Idiopathic Pulmonary Fibrosis

Invadosome Formation by Lung Fibroblasts in Idiopathic Pulmonary Fibrosis

Sun, 2023-01-08 06:00

Int J Mol Sci. 2022 Dec 28;24(1):499. doi: 10.3390/ijms24010499.

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is characterized by abnormal fibroblast accumulation in the lung leading to extracellular matrix deposition and remodeling that compromise lung function. However, the mechanisms of interstitial invasion and remodeling by lung fibroblasts remain poorly understood. The invadosomes, initially described in cancer cells, consist of actin-based adhesive structures that coordinate with numerous other proteins to form a membrane protrusion capable of degrading the extracellular matrix to promote their invasive phenotype. In this regard, we hypothesized that invadosome formation may be increased in lung fibroblasts from patients with IPF. Public RNAseq datasets from control and IPF lung tissues were used to identify differentially expressed genes associated with invadosomes. Lung fibroblasts isolated from bleomycin-exposed mice and IPF patients were seeded with and without the two approved drugs for treating IPF, nintedanib or pirfenidone on fluorescent gelatin-coated coverslips for invadosome assays. Several matrix and invadosome-associated genes were increased in IPF tissues and in IPF fibroblastic foci. Invadosome formation was significantly increased in lung fibroblasts isolated from bleomycin-exposed mice and IPF patients. The degree of lung fibrosis found in IPF tissues correlated strongly with invadosome production by neighboring cells. Nintedanib suppressed IPF and PDGF-activated lung fibroblast invadosome formation, an event associated with inhibition of the PDGFR/PI3K/Akt pathway and TKS5 expression. Fibroblasts derived from IPF lung tissues express a pro-invadosomal phenotype, which correlates with the severity of fibrosis and is responsive to antifibrotic treatment.

PMID:36613948 | DOI:10.3390/ijms24010499

Categories: Literature Watch

The Role of Pulmonary Surfactant Phospholipids in Fibrotic Lung Diseases

Sun, 2023-01-08 06:00

Int J Mol Sci. 2022 Dec 25;24(1):326. doi: 10.3390/ijms24010326.

ABSTRACT

Diffuse parenchymal lung diseases (DPLD) or Interstitial lung diseases (ILD) are a heterogeneous group of lung conditions with common characteristics that can progress to fibrosis. Within this group of pneumonias, idiopathic pulmonary fibrosis (IPF) is considered the most common. This disease has no known cause, is devastating and has no cure. Chronic lesion of alveolar type II (ATII) cells represents a key mechanism for the development of IPF. ATII cells are specialized in the biosynthesis and secretion of pulmonary surfactant (PS), a lipid-protein complex that reduces surface tension and minimizes breathing effort. Some differences in PS composition have been reported between patients with idiopathic pulmonary disease and healthy individuals, especially regarding some specific proteins in the PS; however, few reports have been conducted on the lipid components. This review focuses on the mechanisms by which phospholipids (PLs) could be involved in the development of the fibroproliferative response.

PMID:36613771 | DOI:10.3390/ijms24010326

Categories: Literature Watch

Inhibitors of the Sialidase NEU3 as Potential Therapeutics for Fibrosis

Sun, 2023-01-08 06:00

Int J Mol Sci. 2022 Dec 23;24(1):239. doi: 10.3390/ijms24010239.

ABSTRACT

Fibrosing diseases are a major medical problem, and are associated with more deaths per year than cancer in the US. Sialidases are enzymes that remove the sugar sialic acid from glycoconjugates. In this review, we describe efforts to inhibit fibrosis by inhibiting sialidases, and describe the following rationale for considering sialidases to be a potential target to inhibit fibrosis. First, sialidases are upregulated in fibrotic lesions in humans and in a mouse model of pulmonary fibrosis. Second, the extracellular sialidase NEU3 appears to be both necessary and sufficient for pulmonary fibrosis in mice. Third, there exist at least three mechanistic ways in which NEU3 potentiates fibrosis, with two of them being positive feedback loops where a profibrotic cytokine upregulates NEU3, and the upregulated NEU3 then upregulates the profibrotic cytokine. Fourth, a variety of NEU3 inhibitors block pulmonary fibrosis in a mouse model. Finally, the high sialidase levels in a fibrotic lesion cause an easily observed desialylation of serum proteins, and in a mouse model, sialidase inhibitors that stop fibrosis reverse the serum protein desialylation. This then indicates that serum protein sialylation is a potential surrogate biomarker for the effect of sialidase inhibitors, which would facilitate clinical trials to test the exciting possibility that sialidase inhibitors could be used as therapeutics for fibrosis.

PMID:36613682 | DOI:10.3390/ijms24010239

Categories: Literature Watch

ML216 Prevents DNA Damage-Induced Senescence by Modulating DBC1-BLM Interaction

Sun, 2023-01-08 06:00

Cells. 2022 Dec 29;12(1):145. doi: 10.3390/cells12010145.

ABSTRACT

DNA damage is the major cause of senescence and apoptosis; however, the manner by which DNA-damaged cells become senescent remains unclear. We demonstrate that DNA damage leads to a greater level of senescence rather than apoptosis in DBC1-deficient cells. In addition, we show that BLM becomes degraded during DNA damage, which induces p21 expression and senescence. DBC1 binds to and shields BLM from degradation, thus suppressing senescence. ML216 promotes DBC1-BLM interaction, which aids in the preservation of BLM following DNA damage and suppresses senescence. ML216 enhances pulmonary function by lowering the levels of senescence and fibrosis in both aged mice and a mouse model of bleomycin-induced idiopathic pulmonary fibrosis. Our data reveal a unique mechanism preventing DNA-damaged cells from becoming senescent, which may be regulated by the use of ML216 as a potential treatment for senescence-related diseases.

PMID:36611939 | DOI:10.3390/cells12010145

Categories: Literature Watch

The miR-15b-Smurf2-HSP27 axis promotes pulmonary fibrosis

Sat, 2023-01-07 06:00

J Biomed Sci. 2023 Jan 7;30(1):2. doi: 10.1186/s12929-023-00896-5.

ABSTRACT

BACKGROUND: Heat shock protein 27 (HSP27) is overexpressed during pulmonary fibrosis (PF) and exacerbates PF; however, the upregulation of HSP27 during PF and the therapeutic strategy of HSP27 inhibition is not well elucidated.

METHODS: We have developed a mouse model simulating clinical stereotactic body radiotherapy (SBRT) with focal irradiation and validated the induction of RIPF. HSP25 (murine form of HSP27) transgenic (TG) and LLC1-derived orthotropic lung tumor models were also used. Lung tissues of patients with RIPF and idiopathic pulmonary fibrosis, and lung tissues from various fibrotic mouse models, as well as appropriated cell line systems were used. Public available gene expression datasets were used for therapeutic response rate analysis. A synthetic small molecule HSP27 inhibitor, J2 was also used.

RESULTS: HSP27 expression with its phosphorylated form (pHSP27) increased during PF. Decreased mRNA expression of SMAD-specific E3 ubiquitin-protein ligase 2 (Smurf2), which is involved in ubiquitin degradation of HSP27, was responsible for the increased expression of pHSP27. In addition, increased expression of miRNA15b was identified with decreased expression of Smurf2 mRNA in PF models. Inverse correlation between pHSP27 and Smurf2 was observed in the lung tissues of PF animals, an irradiated orthotropic lung cancer models, and PF tissues from patients. Moreover, a HSP27 inhibitor cross-linked with HSP27 protein to ameliorate PF, which was more effective when targeting the epithelial to mesenchymal transition (EMT) stage of PF.

CONCLUSIONS: Our findings identify upregulation mechanisms of HSP27 during PF and provide a therapeutic strategy for HSP27 inhibition for overcoming PF.

PMID:36611161 | DOI:10.1186/s12929-023-00896-5

Categories: Literature Watch

Effective-compounds of Jinshui Huanxian formula ameliorates fibroblast activation in pulmonary fibrosis by inhibiting the activation of mTOR signaling

Sat, 2023-01-07 06:00

Phytomedicine. 2022 Dec 13;109:154604. doi: 10.1016/j.phymed.2022.154604. Online ahead of print.

ABSTRACT

BACKGROUND: Jinshui Huanxian formula (JHF) ameliorates idiopathic pulmonary fibrosis patients. Active compounds, including icariin, isoliquiritigenin, nobiletin, peimine, and paeoniflorin, deriving from JHF were combined as effective-component compatibility ECC of JHF II (ECC-JHF II), which is an effective therapeutic strategy for pulmonary fibrosis (PF) induced by bleomycin (BLM) in rats.

PURPOSE: This study aimed to explore the underlying mechanism of ECC-JHF II on pulmonary fibrosis.

METHODS: A model of PF in rats was established through intratracheal instillation of BLM. Pulmonary function, pathological changes, and collagen deposition were examined. The gene and protein expressions in fibroblast activation were detected by quantitative real-time PCR and western blotting respectively.

RESULTS: ECC-JHF II significantly improved BLM-induced PF in rats, manifested as decreased collagen deposition, reduced pathological damage and improved pulmonary function. Furthermore, ECC-JHF II inhibited fibroblast activation by reducing the expression of α-smooth muscle actin (α-SMA) and fibronectin. We analyzed the targets of ECC-JHF II and differentially expressed genes (DEGs) of fibroblast activation induced by transforming growth factor-β1 (TGF-β1) and found that ECC-JHF II might regulate fibroblast activation by EGFR, PI3K-Akt or mTOR signaling pathway. In vitro experiments, we also found that ECC-JHF II suppressed the mTOR pathway, such as downregulating the phosphorylation levels of p70S6K in fibroblast activation induced by TGF-β1. After activating mTOR signaling, the inhibition of ECC-JHF II on fibroblast activation was blocked. These results suggested that ECC-JHF II potently ameliorated pulmonary fibrosis in rats and effectively suppressed fibroblast activation by interfering with mTOR signaling.

CONCLUSION: We combined transcriptomics with the network analysis to predict the mechanism underlying ECC-JHF II suppression of fibroblast activation. In summary, ECC-JHF II improved BLM-induced pulmonary fibrosis, which might be associated with the suppression of fibroblast activation by inhibiting the mTOR signaling.

PMID:36610143 | DOI:10.1016/j.phymed.2022.154604

Categories: Literature Watch

Immune Cell Profiles and Patient Clustering in Complex Cases of Interstitial Lung Disease

Sat, 2023-01-07 06:00

Immunol Lett. 2023 Jan 3:S0165-2478(23)00002-0. doi: 10.1016/j.imlet.2023.01.002. Online ahead of print.

ABSTRACT

Interstitial lung disease comprises numerous clinical entities posing significant challenges towards a prompt and accurate diagnosis. Amongst the contributing factors are intricate pathophysiological mechanisms, an overlap between conditions, and interobserver disagreement. We developed a model for patient clustering offering an additional approach to such complex clinical cases. The model is based on surface phenotyping of over 40 markers on immune cells isolated from bronchoalveolar lavage in combination with clinical data. Based on the marker expression pattern we constructed an individual immune cell profile, then merged these to create a global profile encompassing various pathologies. The contribution of each participant to the global profile was assessed through dimensionality reduction tools and the ensuing similarity between samples was calculated. Our model enables two approaches. First, assessing the immune cell population landscape similarity between patients within a diagnostic group allows rapid identification of divergent profiles, which is particularly helpful for cases with uncertain diagnoses. Second, sample clustering is based exclusively on the calculated similarity of the immune cell profiles, thereby removing physician bias and relying on cellular nearest neighbors.

PMID:36608905 | DOI:10.1016/j.imlet.2023.01.002

Categories: Literature Watch

Knockdown of FBLN2 suppresses TGF-β1-induced MRC-5 cell migration and fibrosis by downregulating VTN

Sat, 2023-01-07 06:00

Tissue Cell. 2022 Dec 27;81:102005. doi: 10.1016/j.tice.2022.102005. Online ahead of print.

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a common chronic and progressive lung disease. Fibulin-2 (FBLN2) is upregulated in patients with IPF; however, its exact role in IPF remains unclear. The present study aimed to investigate the role and the regulatory mechanism of FBLN2 in TGF-β1-induced fibrogenesis using human lung fibroblast-derived MRC-5 cells. Cell transfection was performed to regulate FBLN2 expression. Reverse transcription-quantitative PCR and western blot analyses were performed to detect the expression levels of FBLN2 and vitronectin (VTN). Cell viability and migration were determined via the Cell Counting Kit-8 and wound healing assays, respectively. Immunofluorescence was performed to detect α-smooth muscle actin (α-SMA)-positive cells. The STRING database was used to predict the interaction between FBLN2 and VTN, which was verified via the protein immunoprecipitation assay. The results demonstrated that inhibition of FBLN2 notably inhibited TGF-β1-induced proliferation and migration, as well as downregulating the protein expression levels of MMP2 and MMP9 in MRC-5 cells. In addition, inhibition of FBLN2 suppressed the expression levels of α-SMA, collagen type 1 α1 and fibronectin. FBLN2 was demonstrated to bind to VTN and negatively regulate its expression. Furthermore, overexpression of VTN partly abolished the inhibitory effects of FBLN2 knockdown on TGF-β1-induced proliferation, migration and fibrosis, as well as the activity of focal adhesion kinase (FAK) signaling. Taken together, the results of the present study suggest that FBLN2 knockdown can attenuate TGF-β1-induced fibrosis in MRC-5 cells by downregulating VTN expression via FAK signaling. Thus, FBLN2 may be a potential therapeutic target for IPF treatment.

PMID:36608640 | DOI:10.1016/j.tice.2022.102005

Categories: Literature Watch

Mesenchymal Cells in The Lung: Evolving Concepts and Their Role in Fibrosis

Thu, 2023-01-05 06:00

Gene. 2023 Jan 2:147142. doi: 10.1016/j.gene.2022.147142. Online ahead of print.

ABSTRACT

Mesenchymal cells in the lung are crucial during development, but also contribute to the pathogenesis of fibrotic disorders, including idiopathic pulmonary fibrosis (IPF), the most common and deadly form of fibrotic interstitial lung diseases. Originally thought to behave as supporting cells for the lung epithelium and endothelium with a singular function of producing basement membrane, mesenchymal cells encompass a variety of cell types, including resident fibroblasts, lipofibroblasts, myofibroblasts, smooth muscle cells, and pericytes, which all occupy different anatomic locations and exhibit diverse homeostatic functions in the lung. During injury, each of these subtypes demonstrate remarkable plasticity and undergo varying capacity to proliferate and differentiate into activated myofibroblasts. Therefore, these cells secrete high levels of extracellular matrix (ECM) proteins and inflammatory cytokines, which contribute to tissue repair, or in pathologic situations, scarring and fibrosis. Whereas epithelial damage is considered the initial trigger that leads to lung injury, lung mesenchymal cells are recognized as the ultimate effector of fibrosis and attempts to better understand the different functions and actions of each mesenchymal cell subtype will lead to a better understanding of why fibrosis develops and how to better target it for future therapy. This review summarizes current findings related to various lung mesenchymal cells as well as signaling pathways, and their contribution to the pathogenesis of pulmonary fibrosis.

PMID:36603696 | DOI:10.1016/j.gene.2022.147142

Categories: Literature Watch

Identification of a Genetic Susceptibility Locus for Idiopathic Pulmonary Fibrosis in the 16p Subtelomere Using Whole Genome Sequencing

Thu, 2023-01-05 06:00

Am J Respir Crit Care Med. 2023 Jan 5. doi: 10.1164/rccm.202206-1139LE. Online ahead of print.

NO ABSTRACT

PMID:36603154 | DOI:10.1164/rccm.202206-1139LE

Categories: Literature Watch

Idiopathic Pulmonary Fibrosis Is Associated with Common Genetic Variants and Limited Rare Variants

Thu, 2023-01-05 06:00

Am J Respir Crit Care Med. 2023 Jan 5. doi: 10.1164/rccm.202207-1331OC. Online ahead of print.

ABSTRACT

RATIONALE: Idiopathic pulmonary fibrosis is a rare, irreversible, and progressive disease of the lungs. Common genetic variants, in addition to non-genetic factors, have been consistently associated with IPF. Rare variants identified by candidate gene, family-based, and exome studies have also been reported to associate with IPF. However, the extent to which rare variants genome-wide may contribute to the risk of IPF remains unknown.

OBJECTIVES: We used whole-genome sequencing to investigate the role of rare variants, genome-wide, on IPF risk.

METHODS: As part of the Trans-Omics for Precision Medicine Program, we sequenced 2,180 cases of IPF. Association testing focused on the aggregated effect of rare variants (minor allele frequency ≤0.01) within genes or regions. We also identified individual variants that are influential within genes and estimated the heritability of IPF based on rare and common variants.

MEASUREMENTS AND MAIN RESULTS: Rare variants in both TERT and RTEL1 were significantly associated with IPF. A single rare variant in each of the TERT and RTEL1 genes was found to consistently influence the aggregated test statistics. There was no significant evidence of association with other previously reported rare variants. The SNP-heritability of IPF was estimated to be 32% (s.e. 3%).

CONCLUSIONS: Rare variants within the TERT and RTEL1 genes and well-established common variants have the largest contribution to IPF risk overall. Efforts in risk profiling or development of therapies for IPF that focus on TERT, RTEL1, common variants, and environmental risk factors are likely to have the largest impact on this complex disease.

PMID:36602845 | DOI:10.1164/rccm.202207-1331OC

Categories: Literature Watch

Elevated VCAM-1, MCP-1 and ADMA serum levels related to pulmonary fibrosis of interstitial lung disease associated with rheumatoid arthritis

Thu, 2023-01-05 06:00

Front Mol Biosci. 2022 Dec 19;9:1056121. doi: 10.3389/fmolb.2022.1056121. eCollection 2022.

ABSTRACT

Introduction: Early diagnosis of interstitial lung disease (ILD) associated with rheumatoid arthritis (RA) constitutes a challenge for the clinicians. Pulmonary vasculopathy is relevant in the development of interstitial lung disease. Accordingly, we aimed to explore the role of vascular cell adhesion molecule-1 (VCAM-1), monocyte chemoattractant protein-1 (MCP-1) and asymmetric dimethylarginine (ADMA), key molecules in the vasculopathy, as potential biomarkers of pulmonary fibrosis in RA-ILD+. Methods: We included 21 RA-ILD+ patients and two comparative groups: 25 RA-ILD- patients and 21 idiopathic pulmonary fibrosis (IPF) patients. Serum levels of the molecules were determined by ELISA, and mRNA expression was quantified by qPCR. Results: VCAM-1, MCP-1 and ADMA serum levels were increased in RA-ILD+ patients in relation to RA-ILD- and IPF patients. Additionally, RA-ILD+ patients exhibited increased CCL2 (gene encoding MCP-1) and decreased PRMT1 (gene related to ADMA synthesis) mRNA expression in relation to RA-ILD- patients. A lower expression of VCAM1, CCL2, and PRMT1 was observed in RA-ILD+ patients when compared with those with IPF. Furthermore, MCP-1 serum levels and PRMT1 mRNA expression were positively correlated with RA duration, and ADMA serum levels were positively associated with C-reactive protein in RA-ILD+ patients. Conclusion: Our study suggests that VCAM-1, MCP-1 and ADMA could be considered as useful biomarkers to identify ILD in RA patients, as well as to discriminate RA-ILD+ from IPF, contributing to the early diagnosis of RA-ILD+.

PMID:36601584 | PMC:PMC9806218 | DOI:10.3389/fmolb.2022.1056121

Categories: Literature Watch

Construction of prediction model of inflammation related genes in idiopathic pulmonary fibrosis and its correlation with immune microenvironment

Thu, 2023-01-05 06:00

Front Immunol. 2022 Dec 19;13:1010345. doi: 10.3389/fimmu.2022.1010345. eCollection 2022.

ABSTRACT

BACKGROUND: The role of inflammation in the formation of idiopathic pulmonary fibrosis (IPF) has gained a lot of attention recently. However, the involvement of genes related to inflammation and immune exchange environment status in the prognosis of IPF remains to be further clarified. The objective of this research is to establish a new model for the prediction of the overall survival (OS) rate of inflammation-related IPF.

METHODS: Gene Expression Omnibus (GEO) was employed to obtain the three expression microarrays of IPF, including two from alveolar lavage fluid cells and one from peripheral blood mononuclear cells. To construct the risk assessment model of inflammation-linked genes, least absolute shrinkage and selection operator (lasso), univariate cox and multivariate stepwise regression, and random forest method were used. The proportion of immune cell infiltration was evaluated by single sample Gene Set Enrichment Analysis (ssGSEA) algorithm.

RESULTS: The value of genes linked with inflammation in the prognosis of IPF was analyzed, and a four-genes risk model was constructed, including tpbg, Myc, ffar2, and CCL2. It was highlighted by Kaplan Meier (K-M) survival analysis that patients with high-risk scores had worse overall survival time in all training and validation sets, and univariate and multivariate analysis highlighted that it has the potential to act as an independent risk indicator for poor prognosis. ROC analysis showed that the prediction efficiency of 1-, 3-, and 5-year OS time in the training set reached 0.784, 0.835, and 0.921, respectively. Immune infiltration analysis showed that Myeloid-Derived Suppressor Cells (MDSC), macrophages, regulatory T cells, cd4+ t cells, neutrophils, and dendritic cells were more infiltrated in the high-risk group than in the low-risk group.

CONCLUSION: Inflammation-related genes can be well used to evaluate the IPF prognosis and impart a new idea for the treatment and follow-up management of IPF patients.

PMID:36601116 | PMC:PMC9806212 | DOI:10.3389/fimmu.2022.1010345

Categories: Literature Watch

Lymphangioleiomyomatosis (LAM) Cell Atlas

Wed, 2023-01-04 06:00

Thorax. 2023 Jan;78(1):85-87. doi: 10.1136/thoraxjnl-2022-218772. Epub 2022 Sep 7.

ABSTRACT

Lymphangioleiomyomatosis (LAM) is a rare lung disease of women, causing cystic remodelling of the lung and progressive respiratory failure. The cellular composition, microenvironment and cellular interactions within the LAM lesion remain unclear. To facilitate data sharing and collaborative LAM research, we performed an integrative analysis of single-cell data compiled from lung, uterus and kidney of patients with LAM from three research centres and developed an LAM Cell Atlas (LCA) Web-Portal. The LCA offers a variety of interactive options for investigators to search, visualise and reanalyse comprehensive single-cell multiomics data sets to reveal dysregulated genetic programmes at transcriptomic, epigenomic and cell-cell connectome levels.

PMID:36599466 | DOI:10.1136/thoraxjnl-2022-218772

Categories: Literature Watch

Monitoring T-Cell Kinetics in the Early Recovery Period of Lung Transplantation Cases by Copy Number Levels of T-Cell Receptor Excision Circle

Mon, 2023-01-02 06:00

In Vivo. 2023 Jan-Feb;37(1):310-319. doi: 10.21873/invivo.13081.

ABSTRACT

BACKGROUND/AIM: Lung transplantation is a life-saving procedure for patients with end-stage lung diseases. T-Cell receptor excision circle (TREC) is circular DNA produced during T-cell receptor gene rearrangement in the thymus and indicates naive T-cell migration from the thymus. Therefore, its levels represent thymic T-cell output. Post-transplant lymphocyte kinetics correlate with graft tolerance. The aim of this study was to investigate T-lymphocyte kinetics in the early recovery period after lung transplantation. For this purpose, copy numbers of TREC were determined in patients with a lung transplant. In addition, TREC copy numbers were evaluated according to age, diagnosis and the forced expiratory volume in 1 second (FEV1) of lung transplant patients.

MATERIALS AND METHODS: Peripheral blood samples were taken from patients aged 23 to 59 years who underwent lung transplantation at the Thoracic Surgery Clinic, Kartal-Koşuyolu High Specialization Educational and Research Hospital. This study included peripheral blood samples from 11 lung transplant patients (comprising four with chronic obstructive pulmonary disease, three with idiopathic pulmonary fibrosis, one with cystic fibrosis, one with silicosis and two with bronchiectasis; three females in total). Samples were taken at three different timepoints: Before transplant, and 24 hours and 7 days post transplant. TREC copy numbers were analyzed with real time reverse transcriptase-polymerase chain reaction.

RESULTS: Post-transplant TREC numbers and density values were higher compared to pre-transplant values, although these differences were statistically insignificant. TREC copy numbers were found to be significantly higher in patients younger than 45 years compared to patients older than 45 years. At 24 hours after the transplant, the average TREC copy number/peripheral blood mononuclear cells of the cases with an FEV1 value of or below 50% was found to be statistically significantly higher than that of cases with an FEV1 value above 50% (p=0.046). There was no statistically significant difference in TREC copy numbers between male and female patients or by diagnostic group.

CONCLUSION: TREC copy numbers can be evaluated as a prognostic marker for lung transplantation. There is a need for multicenter studies with more patients.

PMID:36593057 | DOI:10.21873/invivo.13081

Categories: Literature Watch

Roles of lipid metabolism and its regulatory mechanism in idiopathic pulmonary fibrosis: A Review

Mon, 2023-01-02 06:00

Int J Biochem Cell Biol. 2022 Dec 30:106361. doi: 10.1016/j.biocel.2022.106361. Online ahead of print.

ABSTRACT

Idiopathic pulmonary fibrosis is a progressive lung disease of unknown etiology characterized by distorted distal lung architecture, inflammation, and fibrosis. Several lung cell types, including alveolar epithelial cells and fibroblasts, have been implicated in the development and progression of fibrosis. However, the pathogenesis of idiopathic pulmonary fibrosis is still incompletely understood. The latest research has found that dysregulation of lipid metabolism plays an important role in idiopathic pulmonary fibrosis. The changes in the synthesis and activity of fatty acids, cholesterol and other lipids seriously affect the regenerative function of alveolar epithelial cells and promote the transformation of fibroblasts into myofibroblasts. Mitochondrial function is the key to regulating the metabolic needs of a variety of cells, including alveolar epithelial cells. Sirtuins located in mitochondria are essential to maintain mitochondrial function and cellular metabolic homeostasis. Sirtuins can maintain normal lipid metabolism by regulating respiratory enzyme activity, resisting oxidative stress, and protecting mitochondrial function. In this review, we aimed to discuss the difference between normal and idiopathic pulmonary fibrosis lungs in terms of lipid metabolism. Additionally, we highlight recent breakthroughs on the effect of abnormal lipid metabolism on idiopathic pulmonary fibrosis, including the effects of sirtuins. Idiopathic pulmonary fibrosis has its high mortality and limited therapeutic options; therefore, we believe that this review will help to develop a new therapeutic direction from the aspect of lipid metabolism in idiopathic pulmonary fibrosis.

PMID:36592687 | DOI:10.1016/j.biocel.2022.106361

Categories: Literature Watch

Unexpected pulmonary mechanics during positive pressure mechanical ventilation in fibrotic lung disease with concomitant flail chest

Mon, 2023-01-02 06:00

Respir Med Case Rep. 2022 Dec 23;41:101802. doi: 10.1016/j.rmcr.2022.101802. eCollection 2023.

ABSTRACT

Understanding of pulmonary mechanics is essential to understanding mechanical ventilation. Typically, clinicians are mindful of peak and plateau pressures displayed on the ventilator and lung compliance, which is decreased in lung disease such as idiopathic pulmonary fibrosis (IPF). Decreased lung compliance leads to elevated peak and plateau pressures. We present a patient with IPF undergoing mechanical ventilation after cardiac arrest. Despite low lung compliance, he had normal peak and plateau pressures due to the presence of flail chest and increased chest wall compliance. This case highlights the role chest wall compliance plays in total respiratory system compliance and pulmonary mechanics.

PMID:36590250 | PMC:PMC9800186 | DOI:10.1016/j.rmcr.2022.101802

Categories: Literature Watch

The Restoring Effect of Human Umbilical Cord-Derived Mesenchymal Cell-Conditioned Medium (hMSC-CM) against Carbon Tetrachloride-Induced Pulmonary Fibrosis in Male Wistar Rats

Mon, 2023-01-02 06:00

Int J Inflam. 2022 Dec 22;2022:7179766. doi: 10.1155/2022/7179766. eCollection 2022.

ABSTRACT

OBJECTIVE: Pulmonary toxicity induced by CCl4, a model of idiopathic pulmonary fibrosis (IPF), leads to tissue remodeling and inflammation. Human umbilical cord mesenchymal cell-conditioned medium (hMSC-CM) is a potent anti-inflammatory, antioxidative, and antifibrotic agent.

METHODS: Forty male Wistar rats were assigned to the control (C), olive oil control (C.O) (hMSC-CM), control (C.Ms), fibrosis (fb), and fibrosis with hMSC-CM (f.Ms) treatment groups. The groups C, C.O, and C.Ms received PBS (200 µl), olive oil (1 ml/kg), and hMSC-CM (100 μg protein/kg), respectively. The fibrosis group was administered with only CCl4 (1 ml/kg). The last group, f.Ms was treated with CCl4 (1 ml/kg) and 100 μg protein/kg IV hMSC-CM. While the treatment with olive oil and CCl4 was performed for 2 days/week from the first week for 12 weeks, the treatment with PBS and hMSC-CM was carried out 2 days/week from week 4th to week 12th. The effect of the UC-MSC culture medium treatment on the lung was evaluated by assessing lysyl oxidase (LOX), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-β1 (TGF-β1) genes, and proteins expression by real-time RCR and western blotting, respectively.

RESULTS: Lysyl oxidase (LOX), tumor necrosis factor-alpha (TNF-α), transforming growth factor-b1 (TGF-β1), malondialdehyde (MDA), and oxidative stress levels were markedly higher in the fibrosis group than in the control groups (p ≤ 0.001). Additionally, glutathione (GSH) in the fibrosis group was markedly lower than those in the control groups (p ≤ 0.001). Fibrosis in the UC-MSC treatment group had milder histopathological injuries than in the fibrosis group.

CONCLUSION: hMSC-MSC as a strong anti-inflammatory, antioxidative, and antifibrotic decreases the level of oxidative stress, proinflammatory cytokines, and MDA causing a restoring effect against CCl4-induced pulmonary fibrosis.

PMID:36588784 | PMC:PMC9800074 | DOI:10.1155/2022/7179766

Categories: Literature Watch

Corrigendum: Effect of M6A regulators on diagnosis, subtype classification, prognosis and novel therapeutic target development of idiopathic pulmonary fibrosis

Mon, 2023-01-02 06:00

Front Pharmacol. 2022 Dec 16;13:1117317. doi: 10.3389/fphar.2022.1117317. eCollection 2022.

ABSTRACT

[This corrects the article DOI: 10.3389/fphar.2022.993567.].

PMID:36588674 | PMC:PMC9802109 | DOI:10.3389/fphar.2022.1117317

Categories: Literature Watch

Anti-fibrotic therapy and lung transplant outcomes in patients with idiopathic pulmonary fibrosis

Sun, 2023-01-01 06:00

Ther Adv Respir Dis. 2023 Jan-Dec;17:17534666231165912. doi: 10.1177/17534666231165912.

ABSTRACT

BACKGROUND: It is unclear whether continuing anti-fibrotic therapy until the time of lung transplant increases the risk of complications in patients with idiopathic pulmonary fibrosis.

OBJECTIVES: To investigate whether the time between discontinuation of anti-fibrotic therapy and lung transplant in patients with idiopathic pulmonary fibrosis affects the risk of complications.

METHODS: We assessed intra-operative and post-transplant complications among patients with idiopathic pulmonary fibrosis who underwent lung transplant and had been treated with nintedanib or pirfenidone continuously for ⩾ 90 days at listing. Patients were grouped according to whether they had a shorter (⩽ 5 medication half-lives) or longer (> 5 medication half-lives) time between discontinuation of anti-fibrotic medication and transplant. Five half-lives corresponded to 2 days for nintedanib and 1 day for pirfenidone.

RESULTS: Among patients taking nintedanib (n = 107) or pirfenidone (n = 190), 211 (71.0%) had discontinued anti-fibrotic therapy ⩽ 5 medication half-lives before transplant. Anastomotic and sternal dehiscence occurred only in this group (anastomotic: 11 patients [5.2%], p = 0.031 vs patients with longer time between discontinuation of anti-fibrotic medication and transplant; sternal: 12 patients [5.7%], p = 0.024). No differences were observed in surgical wound dehiscence, length of hospital stay, or survival to discharge between groups with a shorter versus longer time between discontinuation of anti-fibrotic therapy and transplant.

CONCLUSION: Anastomotic and sternal dehiscence only occurred in patients with idiopathic pulmonary fibrosis who discontinued anti-fibrotic therapy < 5 medication half-lives before transplant. The frequency of other intra-operative and post-transplant complications did not appear to differ depending on when anti-fibrotic therapy was discontinued.

REGISTRATION: clinicaltrials.gov NCT04316780: https://clinicaltrials.gov/ct2/show/NCT04316780.

PMID:37073794 | DOI:10.1177/17534666231165912

Categories: Literature Watch

Pages