genes remained.
- The list was then prioritized using three computational methods (namely, Suspects, ToppGene and Endeavour)
- The prioritization criteria were a list of 11 seed genes that were obtained through a review of the literature and are known to be associated with forms of HSP in which mutations lead to the core HSP phenotypic traits (that is, progressive lower-extremity spastic weakness, hypertonic urinary bladder disturbance and mild diminution of lowerextremity vibration sensation) but not to unrelated traits.
- The top-ranking gene from the prioritization was kinesin family member 1A (KIF1A).
- Sanger sequencing confirmed that KIF1A is the causative variant -(Ala255Val variant)


GO Biologi	ical Process		Human Phenotype			Mouse Phenotype		
Annotations:		10.887	Annotations:		8,755	Annotations:		8,331
Genes:			Genes:			Genes:		5,593
		Updated Nov 10, 2014			Updated Oct 30, 2014			Updated Nov 11, 2014
GO Cellula	r Component				377k milli	on records		
Annotations:		1,529				\mathbf{S}	UN I ECUI US	
Genes:		18,865 Updated Nov 10, 2014						
GO Molecu	Ilar Function				(gene-2-N	NP)		
							•	
Annotations:		3,381						
Genes:		18,326 Updated Nov 10, 2014						
Pathways		00000010110,2014	Domains			Pubmed		
-		2.022	Annatationa		45.004			C10 702
Annotations:	BioSystems: BIOCVC	3,633	Annotations:	Gene3D	15,281	Annotations:	GeneRIF	618,793 391,304
	BioSystems: BIOCYC	319		InterPro	8,171		Pubmed	227,489
	BioSystems: KEGG	186		PROSITE		Genes:	Publied	33,563
	BioSystems: Pathway Interaction Database	1,400		PROSITE				Updated Nov 10, 2014
	BioSystems: REACTOME	229		ProDom	4,115 138			000000110110,2011
	BioSystems: WikiPathways GenMAPP	67		SMART	681	1 /		
	MSigDB C2: BioCarta	217	Genes:	SWART	16,924		n records (a	oene-
	MSigDB C2: SigmaAldrich	217	Genes.		10,524	=		90110
		10				2 DAATN		
	MSigDB C2: Signaling Gateway MSigDB C2: Signaling Transduction KE	28				2-PMID)		
	MSigDB C2: SuperArray	20						
Jan 22, 2014	PantherDB	152						
Aug 29, 2014		321						
Aug 20, 2014	Pathway Ontology SMPDB	333						
Genes:	SWIEDD	10,567						
		10,507						
Interaction	S		Cytoband			TFBS		
Annotations:		15,886	Annotations:		2,354	Annotations:		615
Genes:		15,887 Updated Oct 29, 2014	Genes:		34,661	Genes:		9,770
miRNA		opualed Oct 25, 2014	Gene Families			Coexpression		
						·		
Annotations:	MO: DD		Annotations:			Annotations:		9,016
	MSigDB		Genes:		6,751			3,515
	MicroRNA.org	2,200					es University of Thessaloniki	5
	PITA	677				MSigDB C2: Broad In		2,962
	PicTar	178				MSigDB C2: Columbi	-	1
	TargetScan	249				MSigDB C2: Dana-Fa		16
	miRTarbase	324				MSigDB C2: Giannin		2
2	miRecords_TarBase	144				_	opkins University School of Medicine	5
Genes:		19,844				MSigDB C2: Laborate	ore CarlVieN	2

Drugs		l c	Disease		
Annotations:		79,494 A	Annotations:		
	Broad Institute CMAP	12,200 A	ug 12, 2011	CTD	
Oct 9, 2014	CTD	10,866		Clinical Variations	
	CTD Marker	1,729		GWAS	
	CTD Therapeutic	1,986		OMIM	
Apr 18, 2013	Drug Bank	3,803	Genes:		
Feb 20, 2013	Stitch	48,910			
Genes:		20,154			

	TFBS		
,354	Annotations:		615
,661	Genes:		9,770
	Coexpress	sion	
151	Annotations:		9,016
,751		GeneSigDB	3,515
		MSigDB C2: Aristoteles University of Thessaloniki	5
		MSigDB C2: Broad Institute	2,962
		MSigDB C2: Columbia University	1
		MSigDB C2: Dana-Farber Cancer Institute	16
		MSigDB C2: Giannina Gaslini Institute	2
		MSigDB C2: Johns Hopkins University School of Medicine	5
		MSigDB C2: Laboratoire CarMeN	2
		MSigDB C2: Michigan State University	6
		MSigDB C2: Stanford University	2
		MSigDB C2: Steinbeis Transfer Center for Proteome Analysis	1
		MSigDB C2: Telethon Institute for Child Health Research	4
		MSigDB C2: University Pierre and Marie Curie	2
		MSigDB C2: University of Liverpool	2
		MSigDB C2: University of Washington	392

11,945 4,489 4,406 291 2,759 8,217

ToppGene Knowledgebase - Database Snapshot -~12 million records 52

									-
Sessions ?	Ŷ	Pages /	Session ?		Avg. Session Duration	n (?)		% New Sessions ?	
% of Total: 1	27,929 00.00% (27,929)		Avg for View	6.55 6.55 (0.00%)	Avg		00:08:13 :08:13 (0.00%)	Avg	for Vi
Country 🕐			Sessions ?	Ŷ	Pages / Session		Avg. Session Dura	tion ?	
			% of Tota	27,929 al: 100.00% (27,929)	Avg for View	6.55 (0.00%)	Å	00:08:13 Avg for View: 00:08:13 (0.00%)	
1. 🔤 United States				13,748 (49.22%)		6.88		00:08:06	
2. 🚺 Italy				2,088 (7.48%)		5.60		00:07:05	
3. 📁 China				1,901 (6.81%)		7.04		00:09:37	
4. 📰 United Kingdom				1,757 (6.29%)		5.97		00:09:10	
5. 🔚 India				1,390 (4.98%)		6.32		00:09:06	
6. [•] Canada				820 (2.94%)		7.81		00:09:04	
7. 🥅 Germany				804 (2.88%)		5.13		00:06:28	
8. 🚾 Spain				579 (2.07%)		6.82		00:10:54	
9. 🚺 Belgium				563 (2.02%)		8.32		00:11:46	
10. 🔲 France				457 (1.64%)		6.49		00:10:01	

ToppGene - Google analytics: Jan 15, 2014 - Jan 14, 2015 Cited ~600 times

e for gene list enrichment analysis and candidate gene	302	2009
s, BJ Aronow, AG Jegga arch 37 (suppl 2), W305-W311		
ate gene identification and prioritization using protein /orks A Jegga s 10 (1), 73	189	2009
onow, A Jegga 8 8 (1), 392	121	2007
	/	

c	2	advanced	▦	C	Ξ	7	1111
	Во	unce Rate					
29.10%						21	.28%
ew: 29.02% (0.30%)			Avg	for Vi	ew: 2	1.28%	6 (0.00%

Teaching new tricks to old dogs

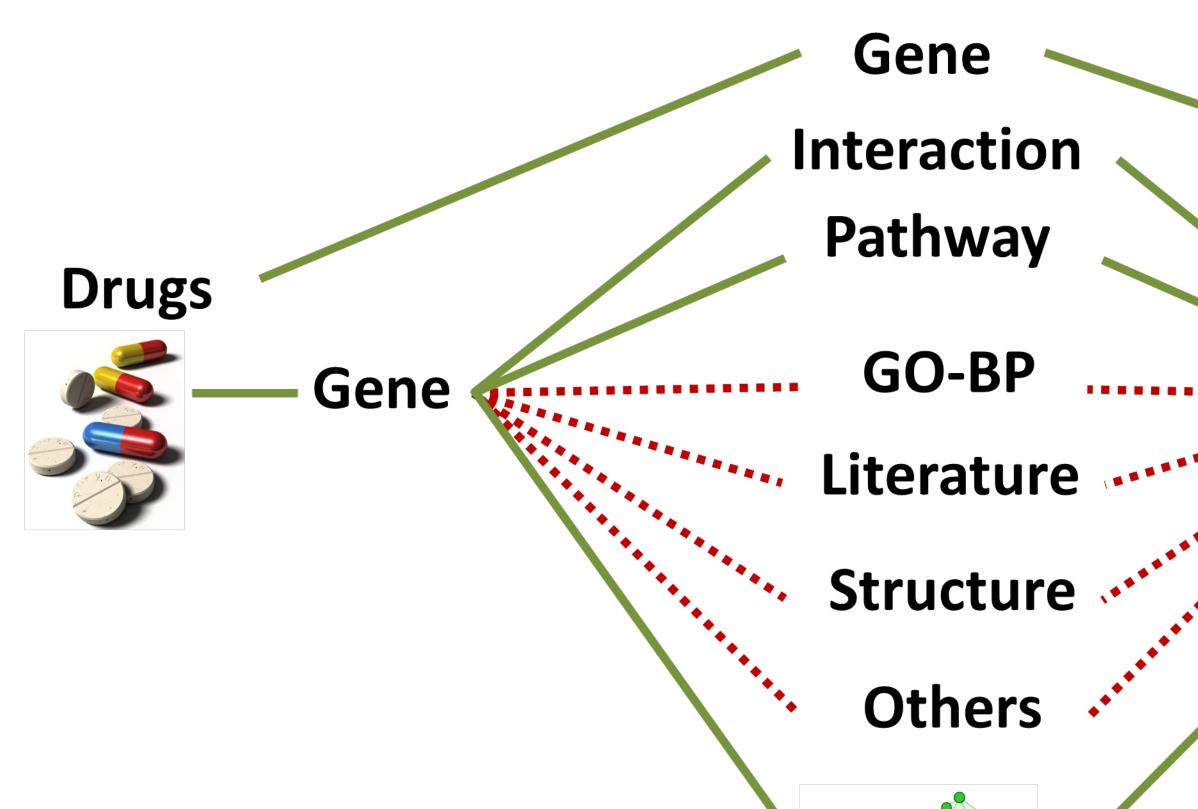
Drug Repositioning/ Repurposing

54

New Drug Development - Problems • Expensive - 1 new drug - > ~\$1 Billion • Time consuming - >10 y - 10-15 years on averagefor an experimental drug to travel from the lab

- to patients.
- Post-marketing drug failure: Additional surfacing of drug-related adverse effects withdrawal.
- Decreased return on investment by 50% in 10 y - patent expiry (generics, etc.)
- High attrition Only five in 5,000 compounds that enter preclinical testing make it to human testing. Only 1 of these 5 tested in humans is approved

Drug Repositioning or Drug repurposing

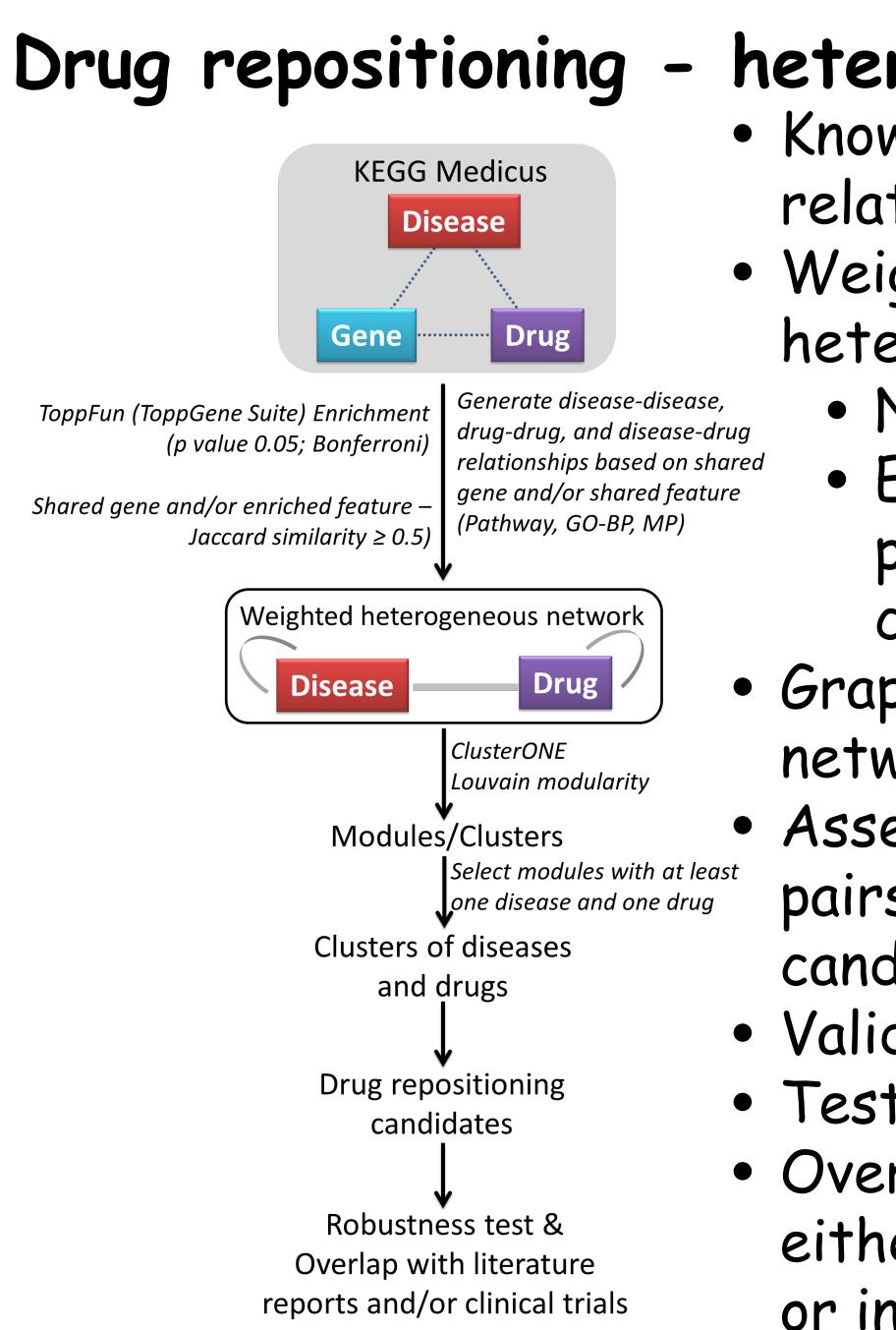

- Also referred to as drug reprofiling or drug retasking Reinvestigation of drug candidates that have not succeeded in previous advanced clinical trials, for reasons other than safety,
- Search for potential <u>new</u> therapeutic applications of <u>existing</u> compounds

Drug repositioning - Benefits & Examples

- Reduction of time and costs Since the drug is already approved - initial timeline can be bypassed (1.5 to 2 years of preclinical and Phase I development time)
- Better/smart resource utilization
- De-Risking lower development risk for investor
- Lower patient risk known drug-related adverse effects

Sildenafil (Viagra): From failed antihypertensive to erectile dysfunction and to orphan disease Thalidomide: From a dangerous drug to a promising start Azidothymidine: Anti-cancer to AIDs Ropinirole and Pramipexole: Parkinson's Drugs for Restless Legs Syndrome **Clioquinol:** Antiprotozoal as a lead compound for neuroprotection Finasteride: Prostate cancer to baldness/hair loss

Connecting approved drugs to orphan diseases

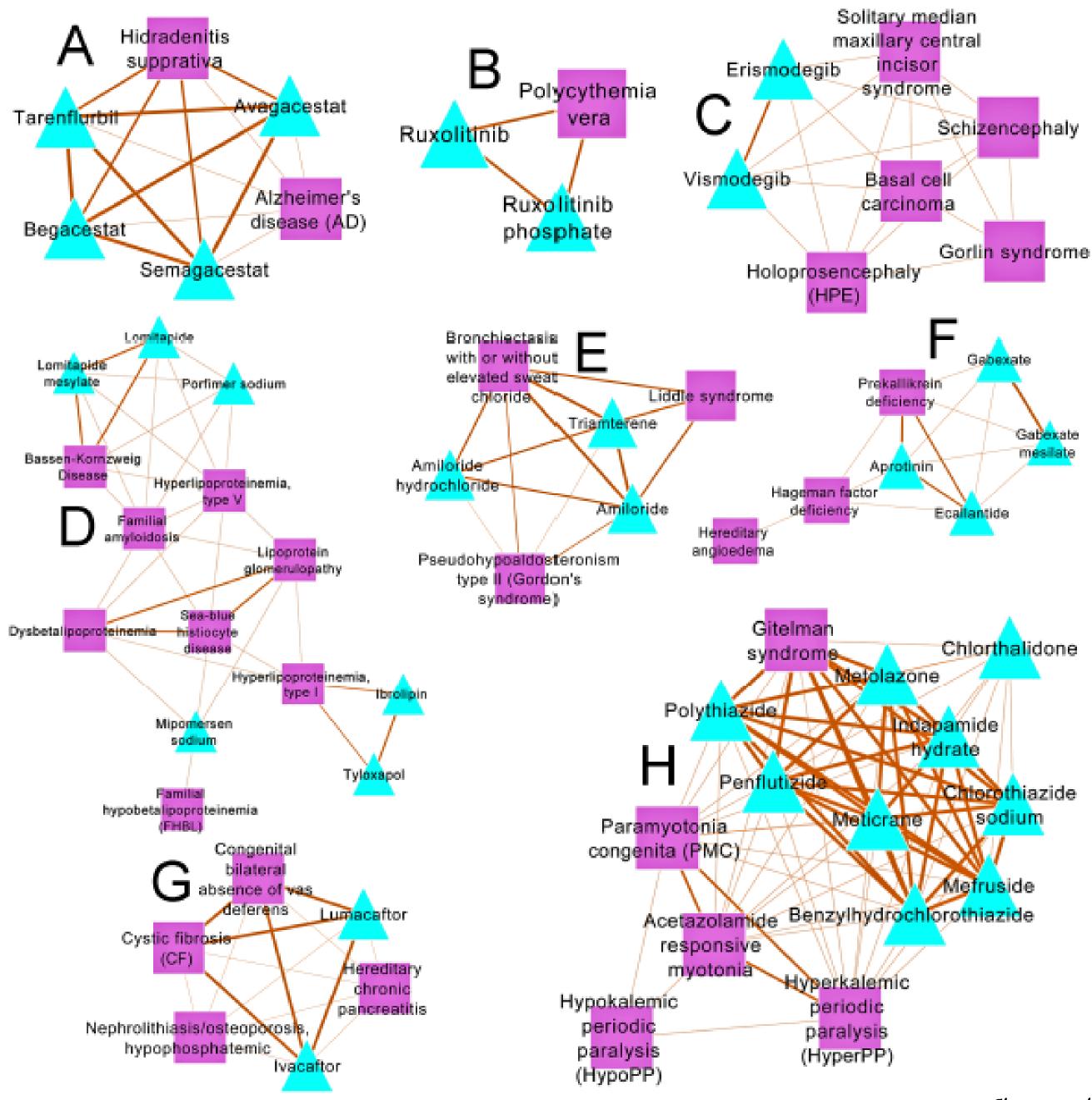

- Direct and Indirect connections (based on shared features)
- Module comparison
 - Shared genes
 - Shared enriched pathways

Orphan Diseases

Gene

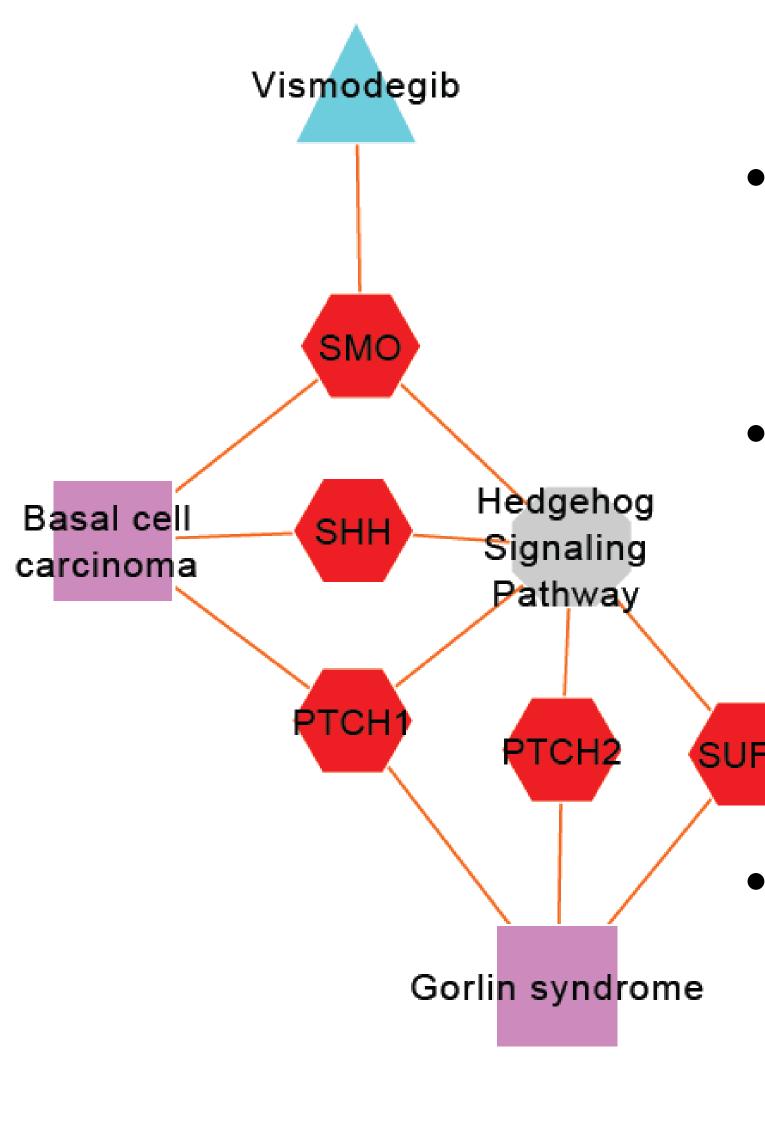
Modules

Gene-based Phenotype-based



- Weighted disease and drug heterogeneous network.
- network to identify modules
- Validation:
- Test for robustness

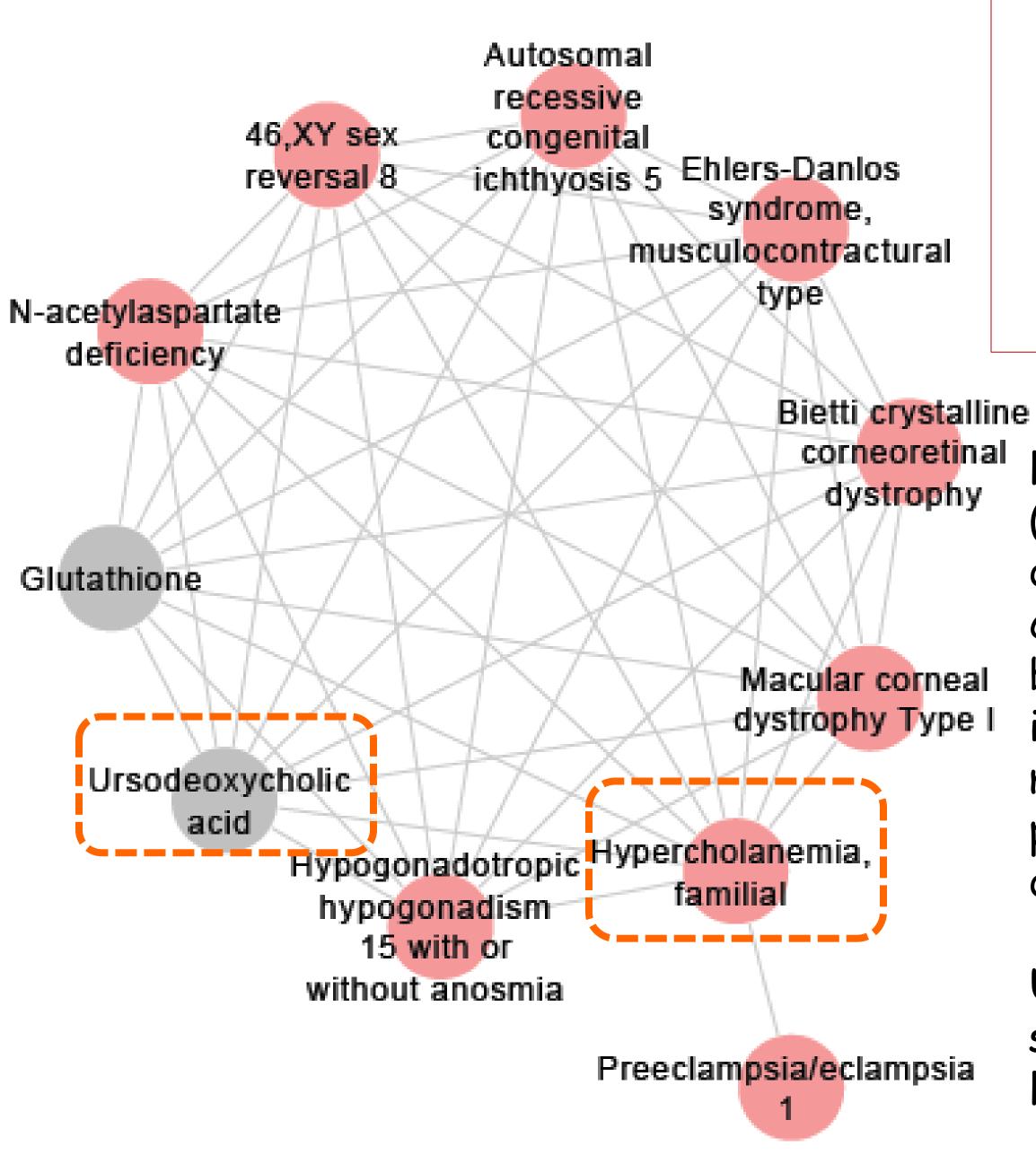
heterogeneous network clustering Known disease-gene and drug-target relationships from the KEGG database • Nodes = drugs or diseases • Edges = shared gene, biological process, pathway, phenotype or a combination of these features Graph clustering of the weighted • Assemble all possible drug-disease pairs (putative drug repositioning candidates) from these modules


Overlap with drug indications that were either reported in published literature or investigated in clinical trials. Chao et al., 2014 BMC Systems Biology

Network of clusters harboring some of the drug repositioning candidates

60 Chao et al., 2014 BMC Systems Biology

Vismodegib and Gorlin syndrome

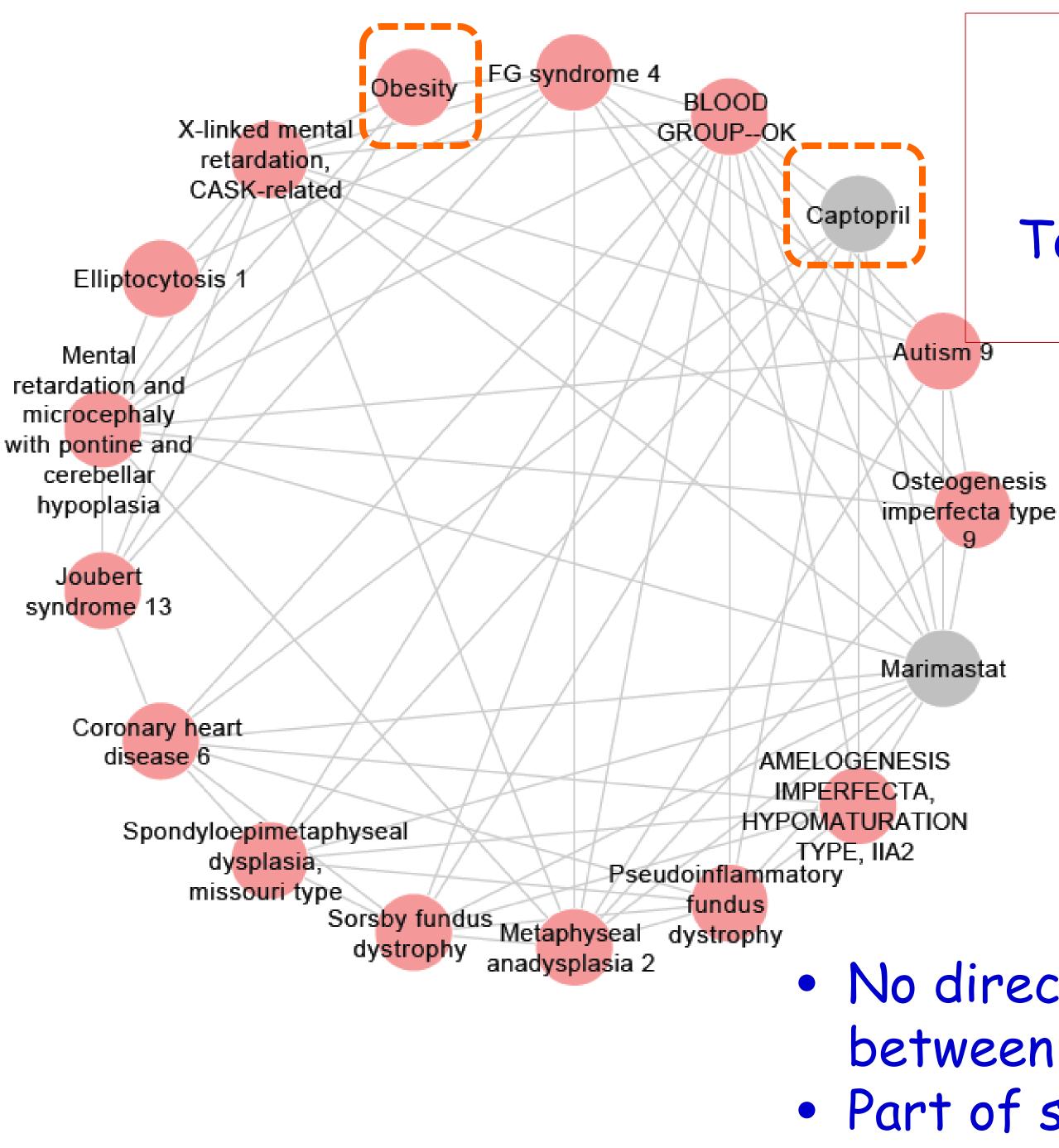

- advanced and metastatic BCC
- NCT00957229).

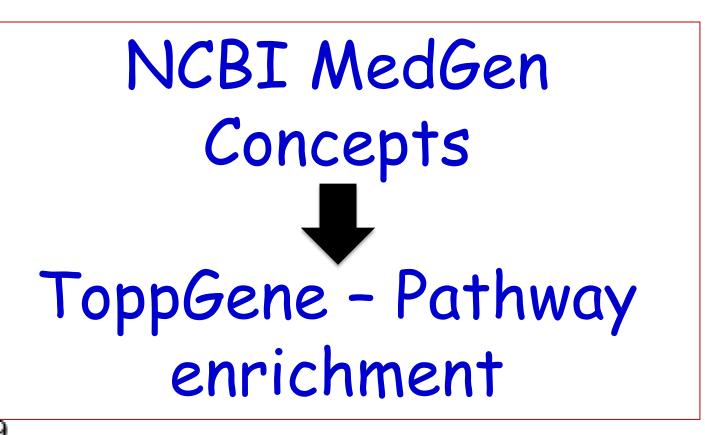
• Cluster with drugs vismodegib and erismodegib and diseases basal cell carcinoma (BCC) and Gorlin syndrome. • Vismodegib - oral inhibitor of the hedgehog pathway; first drug approved by the US FDA for the treatment of locally Reported efficacy of vismodegib in patients with Gorlin syndrome (basal cell nevus syndrome), a rare autosomal dominant disorder in which those with the disease are prone to developing multiple SUFU BCCs at an early age (clinical trial

Although vismodegib and Gorlin syndrome do not share a common gene, they are still clustered together in our analyses because of the pathway-based connectivity (hedgehog signaling pathway)

Chao et al., 2014 BMC Systems Biology

All Diseases - Enrichment Networks & Modules




NCBI MedGen Concepts

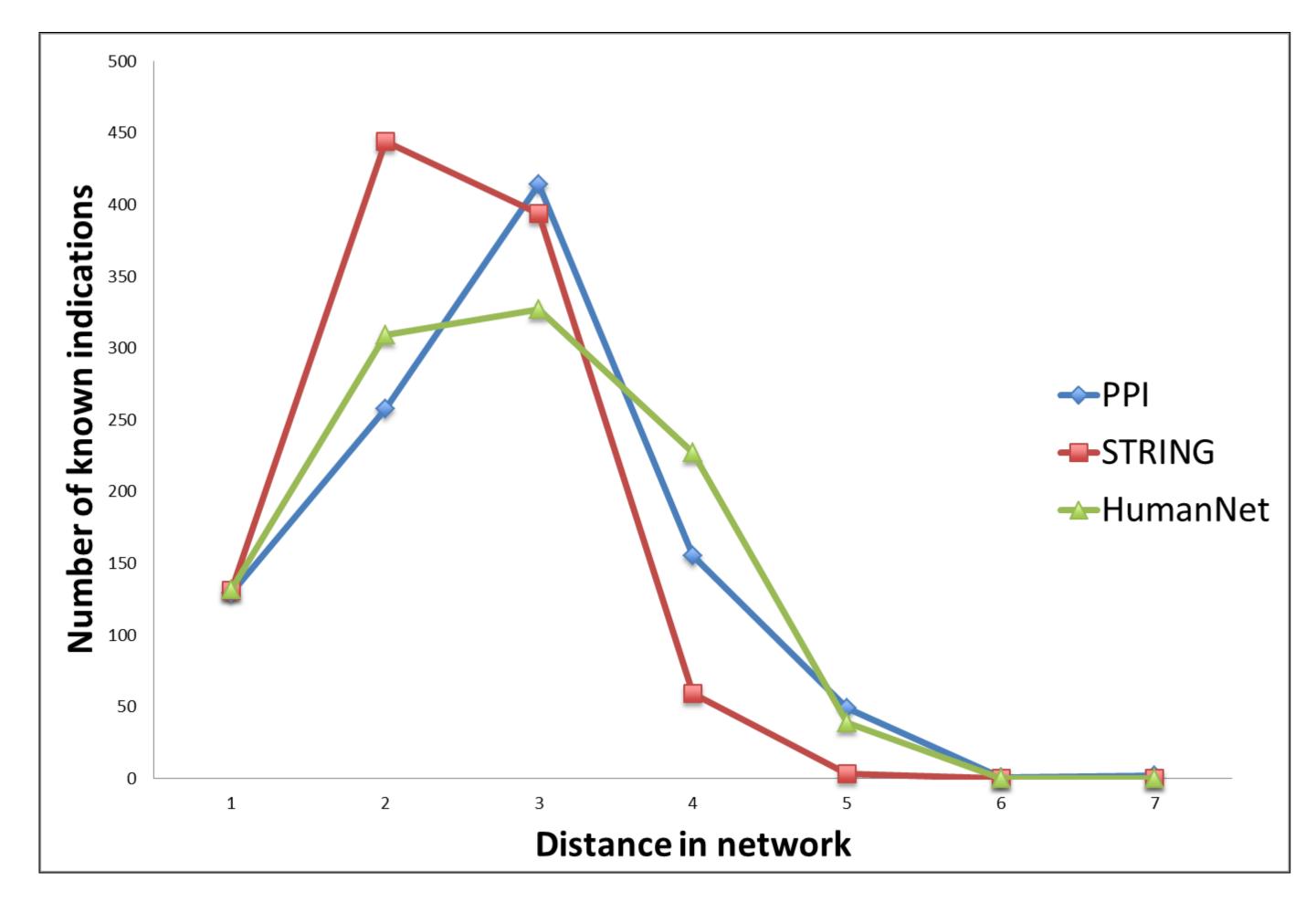
ToppGene - Pathway enrichment

Familial hypercholanemia (FHCA) is a very rare genetic disorder characterized clinically by elevated serum bile acid concentrations, itching, and fat malabsorption reported in patients of Old Order Amish descent.

UDC (gall stones and PBC) symptomatic treatment for FHCA

Mice with diet induced obesity showed reduced food intake and body weight and improved insulin sensitivity following captopril (ACE inhibitor) treatment (Premaratna et al., 2011)

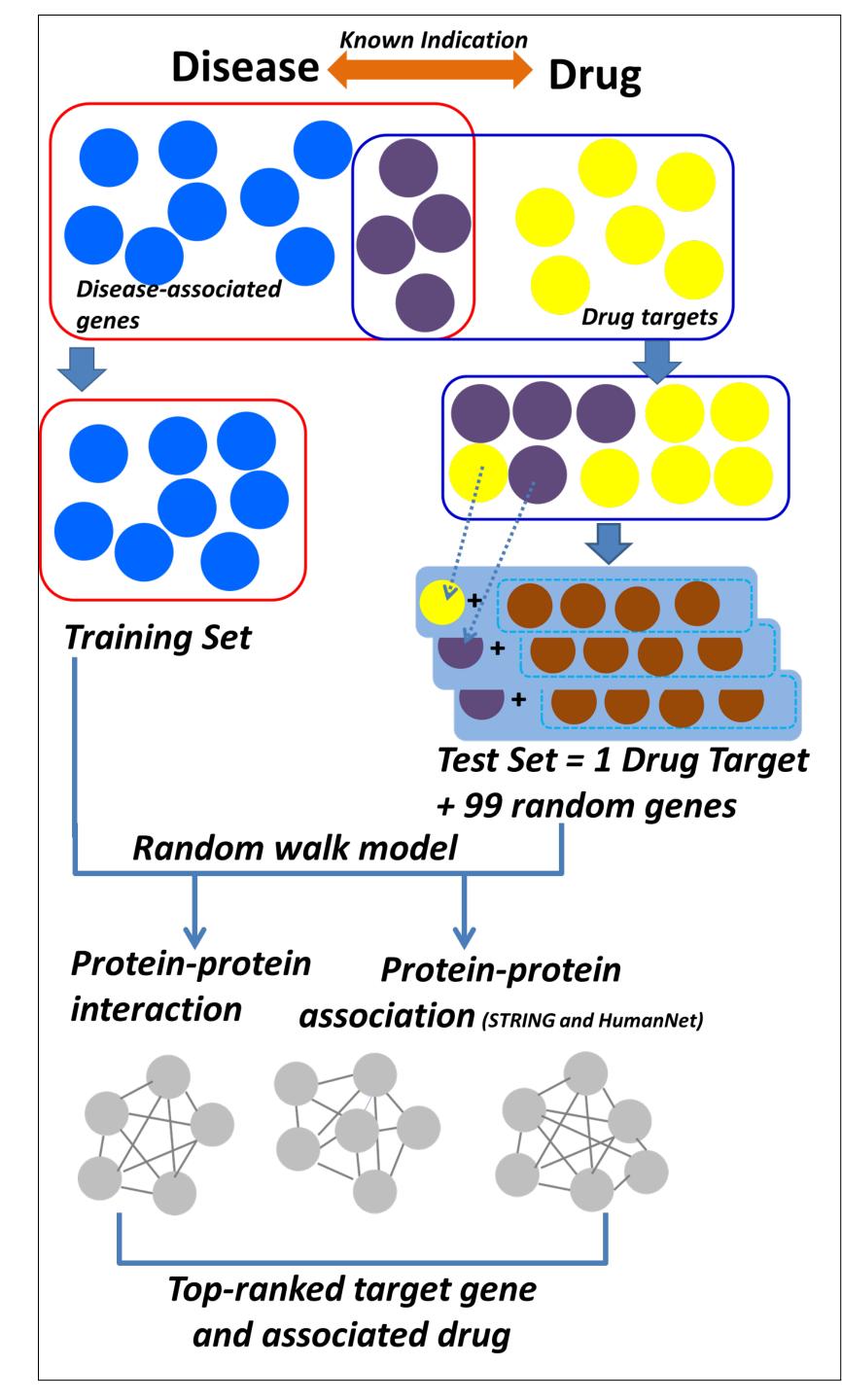
 No direct connectivity between obesity & captopril • Part of same module 63


Drug repositioning candidate discovery Random walk model

- Hypothesis: Drug targets tend to be located in proximity to the disease-associated genes in protein-protein interaction and association networks.
- Method: Random walk model
- Validation: Using known indications as a gold standard
- Results:
 - ✤ Overall area under the ROC curve of 0.95. Of the 1041 known indications analyzed, about 92% (957 indications) were ranked among the top 20% suggesting that novel indications can be effectively
 - identified by our approach.
- Robustness test
- Drug repositioning for ODs: 172 rare disorders to identify potential drug repositioning candidates.

Chao et al., (under preparation)

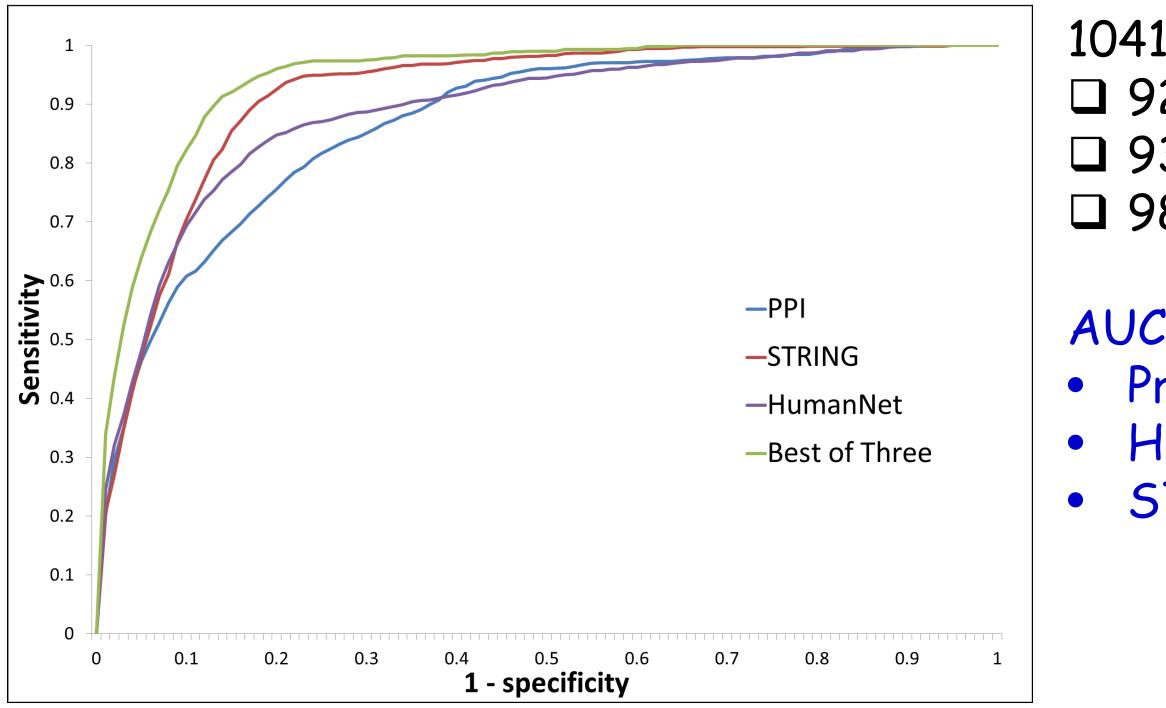
- 1976 known indications (disease-drug pairs) from Kegg Medicus
- Filter out diseases and drugs that do not have a known gene association in the Kegg database of disease genes and drug targets.
- 1041 known indications representing 203 diseases and 588 drugs
- Of the 1041 known indications (disease-drug pairs) only 132 pairs share at least one common gene (i.e., a disease-associated gene is also a drug target). Computed a distance measure between each of the known indication pairs in the human protein interactome.
- Calculated the shortest path for all known indications (i.e., shortest path between a known disease and drug pair) in the protein interactions network. Of the 1041 known indications, we were able to compute the shortest paths for 1008 disease-drug pairs. For the remaining pairs, we were unable to compute the shortest paths because their encoded proteins were either absent in the interactome or were not reachable (e.g., a disease protein and drug target present in two different connected components of the protein interactome).


Chao et al., (under preparation)

Average distance between a disease-drug of known indications in PPI is 3.75 Protein association networks:

- STRING: 3.38
- HumanNet: 3.74

Chao et al., (under preparation)


- a disease
- target gene.

ODs:

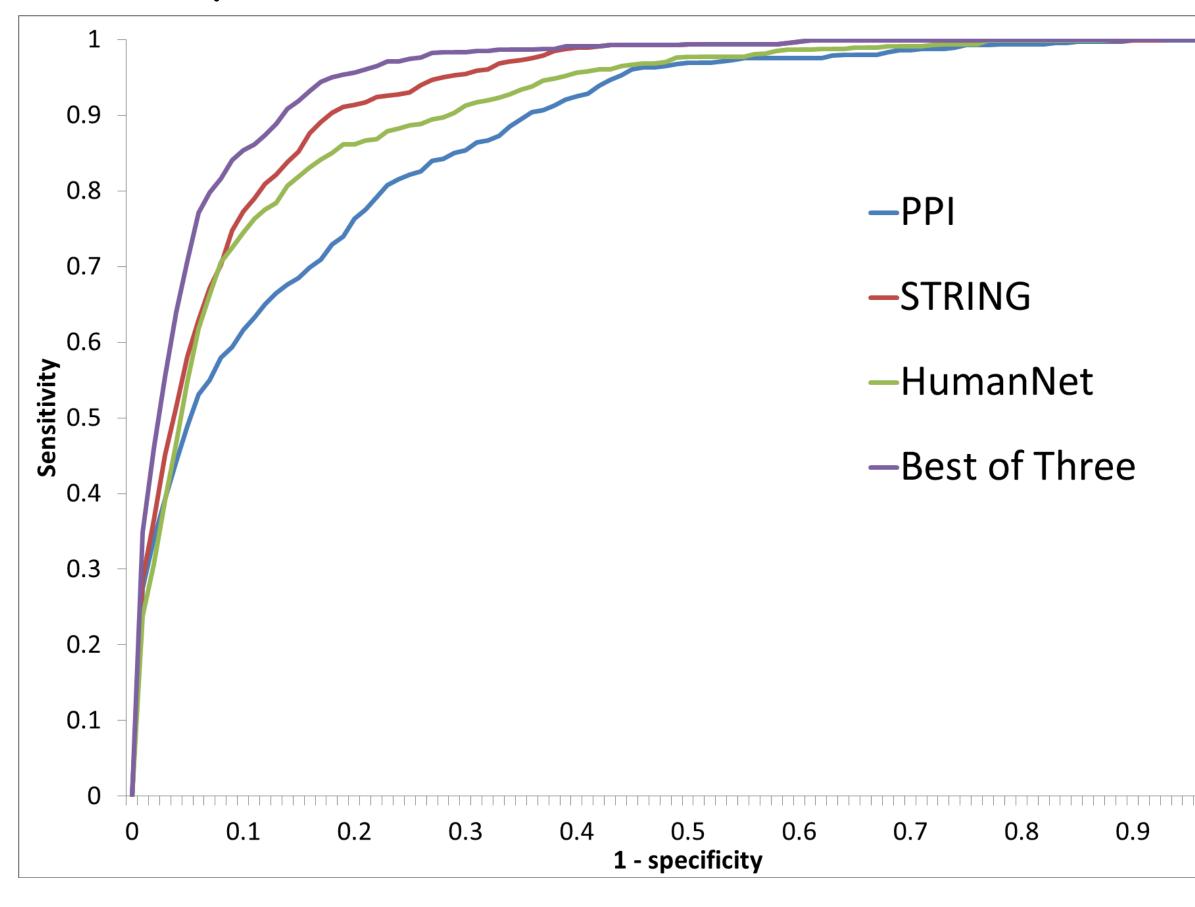
• Goal: Check whether using diseaseassociated genes as training set, the indicated drug can be identified by ranking the drug targets using random walk model. Known Indications from KEGG Training Set: Genes associated with

Test Set: Corresponding drug target gene plus 99 random genes • Prioritization using Random Walk -Record the ranking of the drug

Training set: OD-associated genes Test set: Entire druggable gene set of KEGG and DrugBank Perform prioritization Retrieve the top ranked five genes and the drugs targeting these genes. Chao et al., (under preparation)

Ranked in top 10%:

- Protein interactome: 564 pairs
- STRING: 654 pairs
- HumanNet: 683


Combined (PPI+STRING+HumanNet) AUC score: 0.95 Over 82% of the pairs had at least one drug-target gene ranked within top 10%

1041 known indications
928 pairs in protein interactome
938 pairs in STRING
984 pairs in HumanNet

AUC scores:
Protein interactome: 0.87
HumanNet: 0.89
STRING: 0.92 in STRING

Chao et al., (under preparation)

- No "good" gold standard available for drug repositioning
- Clinical trials: generated a list of indications where a drug from our known indications is being investigated for a different disease
- Compiled 668 disease-drug pairs from clinical trials where an approved drug with a known indication was investigated as a therapeutic intervention for a different disease(s).

Prioritization analysis:

- PPI: 0.88
- STRING: 0.93
- HumanNet: 0.91

Chao et al., (under preparation)

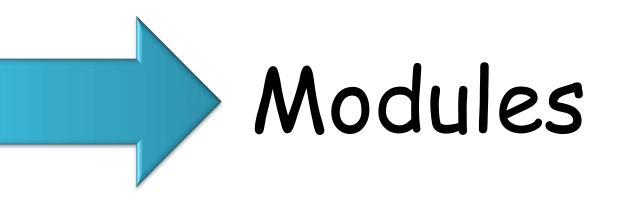
OD networks based on similar phenotype (symptoms)

- 1. More than 4000 ODs without causal gene information.
- 2. Build a network of <u>ALL</u> diseases (OD and non-OD) based on shared phenotype.
- 3. Overlay this network with gene based disease (OD and non-OD) network.
- 4. Identify clusters of networks where:
 - a. Edge represents shared gene only
 - b. Edge represents shared symptoms/phenotype only
 - c. Edge represents both shared gene and phenotype
- 5. Overlay the combined network with known drugs (drug – target database)

70

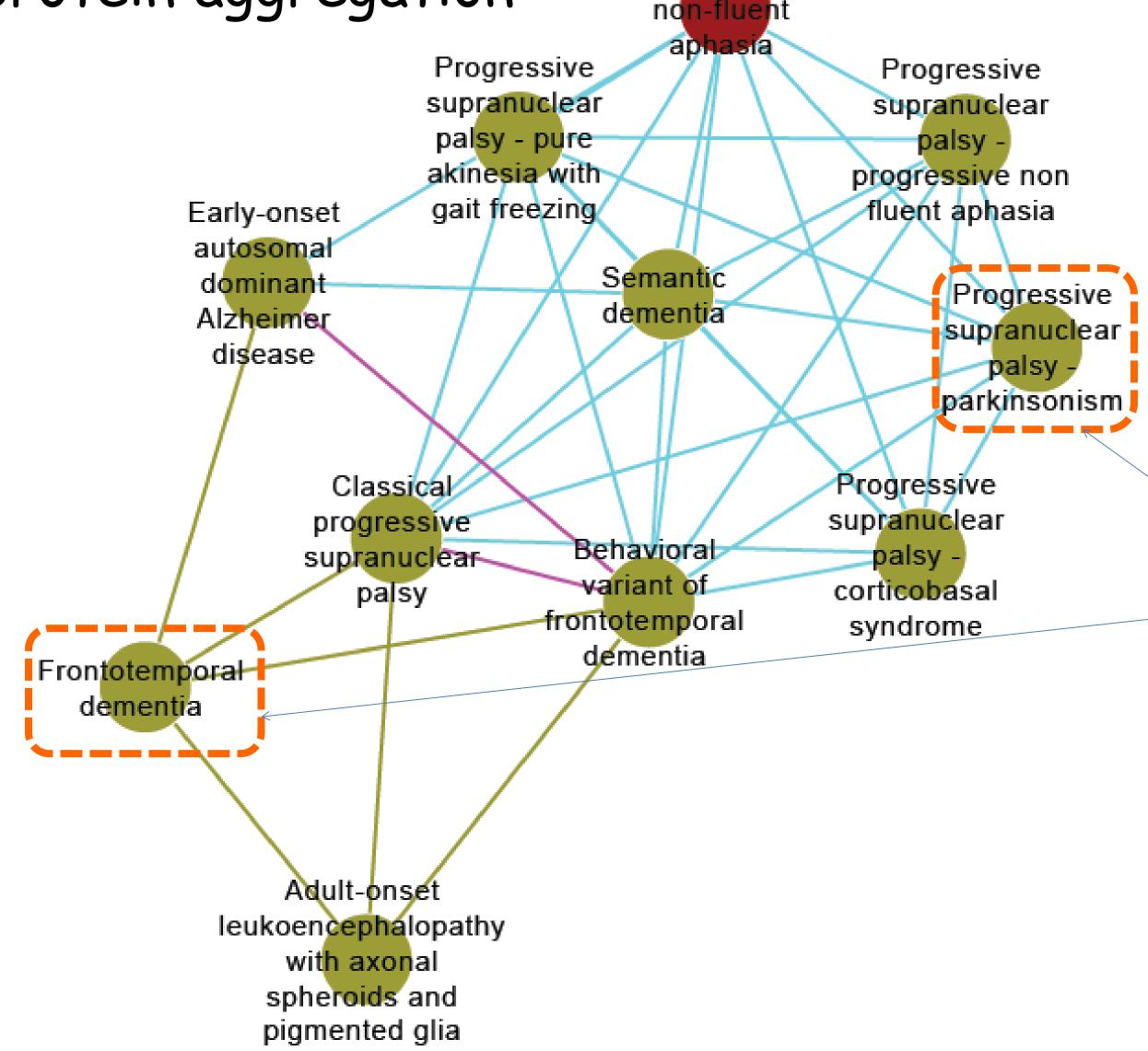
ODN

Shared Genes


 Shared Phenotypes - Shared HP -Resnik Similarity score

ODN • Node: ODs

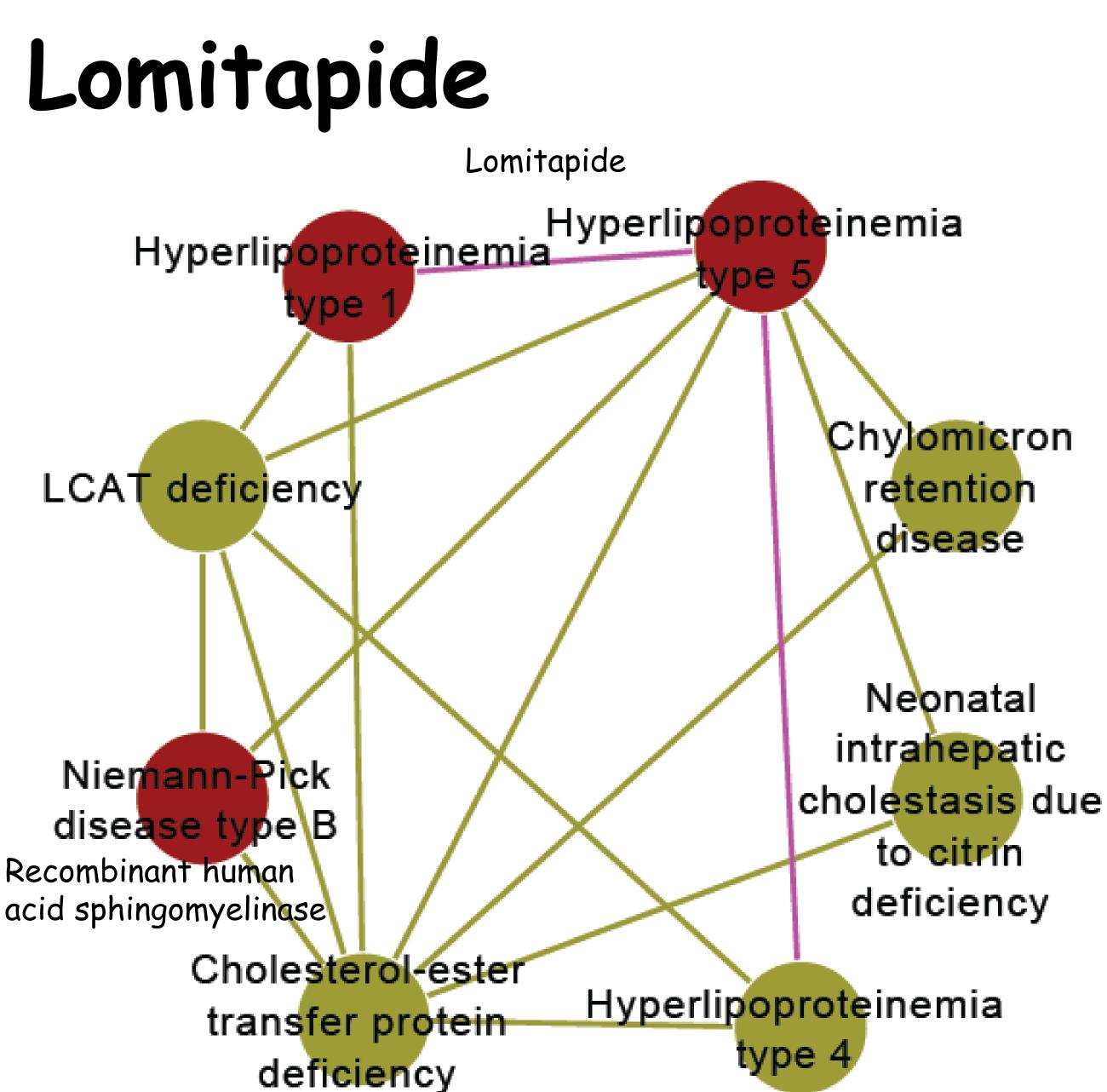
• Edge:


3209 nodes 13934 edges

• Shared Genes Shared Phenotypes • Both

71 Jegga et al., (under preparation)

Methylthioninium Inhibitor of Tau protein aggregation


Blue edge: Shared gene Green edge: Shared phenotype

Pink edge: Shared gene and phenotype

Red nodes: Orphan drug available (as per Orphanet)

Orphan drug designation - Europe

72 Jegga et al., (under preparation)

Blue edge: Shared gene Green edge: Shared phenotype

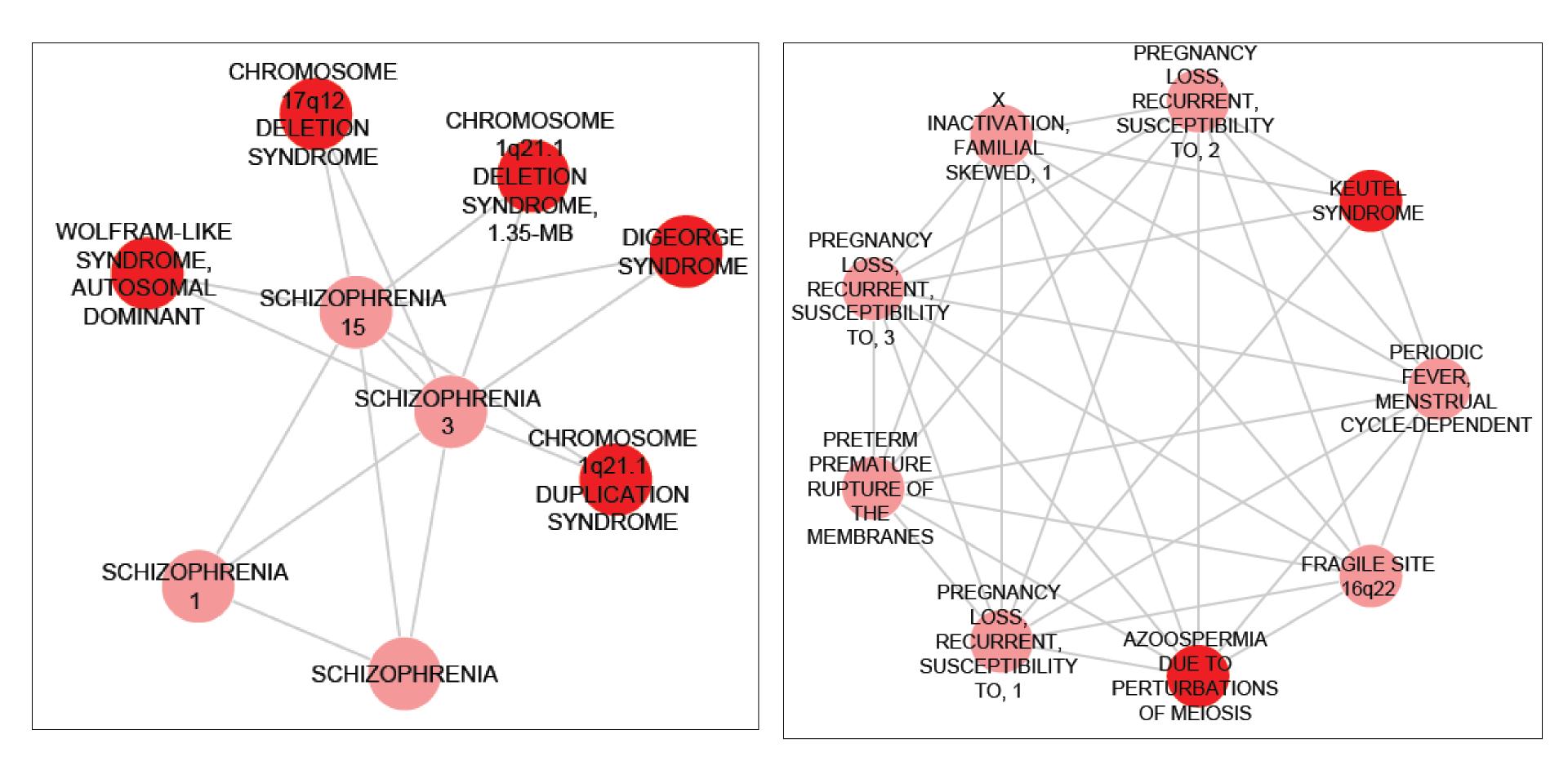
Pink edge: Shared gene and phenotype

Red nodes: Orphan drug available (as per **Orphanet**)

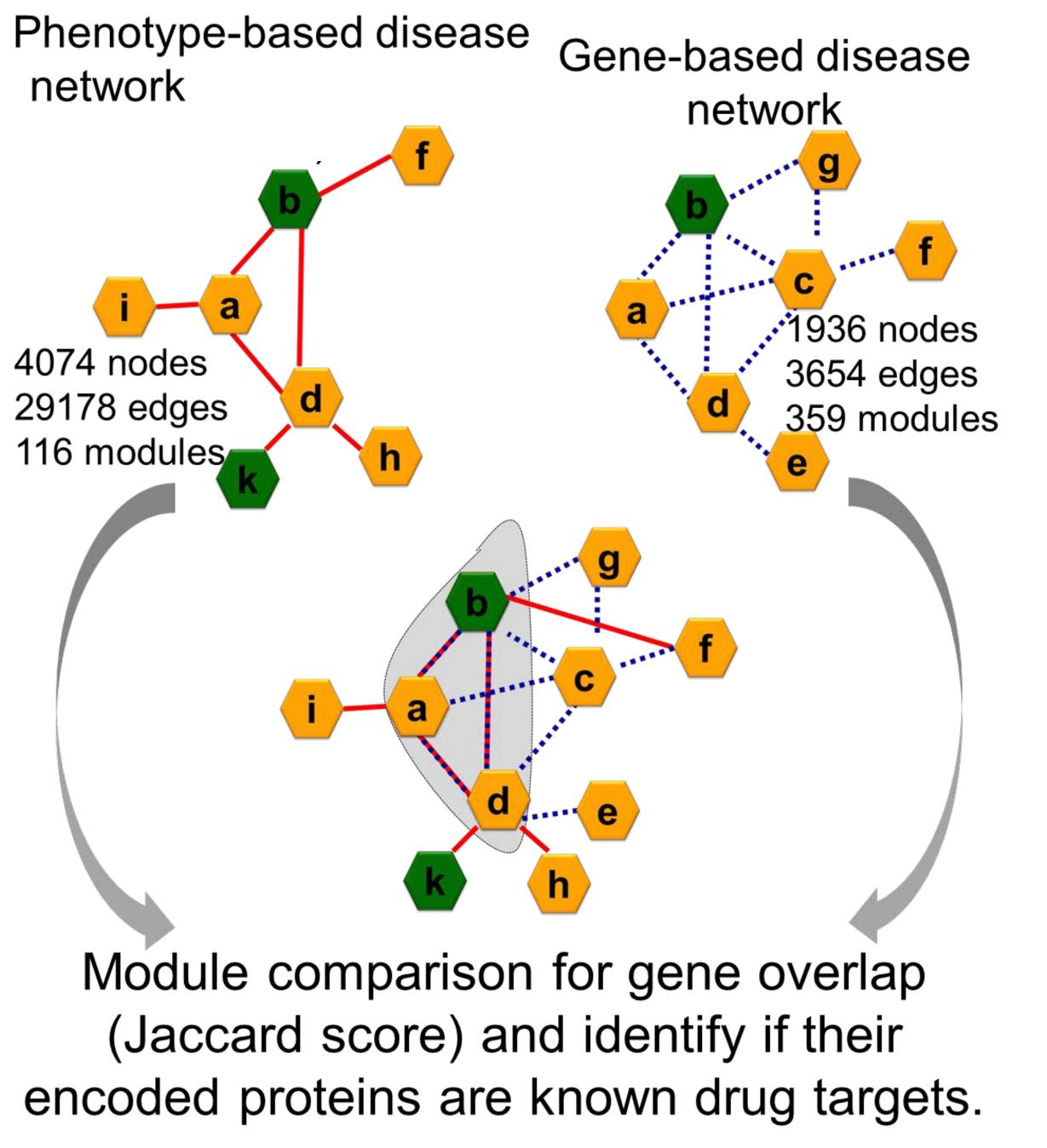
73 Jegga et al., (under preparation)

ODN + non-ODN (OMIM X OMIM)

- Shared Genes
- Shared Phenotypes Shared HP -Resnik Similarity score


Disease Network • Node: All Diseases

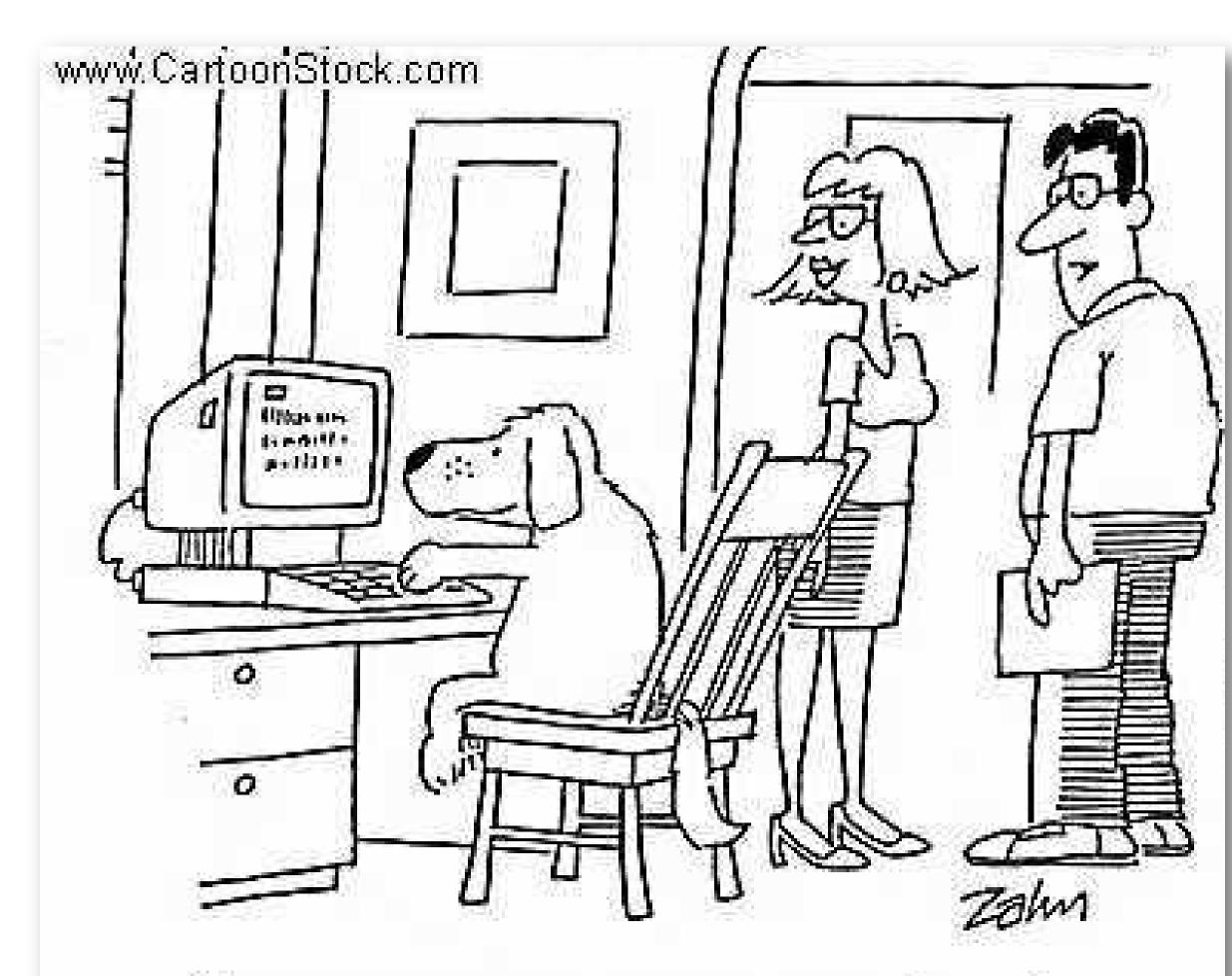
- 4735 Nodes • Edge: (3596 ODs)
 - Shared Genes 32312 edges
 - Shared Phenotypes • Both



74 Jegga et al., (under preparation)

Co-clustering of OD and non-ODs

Red nodes are ODs Edge: Shared phenotype


Jegga et al., (under preparation)

76

Limitations & Future Work

- 1. Lack of a good gold standard for repositioned drugs. Validation (computational) is a challenge.
- 2.Nomenclature issues (OMIM-orphanet-HP-MP, etc. mappings)
- 3. Other metrics for computing module similarity graph alignment-based approaches.
- 4. Incorporating additional features like gene expression data (both disease based and drug based; e.g. Connectivity Map), protein structural data (from PDB) and also additional functional linkage networks (weighted; shared GO terms, etc.).
- 5. Curation of repositioning candidates (literature search, etc.) - ranking/scoring.
- 6.EHR, where possible (OD and common disease networks).

"I was wrong...you can teach an old dog new tricks."

