Idiopathic Pulmonary Fibrosis
IL18R1-Related Molecules as Biomarkers for Asthma Severity and Prognostic Markers for Idiopathic Pulmonary Fibrosis
J Proteome Res. 2023 Sep 21. doi: 10.1021/acs.jproteome.3c00389. Online ahead of print.
ABSTRACT
To determine the role of inflammation-related proteins in predicting asthma severity and outcome, 92 inflammation-related proteins were measured in the asthmatic serum using Olink analysis. Different bioinformatics algorithms were developed to cross analyze with the single-cell or transcriptome data sets from the Gene Expression Omnibus database to explore the role of IL18R1 and related genes in asthma and idiopathic pulmonary fibrosis (IPF). Olink identified 52 differentially expressed proteins in asthma. They were strongly linked to the cytokine-cytokine receptor interaction, TNF, and NF-κB signaling pathway. Seven proteins were found in both single-cell RNA and Olink analyses. Among them, IL18R1 was predominantly expressed in mast cells, and the results suggested enhanced communication between mast cells and CD 8+ T cells. IL18R1 was upregulated in serum and induced sputum and bronchoalveolar lavage fluid of patients with uncontrolled or severe asthma. IL18R1 was positively correlated with TNFSF1 and OSM and S100A12. The diagnostic efficacy of these serum IL18R1-related molecules for asthma ranged from 0.839 to 0.921. Moreover, high levels of IL18R1, TNFSF1, OSM, and S100A12 were significantly associated with shorter survival times and worse lung function. IL18R1-related molecules may serve as biomarkers for monitoring uncontrolled or severe asthma and as prognostic markers for IPF.
PMID:37733955 | DOI:10.1021/acs.jproteome.3c00389
Lung Magnetic Resonance Imaging for Prediction of Progression in Patients With Nonidiopathic Pulmonary Fibrosis Interstitial Lung Disease: A Pilot Study
J Thorac Imaging. 2023 Sep 20. doi: 10.1097/RTI.0000000000000744. Online ahead of print.
ABSTRACT
PURPOSE: Correlate magnetic resonance imaging (MRI) parameters at baseline with disease progression in nonidiopathic pulmonary fibrosis interstitial lung disease (ILD).
MATERIALS AND METHODS: Prospective observational cohort study, in which patients with non-idiopathic pulmonary fibrosis ILD underwent MRI at baseline (1.5 T). T2-weighted images (T2-WI) were acquired by axial free-breathing respiratory-gated fat-suppressed "periodically rotated overlapping parallel lines with enhanced reconstruction" and T1-weighted images (T1-WI) by coronal end-expiratory breath-hold fat-suppressed "volumetric interpolated breath-hold examination" sequences, before and at time points T1, T3, T5, and T10 minutes after gadolinium administration. After MRI segmentation, signal intensity values were extracted by dedicated software. Percentage of the ILD volume and a ratio between signal intensity of ILD (SIILD) and normal lung (SInormal lung) were calculated for T2-WI; percentage of signal intensity (%SI) at each time point, time to peak enhancement, and percent relative enhancement of ILD in comparison with normal lung (%SIILD/normal lung) were calculated for T1-WI. MRI parameters at baseline were correlated with diagnosis of disease progression and variation in percent predicted forced vital capacity (%FVC) and diffusing capacity of the lung for carbon monoxide after 12 months.
RESULTS: Comprehensive MRI evaluation (T2-WI and T1-WI) was performed in 21 of the 25 patients enrolled (68% females; mean age: 62.6 y). Three of the 24 patients who completed follow-up fulfilled criteria for disease progression. Baseline T2-WI SIILD/SInormal lung was higher for the progression group (P = 0.052). T2-WI SIILD/SInormal lung and T1-WI %SIILD/normal lung at T1 were positively correlated with the 12-month variation in %FVC (r = 0.495, P = 0.014 and r = 0.489, P= 0.034, respectively).
CONCLUSIONS: Baseline MRI parameters correlate with %FVC decline after 12 months.
PMID:37732700 | DOI:10.1097/RTI.0000000000000744
Elastic Registration Algorithm Based on Three-dimensional Pulmonary MRI in Quantitative Assessment of Severity of Idiopathic Pulmonary Fibrosis
J Thorac Imaging. 2023 Sep 6. doi: 10.1097/RTI.0000000000000735. Online ahead of print.
ABSTRACT
PURPOSE: To quantitatively analyze lung elasticity in idiopathic pulmonary fibrosis (IPF) using elastic registration based on 3-dimensional pulmonary magnetic resonance imaging (3D-PMRI) and to assess its' correlations with the severity of IPF patients.
MATERIAL AND METHODS: Thirty male patients with IPF (mean age: 62±6 y) and 30 age-matched male healthy controls (mean age: 62±6 y) were prospectively enrolled. 3D-PMRI was acquired with a 3-dimensional ultrashort echo time sequence in end-inspiration and end-expiration. MR images were registered from end-inspiration to end-expiration with the elastic registration algorithm. Jacobian determinants were calculated from deformation fields on color maps. The log means of the Jacobian determinants (Jac-mean) and Dice similarity coefficient were used to describe lung elasticity between 2 groups. Then, the correlation of lung elasticity with dyspnea Medical Research Council (MRC) score, exercise tolerance, health-related quality of life, lung function, and the extent of pulmonary fibrosis on chest computed tomography were analyzed.
RESULTS: The Jac-mean of IPF patients (-0.19, [IQR: -0.22, -0.15]) decreased (absolute value), compared with healthy controls (-0.28, [IQR: -0.31, -0.24], P<0.001). The lung elasticity in IPF patients with dyspnea MRC≥3 (Jac-mean: -0.15; Dice: 0.06) was significantly lower than MRC 1 (Jac-mean: -0.22, P=0.001; Dice: 0.10, P=0.001) and MRC 2 (Jac-mean: -0.21, P=0.007; Dice: 0.09, P<0.001). In addition, the Jac-mean negatively correlated with forced vital capacity % (r=-0.487, P<0.001), forced expiratory volume 1% (r=-0.413, P=0.004), TLC% (r=-0.488, P<0.001), diffusing capacity of the lungs for carbon monoxide % predicted (r=-0.555, P<0.001), 6-minute walk distance (r=-0.441, P=0.030) and positively correlated with respiratory symptoms (r=0.430, P=0.042). Meanwhile, the Dice similarity coefficient positively correlated with forced vital capacity % (r=0.577, P=0.004), forced expiratory volume 1% (r=0.526, P=0.012), diffusing capacity of the lungs for carbon monoxide % predicted (r=0.435, P=0.048), 6-minute walk distance (r=0.473, P=0.016), final peripheral oxygen saturation (r=0.534, P=0.004), the extent of fibrosis on chest computed tomography (r=-0.421, P=0.021) and negatively correlated with activity (r=-0.431, P=0.048).
CONCLUSION: Lung elasticity decreased in IPF patients and correlated with dyspnea, exercise tolerance, health-related quality of life, lung function, and the extent of pulmonary fibrosis. The lung elasticity based on elastic registration of 3D-PMRI may be a new nonradiation imaging biomarker for quantitative evaluation of the severity of IPF.
PMID:37732685 | DOI:10.1097/RTI.0000000000000735
IgG78-DM1 inhibits pulmonary fibrosis by targeting and killing CD248-positive myofibroblasts in mice
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2023 Sep;39(9):769-776.
ABSTRACT
Objective To investigate the therapeutic effect of targeting and killing CD248-positive myofibroblasts on bleomycin-induced pulmonary fibrosis in mice. Methods IgG78-DM1, an antibody-maytansine 1 (DM1) conjugate targeting CD248, was prepared. The drug conjugation efficiency was measured and calculated by UV spectrophotometer, and the identification of IgG78-DM1 was performed through SDS-PAGE and Western blot analysis. In vitro, the binding activity of IgG78-DM1 on CD248-positive myofibroblasts was detected by flow cytometry and the cytotoxicity of IgG78-DM1 to CD248-positive myofibroblasts was evaluated by CCK-8 assay. In vivo, C57BL/6 male mice were randomly divided into control group, idiopathic pulmonary fibrosis group, human IgG-DM1 (hIgG-DM1) control group, and IgG78-DM1 treatment group. Then, the mouse models with pulmonary fibrosis induced by bleomycin were constructed. Two weeks later, the animal models were intravenously injected with IgG78-DM1. After the treatment of two weeks, lung tissues were collected for Masson staining and Sirius Red staining to evaluate the degree of pulmonary fibrosis. Real-time fluorescence quantitative PCR was used to measure the expression levels of CD248, as well as markers of fibroblastic activation including alpha-smooth muscle actin (α-SMA) and type I collagen alpha 1 (COL1A1). The safety of IgG78-DM1 was preliminarily assessed by conducting liver and kidney function tests. Results IgG78-DM1 was successfully prepared, and its drug conjugation ratio was 3.2. The antibody structure remained stable after conjugation, allowing effective binding and cytotoxicity against CD248-positive myofibroblasts. After treatment with IgG78-DM1, the degree of pulmonary fibrosis in mice significantly reduced, accompanied by the decrease of the expression of CD248, α-SMA, and COL1A1. The liver and kidney function of the mice remained at normal levels compared to the normal control group. Conclusion IgG78-DM1 effectively inhibits pulmonary fibrosis in mice by targeting and killing CD248-positive myofibroblasts. The safety of this strategy is preliminarily assessed.
PMID:37732571
Time-course transcriptome analysis of a double challenge bleomycin-induced lung fibrosis rat model uncovers ECM homoeostasis-related translationally relevant genes
BMJ Open Respir Res. 2023 Sep;10(1):e001476. doi: 10.1136/bmjresp-2022-001476.
ABSTRACT
BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is an irreversible disorder with a poor prognosis. The incomplete understanding of IPF pathogenesis and the lack of accurate animal models is limiting the development of effective treatments. Thus, the selection of clinically relevant animal models endowed with similarities with the human disease in terms of lung anatomy, cell biology, pathways involved and genetics is essential. The bleomycin (BLM) intratracheal murine model is the most commonly used preclinical assay to evaluate new potential therapies for IPF. Here, we present the findings derived from an integrated histomorphometric and transcriptomic analysis to investigate the development of lung fibrosis in a time-course study in a BLM rat model and to evaluate its translational value in relation to IPF.
METHODS: Rats were intratracheally injected with a double dose of BLM (days 0-4) and sacrificed at days 7, 14, 21, 28 and 56. Histomorphometric analysis of lung fibrosis was performed on left lung sections. Transcriptome profiling by RNAseq was performed on the right lung lobes and results were compared with nine independent human gene-expression IPF studies.
RESULTS: The histomorphometric and transcriptomic analyses provided a detailed overview in terms of temporal gene-expression regulation during the establishment and repair of the fibrotic lesions. Moreover, the transcriptomic analysis identified three clusters of differentially coregulated genes whose expression was modulated in a time-dependent manner in response to BLM. One of these clusters, centred on extracellular matrix (ECM)-related process, was significantly correlated with histological parameters and gene sets derived from human IPF studies.
CONCLUSIONS: The model of lung fibrosis presented in this study lends itself as a valuable tool for preclinical efficacy evaluation of new potential drug candidates. The main finding was the identification of a group of persistently dysregulated genes, mostly related to ECM homoeostasis, which are shared with human IPF.
PMID:37730279 | DOI:10.1136/bmjresp-2022-001476
Acute exacerbation of idiopathic pulmonary fibrosis treated using the Feibi recipe: Two case reports
World J Clin Cases. 2023 Aug 26;11(24):5742-5748. doi: 10.12998/wjcc.v11.i24.5742.
ABSTRACT
BACKGROUND: Rationale: No other treatment besides lung transplant is effective for idiopathic pulmonary fibrosis (IPF). Patients with IPF have poor prognosis, which may eventually lead to death. Patient concerns: Two female patients were diagnosed with IPF. In our recent follow-up, both these patients maintained a good quality of life.
CASE SUMMARY: Diagnosis: Both patients had dry cough and progressive dyspnea. Interventions: The first patient was treated with prednisone, and the second patient was treated with prednisone and tripterygium glycosides. However, the symptoms did not improve and fibrosis was not controlled. Thus, the Feibi recipe was used. Outcomes: No deterioration was observed after the treatment, and the dry cough and its effect were ameliorated. Furthermore, they are still alive and the quality of their lives has improved.
CONCLUSION: These two cases suggest that the Feibi recipe and other traditional Chinese medicine therapies could be beneficial for IPF treatment.
PMID:37727712 | PMC:PMC10505999 | DOI:10.12998/wjcc.v11.i24.5742
Increased expression of OPN contributes to idiopathic pulmonary fibrosis and indicates a poor prognosis
J Transl Med. 2023 Sep 19;21(1):640. doi: 10.1186/s12967-023-04279-0.
ABSTRACT
BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is fibrotic lung disease with no effective treatment. It is characterized by destruction of alveolar structure and pulmonary interstitial fibrosis, leading to dyspnea and even asphyxia death of patients. Epithelial-mesenchymal transition (EMT) is considered to be a driving factor in the pathogenesis of IPF. Osteopontin (OPN) is a secreted protein widely present in the extracellular matrix and involved in the occurrence and development of a variety of diseases.
METHODS: The original datasets were obtained from NCBI GEO databases analyzed with the online tool GEO2R and EasyGEO. Bleomycin induced mouse pulmonary fibrosis model and OPN/OPN-biotin treated mouse model were established to investigate the role of OPN in mouse pulmonary fibrosis and the target cells of OPN. A549 cells and HBE cells were used to explore the mechanism of OPN-induced epithelial-mesenchymal transition (EMT) in epithelial cells and mass spectrometry was used to detect OPN downstream receptors. Precision-cut lung slices and lentivirus-treated mice with pulmonary fibrosis were used to examine the therapeutic effect of OPN and its downstream pathways on pulmonary fibrosis.
RESULTS: We demonstrate that the content of OPN in IPF bronchoalveolar lavage fluid (BALF) is high compared to the normal groups, and its expression level is correlated with prognosis. At the animal level, OPN was highly expressed at all stages of pulmonary fibrosis in mice, and the bronchoalveolar lavage fluid (BALF) could accurately reflect its expression in the lung. Next, we reveal that OPN was mainly expressed by macrophages and the main target cells of OPN were epithelial cells. Mice developed pulmonary fibrosis accompanied after treating the mice with OPN. Both in vitro and in vivo experiments confirmed that OPN could induce EMT of alveolar epithelial cells. Mechanistically, OPN binding triggered phosphorylation of FAK by CD44, thus activating snail1-mediated profibrotic protein synthesis. Inhibition of FAK phosphorylation and its downstream pathways can effectively alleviate pulmonary fibrosis in precision sections of lung tissue (PCLS) assay. OPN knockdown in bleomycin-induced lung fibrosis mice led to significantly less fibrosis.
CONCLUSION: Our data suggest that OPN mediates lung fibrosis through EMT, implicating its potential therapeutic target and prognostic indicator role for IPF. OPN may be a target for the diagnosis and treatment of IPF.
PMID:37726818 | DOI:10.1186/s12967-023-04279-0
The clinical impact of comorbidities among patients with idiopathic pulmonary fibrosis undergoing anti-fibrotic treatment: A multicenter retrospective observational study
PLoS One. 2023 Sep 19;18(9):e0291489. doi: 10.1371/journal.pone.0291489. eCollection 2023.
ABSTRACT
BACKGROUND: Among patients with idiopathic pulmonary fibrosis (IPF), few studies have investigated the clinical impact of anti-fibrotic treatment (AFT) with and without comorbidities. The aim of the study was to determine whether Charlson Comorbidity Index score (CCIS) can predict the efficacy of AFT in patients with IPF.
METHODS: We retrospectively assessed data extracted from the medical records of IPF patients who received anti-fibrotic agents between 2009 and 2019. The collected data included age, sex, CCIS, pulmonary function test, high-resolution computed tomography (HRCT) pattern, gender/age/physiology (GAP) score, and 3-year IPF-related events defined as the first acute exacerbation or death within 3 years after starting AFT.
RESULTS: We assessed 130 patients (median age, 74 years) who received nintedanib (n = 70) or pirfenidone (n = 60). Median duration of AFT was 425 days. Patients were categorized into high (≥ 3 points) and low (≤ 2 points) CCIS groups. There was no significant difference between the groups in terms of age, sex, duration of AFT, GAP score, or incidence of usual interstitial pneumonia pattern on HRCT except percentage predicted diffusion capacity of lung for carbon monoxide. Also, significant difference was not seen between the groups for 3-year IPF-related events (P = 0.75). Especially, in the low CCIS group but not the high CCIS group, the longer duration of AFT had better disease outcome.
CONCLUSION: In the present study, we could not show any relation between CCIS and IPF disease outcomes in patients undergoing AFT, though the longer duration of AFT might be beneficial for IPF outcomes among patients with low CCIS.
PMID:37725604 | DOI:10.1371/journal.pone.0291489
Core fucosylation regulates alveolar epithelial cells senescence through activating of transforming growth factor-β pathway in pulmonary fibrosis
Aging (Albany NY). 2023 Sep 18;15. doi: 10.18632/aging.205036. Online ahead of print.
ABSTRACT
Idiopathic pulmonary fibrosis (IPF), a fatal disorder associated with aging, has a terrible prognosis. However, the potential causes of IPF remain a riddle. In this study, we designed to explore whether the modification of the core fucosylation (CF) can ameliorate pulmonary fibrosis by targeting alveolar epithelial cells (AECs) senescence. First, we verified that cellular senescence occurs in the bleomycin-induced lung fibrosis mice models and CF modifications accompanying senescent AECs in pulmonary fibrosis. Next, both gain- and loss- of function research on CF were performed to elucidate its role in promoting AECs senescence and triggering pulmonary fibrosis in vitro. Notably, using alveolar epithelial cell-specific FUT8 conditional knockout mouse models, however, inhibition of cellular senescence by deleting the FUT8 gene could attenuate pulmonary fibrosis in vivo. Finally, blocking the CF modification of transforming growth factor -β type I receptor (TGF-βR I) could reduce the activation of downstream transforming growth factor -β (TGF-β) pathways in AECs senescence both in vivo and in vitro. This study reveals that CF is a crucial interventional target for the treatment of pulmonary fibrosis. Blocking CF modification contributes importantly to inhibiting AECs senescence resulting in pulmonary fibrosis lessen.
PMID:37724903 | DOI:10.18632/aging.205036
The Regenerative Power of Stem Cells: Treating Bleomycin-Induced Lung Fibrosis
Stem Cells Cloning. 2023 Sep 12;16:43-59. doi: 10.2147/SCCAA.S419474. eCollection 2023.
ABSTRACT
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with no known cure, characterized by the formation of scar tissue in the lungs, leading to respiratory failure. Although the exact cause of IPF remains unclear, the condition is thought to result from a combination of genetic and environmental factors. One of the most widely used animal models to study IPF is the bleomycin-induced lung injury model in mice. In this model, the administration of the chemotherapeutic agent bleomycin causes pulmonary inflammation and fibrosis, which closely mimics the pathological features of human IPF. Numerous recent investigations have explored the functions of various categories of stem cells in the healing process of lung injury induced by bleomycin in mice, documenting the beneficial effects and challenges of this approach. Differentiation of stem cells into various cell types and their ability to modulate tissue microenvironment is an emerging aspect of the regenerative therapies. This review article aims to provide a comprehensive overview of the role of stem cells in repairing bleomycin-induced lung injury. It delves into the mechanisms through which various types of stem cells, including mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, and lung resident stem cells, exert their therapeutic effects in this specific model. We have also discussed the unique set of intermediate markers and signaling factors that can influence the proliferation and differentiation of alveolar epithelial cells both during lung repair and homeostasis. Finally, we highlight the challenges and opportunities associated with translating stem cell therapy to the clinic for IPF patients. The novelty and implications of this review extend beyond the understanding of the potential of stem cells in treating IPF to the broader field of regenerative medicine. We believe that the review paves the way for further advancements in stem cell therapies, offering hope for patients suffering from this debilitating and currently incurable disease.
PMID:37719787 | PMC:PMC10505024 | DOI:10.2147/SCCAA.S419474
Holistic management of patients with progressive pulmonary fibrosis
Breathe (Sheff). 2023 Sep;19(3):230101. doi: 10.1183/20734735.0101-2023. Epub 2023 Sep 12.
ABSTRACT
Progressive pulmonary fibrosis (PF) is a complex interstitial lung disease that impacts substantially on patients' daily lives, requiring personalised and integrated care. We summarise the main needs of patients with PF and their caregivers, and suggest a supportive care approach. Individualised care, education, emotional and psychological support, specialised treatments, and better access to information and resources are necessary. Management should start at diagnosis, be tailored to the patient's needs, and consider end-of-life care. Pharmacological and non-pharmacological interventions should be individualised, including oxygen therapy and pulmonary rehabilitation, with digital healthcare utilised as appropriate. Further research is needed to address technical issues related to oxygen delivery and digital healthcare.
EDUCATIONAL AIMS: To identify the main needs of patients with PF and their caregivers.To describe the components of a comprehensive approach to a supportive care programme for patients with PF.To identify further areas of research to address technical issues related to the management of patients with PF.
PMID:37719243 | PMC:PMC10501708 | DOI:10.1183/20734735.0101-2023
Add-on therapy for pulmonary fibrosis, a forthcoming era with implications for practice: the BI 101550 and RELIEF trials
Breathe (Sheff). 2023 Sep;19(3):230090. doi: 10.1183/20734735.0090-2023. Epub 2023 Sep 12.
ABSTRACT
The therapeutic landscape for idiopathic pulmonary fibrosis (IPF) and progressive fibrosing interstitial lung disease (PFILD) is increasingly complex, with add-on antifibrotic options now in clinical trials, or available for patients progressing on first-line therapy in both conditions. Here, we review two recent trials of potential add-on therapeutic options, the BI 101550 and RELIEF trials. BI 101550 was a phase 2 randomised control trial (RCT) of a novel phosphodiesterase-4 inhibitor in patients with IPF, with a primary end-point of change in forced vital capacity (ΔFVC) (in mL) at 12 weeks. The RELIEF trial was a phase 2 RCT in patients with PFILD, with a primary end-point of ΔFVC (absolute % predicted) over 48 weeks. Whilst the BI 101550 and RELIEF trials showed positive results in their primary end-points, the strengths and weaknesses of both trials are discussed with importance for their interpretation and clinical impact. We review current clinical practice in IPF and PFILD and place the BI101550 and RELIEF trial results in context, highlighting advances and problems with antifibrotic therapies.
COMMENTARY ON: Richeldi L, et al. Trial of a preferential phosphodiesterase 4B inhibitor for idiopathic pulmonary fibrosis. N Engl J Med 2022; 386: 2178-2187.Behr J, et al. Pirfenidone in patients with progressive fibrotic interstitial lung diseases other than idiopathic pulmonary fibrosis (RELIEF): a double-blind, randomised, placebo-controlled, phase 2b trial. Lancet Respir Med 2021; 9: 476-486.
PMID:37719242 | PMC:PMC10501707 | DOI:10.1183/20734735.0090-2023
Regulatory effect and mechanism of LncRNA SOX2OT in idiopathic pulmonary fibrosis
Cell Mol Biol (Noisy-le-grand). 2023 Jul 31;69(7):187-190. doi: 10.14715/cmb/2023.69.7.30.
ABSTRACT
This study discusses the role played by long noncoding RNA (lncRNA) SOX2OT (SOX2OT) in idiopathic pulmonary fibrosis (IPF). By inducing human embryonic lung fibroblasts (MRC5) through hypoxia, the researchers observed changes in SOX2OT expression and fibrotic processes during hypoxia. Moreover, SOX2OT abnormal expression vectors were constructed and transfected into MRC5 to analyze the effect of SOX2OT on MRC5. The results showed that the expression levels of SOX2OT and α-SMA were elevated under hypoxic conditions and were positively correlated (P<0.05). α-SMA, Collagen I and Collagen III protein expression and SOX2OT levels all increased under hypoxia (P<0.05). Finally, silencing SOX2OT expression led to weakened MRC5 proliferation, inhibited fibrosis process, and reduced inflammation (P<0.05). In conclusion, SOX2OT is closely related to the occurrence and development of IPF, and silencing its expression can inhibit fibrosis progression.
PMID:37715386 | DOI:10.14715/cmb/2023.69.7.30
Beyond epithelial damage: vascular and endothelial contributions to idiopathic pulmonary fibrosis
J Clin Invest. 2023 Sep 15;133(18):e172058. doi: 10.1172/JCI172058.
ABSTRACT
Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung with poor survival. The incidence and mortality of IPF are rising, but treatment remains limited. Currently, two drugs can slow the scarring process but often at the expense of intolerable side effects, and without substantially changing overall survival. A better understanding of mechanisms underlying IPF is likely to lead to improved therapies. The current paradigm proposes that repetitive alveolar epithelial injury from noxious stimuli in a genetically primed individual is followed by abnormal wound healing, including aberrant activity of extracellular matrix-secreting cells, with resultant tissue fibrosis and parenchymal damage. However, this may underplay the importance of the vascular contribution to fibrogenesis. The lungs receive 100% of the cardiac output, and vascular abnormalities in IPF include (a) heterogeneous vessel formation throughout fibrotic lung, including the development of abnormal dilated vessels and anastomoses; (b) abnormal spatially distributed populations of endothelial cells (ECs); (c) dysregulation of endothelial protective pathways such as prostacyclin signaling; and (d) an increased frequency of common vascular and metabolic comorbidities. Here, we propose that vascular and EC abnormalities are both causal and consequential in the pathobiology of IPF and that fuller evaluation of dysregulated pathways may lead to effective therapies and a cure for this devastating disease.
PMID:37712420 | DOI:10.1172/JCI172058
Disease progression in idiopathic pulmonary fibrosis under anti-fibrotic treatment
Sarcoidosis Vasc Diffuse Lung Dis. 2023 Sep 13;40(3):e2023034. doi: 10.36141/svdld.v40i3.14048.
ABSTRACT
Idiopathic pulmonary fibrosis (IPF) is the most common progressive interstitial disease of unknown etiology. The course of disease is not possible to predict. Frequent monitoring using multiple assessments is important to evaluate disease progression. Currently, there is no consensus on how progression should be defined. Nintedanib and pirfenidone slow the progression of IPF, but the disease can progress even under anti-fibrotic treatment. The goal of this review is to examine and summarize the current data about IPF progression in patients who were on anti-fibrotic treatment. Also, we outline the limitations of the tests used for disease progression.
PMID:37712374 | DOI:10.36141/svdld.v40i3.14048
Nintedanib as the First Treatment for Group of Progressive Interstitial Lung Diseases: A Review of Patent Literature
Recent Adv Inflamm Allergy Drug Discov. 2023 Sep 14. doi: 10.2174/2772270817666230914103435. Online ahead of print.
ABSTRACT
BACKGROUND: Nintedanib is a competitive inhibitor of non-receptor tyrosine kinase (nRTKs) and receptor tyrosine kinase (RTKs). Nintedanib is a substrate for the P-glycoprotein transporter, which returns ingested substances to the gastrointestinal lumen. At present, Nintedanib is being prescribed for individuals diagnosed with idiopathic pulmonary fibrosis (IPF).
OBJECTIVE: This assessment provides a concise overview of the latest patents pertaining to Nintedanib. The patents covered in this analysis are categorized into sections, including patents related to the active ingredient, polymorph, formulation, and treatment method. The purpose of this compilation is to offer researchers convenient access to all the relevant patents in a single resource.
METHODS: Information was collected from diverse web databases, including both paid and free sources. Paid databases, such as Orbit® and SciFinder® were utilized as examples. On the other hand, free databases, such as the European Patent Office's Espacenet®, WIPO Patentscope® the Indian patent database, and Google Patents, were also accessed for data gathering purposes.
RESULTS: The orange-book listed patents for Nintedanib are set to expire in July 2029. These patents explore various excipients to address the solubility issue in the long-term storage of the formulation. However, despite these efforts, there is still a need for further research to enhance the properties of the Nintedanib formulation.
CONCLUSION: Extensive research has been conducted on multiple methods for manufacturing Nintedanib and its formulations. This dynamic study has the potential to create opportunities for numerous generic companies to enter the United States market. This, in turn, will improve healthcare accessibility by lowering costs.
PMID:37710999 | DOI:10.2174/2772270817666230914103435
The potential role of artificial intelligence in the clinical practice of interstitial lung disease
Respir Investig. 2023 Sep 12;61(6):702-710. doi: 10.1016/j.resinv.2023.08.006. Online ahead of print.
ABSTRACT
Artificial intelligence (AI) is being widely applied in the field of medicine, in areas such as drug discovery, diagnostic support, and assistance with medical practice. Among these, medical imaging is an area where AI is expected to make a significant contribution. In Japan, as of November 2022, 23 AI medical devices have received regulatory approval; all these devices are related to image analysis. In interstitial lung diseases, technologies have been developed that use AI to analyze high-resolution computed tomography and pathological images, and gene expression patterns in tissue taken from transbronchial lung biopsies to assist in the diagnosis of idiopathic pulmonary fibrosis. Some of these technologies are already being used in clinical practice in the United States. AI is expected to reduce the burden on physicians, improve reproducibility, and advance personalized medicine. Obtaining sufficient data for diseases with a small number of patients is difficult. Additionally, certain issues must be addressed in order for AI to be applied in healthcare. These issues include taking responsibility for the AI results output, updating software after the launch of technology, and adapting to new imaging technologies. Establishing research infrastructures such as large-scale databases and common platforms is important for the development of AI technology: their use requires an understanding of the characteristics and limitations of the systems. CLINICAL TRIAL REGISTRATION: Not applicable.
PMID:37708636 | DOI:10.1016/j.resinv.2023.08.006
TGFβ1-RCN3-TGFBR1 loop facilitates pulmonary fibrosis by orchestrating fibroblast activation
Respir Res. 2023 Sep 14;24(1):222. doi: 10.1186/s12931-023-02533-z.
ABSTRACT
BACKGROUND: Idiopathic pulmonary fibrosis (IPF) bears high mortality due to unclear pathogenesis and limited therapeutic options. Therefore, identifying novel regulators is required to develop alternative therapeutic strategies.
METHODS: The lung fibroblasts from IPF patients and Reticulocalbin 3 (RCN3) fibroblast-selective knockdown mouse model were used to determine the importance of Rcn3 in IPF; the epigenetic analysis and protein interaction assays, including BioID, were used for mechanistic studies.
RESULTS: Reticulocalbin 3 (RCN3) upregulation is associated with the fibrotic activation of lung fibroblasts from IPF patients and Rcn3 overexpression blunts the antifibrotic effects of pirfenidone and nintedanib. Moreover, repressing Rcn3 expression in mouse fibroblasts ameliorates bleomycin-induced lung fibrosis and pulmonary dysfunction in vivo. Mechanistically, RCN3 promotes fibroblast activation by maintaining persistent activation of TGFβ1 signalling via the TGFβ1-RCN3-TGFBR1 positive feedback loop, in which RCN3 upregulated by TGFβ1 exposure detains EZH2 (an epigenetic methyltransferase) in the cytoplasm through RCN3-EZH2 interaction, leading to the release of the EZH2-H3K27me3 epigenetic repression of TGFBR1 and the persistent expression of TGFBR1.
CONCLUSIONS: These findings introduce a novel regulating mechanism of TGFβ1 signalling in fibroblasts and uncover a critical role of the RCN3-mediated loop in lung fibrosis. RCN3 upregulation may cause resistance to IPF treatment and targeting RCN3 could be a novel approach to ameliorate pulmonary fibrosis.
PMID:37710230 | DOI:10.1186/s12931-023-02533-z
Design of a phase III, double-blind, randomised, placebo-controlled trial of BI 1015550 in patients with progressive pulmonary fibrosis (FIBRONEER-ILD)
BMJ Open Respir Res. 2023 Sep;10(1):e001580. doi: 10.1136/bmjresp-2022-001580.
ABSTRACT
INTRODUCTION: Progressive pulmonary fibrosis (PPF) includes any diagnosis of progressive fibrotic interstitial lung disease (ILD) other than idiopathic pulmonary fibrosis (IPF). However, disease progression appears comparable between PPF and IPF, suggesting a similar underlying pathology relating to pulmonary fibrosis. Following positive results in a phase II study in IPF, this phase III study will investigate the efficacy and safety of BI 1015550 in patients with PPF (FIBRONEER-ILD).
METHODS AND ANALYSIS: In this phase III, double-blind, placebo-controlled trial, patients are being randomised 1:1:1 to receive BI 1015550 (9 mg or 18 mg) or placebo twice daily over at least 52 weeks, stratified by background nintedanib use. Patients must be diagnosed with pulmonary fibrosis other than IPF that is progressive, based on predefined criteria. Patients must have forced vital capacity (FVC) ≥45% predicted and haemoglobin-corrected diffusing capacity of the lung for carbon monoxide ≥25% predicted. Patients must be receiving nintedanib for at least 12 weeks, or not receiving nintedanib for at least 8 weeks, prior to screening. Patients on stable treatment with permitted immunosuppressives (eg, methotrexate, azathioprine) may continue their treatment throughout the trial. Patients with clinically significant airway obstruction or other pulmonary abnormalities, and those using immunosuppressives that may confound FVC results (cyclophosphamide, tocilizumab, mycophenolate, rituximab) or high-dose steroids will be excluded. The primary endpoint is absolute change from baseline in FVC (mL) at week 52. The key secondary endpoint is time to the first occurrence of any acute ILD exacerbation, hospitalisation for respiratory cause or death, over the duration of the trial.
ETHICS AND DISSEMINATION: The trial is being carried out in accordance with the ethical principles of the Declaration of Helsinki, the International Council on Harmonisation Guideline for Good Clinical Practice and other local ethics committees. The study results will be disseminated at scientific congresses and in peer-reviewed publications.
TRIAL REGISTRATION NUMBER: NCT05321082.
PMID:37709661 | DOI:10.1136/bmjresp-2022-001580
Idiopathic pulmonary fibrosis (IPF): disease pathophysiology, targets, and potential therapeutic interventions
Mol Cell Biochem. 2023 Sep 14. doi: 10.1007/s11010-023-04845-6. Online ahead of print.
ABSTRACT
Idiopathic pulmonary fibrosis (IPF) is a progressive, degenerative pulmonary condition. Transforming growth factor (TGF)-β, platelet-derived growth factor (PDGF), and tumor necrosis factor-α (TNF-α) are the major modulators of IPF that mediate myofibroblast differentiation and promote fibrotic remodeling of the lung. Cigarette smoke, asbestos fiber, drugs, and radiation are known to favor fibrotic remodeling of the lungs. Oxidative stress in the endoplasmic reticulum (ER) also leads to protein misfolding and promotes ER stress, which is predominant in IPF. This phenomenon further results in excess reactive oxygen species (ROS) aggregation, increasing oxidative stress. During protein folding in the ER, thiol groups on the cysteine residue are oxidized and disulfide bonds are formed, which leads to the production of hydrogen peroxide (H2O2) as a by-product. With the accumulation of misfolded proteins in the ER, multiple signaling cascades are initiated by the cell, collectively termed as the unfolded protein response (UPR). UPR also induces ROS production within the ER and mitochondria and promotes both pro-apoptotic and pro-survival pathways. The prevalence of post-COVID-19 pulmonary fibrosis (PCPF) is 44.9%, along with an alarming increase in "Coronavirus Disease 2019" (COVID-19) comorbidities. Fibrotic airway remodeling and declined lung function are the common endpoints of SARS-CoV-2 infection and IPF. Flavonoids are available in our dietary supplements and exhibit medicinal properties. Apigenin is a flavonoid found in plants, including chamomile, thyme, parsley, garlic, guava, and broccoli, and regulates several cellular functions, such as oxidative stress, ER stress, and fibrotic responses. In this study, we focus on the IPF and COVID-19 pathogenesis and the potential role of Apigenin in addressing disease progression.
PMID:37707699 | DOI:10.1007/s11010-023-04845-6