Idiopathic Pulmonary Fibrosis

The Protective Effects of IL-31RA Deficiency During Bleomycin-Induced Pulmonary Fibrosis

Mon, 2021-04-05 06:00

Front Immunol. 2021 Mar 19;12:645717. doi: 10.3389/fimmu.2021.645717. eCollection 2021.

ABSTRACT

Idiopathic Pulmonary Fibrosis (IPF) is a severe fibrotic lung disease characterized by excessive collagen deposition and progressive decline in lung function. Th2 T cell-derived cytokines including IL-4 and IL-13 have been shown to contribute to inflammation and fibrotic remodeling in multiple tissues. Interleukin-31 (IL-31) is a newly identified cytokine that is predominantly produced by CD4 Th2 T cells, but its signaling receptor IL-31RA is primarily expressed by non-hematopoietic cells. However, the potential role of the IL-31-IL31RA axis in pulmonary inflammation and fibrosis has remained largely unknown. To determine the role of IL-31RA deficiency in pulmonary fibrosis, wildtype, and IL-31RA knockout mice were treated with bleomycin and measured changes in collagen deposition and lung function. Notably, the loss of IL-31 signaling attenuated collagen deposition and lung function decline during bleomycin-induced pulmonary fibrosis. The total lung transcriptome analysis showed a significant reduction in fibrosis-associated gene transcripts including extracellular matrix and epithelial cell-associated gene networks. Furthermore, the lungs of human IPF showed an elevated expression of IL-31 when compared to healthy subjects. In support, the percentage of IL-31 producing CD4+ T cells was greater in the lungs and PBMCs from IPF patients compared to healthy controls. Our findings suggest a pathogenic role for IL-31/IL-31RA signaling during bleomycin-induced pulmonary fibrosis. Thus, therapeutic targeting the IL-31-IL-31RA axis may prevent collagen deposition, improve lung function, and have therapeutic potential in pulmonary fibrosis.

PMID:33815402 | PMC:PMC8017338 | DOI:10.3389/fimmu.2021.645717

Categories: Literature Watch

Association between pre-existing respiratory disease and its treatment, and severe COVID-19: a population cohort study

Sun, 2021-04-04 06:00

Lancet Respir Med. 2021 Apr 1:S2213-2600(21)00095-3. doi: 10.1016/S2213-2600(21)00095-3. Online ahead of print.

ABSTRACT

BACKGROUND: Previous studies suggested that the prevalence of chronic respiratory disease in patients hospitalised with COVID-19 was lower than its prevalence in the general population. The aim of this study was to assess whether chronic lung disease or use of inhaled corticosteroids (ICS) affects the risk of contracting severe COVID-19.

METHODS: In this population cohort study, records from 1205 general practices in England that contribute to the QResearch database were linked to Public Health England's database of SARS-CoV-2 testing and English hospital admissions, intensive care unit (ICU) admissions, and deaths for COVID-19. All patients aged 20 years and older who were registered with one of the 1205 general practices on Jan 24, 2020, were included in this study. With Cox regression, we examined the risks of COVID-19-related hospitalisation, admission to ICU, and death in relation to respiratory disease and use of ICS, adjusting for demographic and socioeconomic status and comorbidities associated with severe COVID-19.

FINDINGS: Between Jan 24 and April 30, 2020, 8 256 161 people were included in the cohort and observed, of whom 14 479 (0·2%) were admitted to hospital with COVID-19, 1542 (<0·1%) were admitted to ICU, and 5956 (0·1%) died. People with some respiratory diseases were at an increased risk of hospitalisation (chronic obstructive pulmonary disease [COPD] hazard ratio [HR] 1·54 [95% CI 1·45-1·63], asthma 1·18 [1·13-1·24], severe asthma 1·29 [1·22-1·37; people on three or more current asthma medications], bronchiectasis 1·34 [1·20-1·50], sarcoidosis 1·36 [1·10-1·68], extrinsic allergic alveolitis 1·35 [0·82-2·21], idiopathic pulmonary fibrosis 1·59 [1·30-1·95], other interstitial lung disease 1·66 [1·30-2·12], and lung cancer 2·24 [1·89-2·65]) and death (COPD 1·54 [1·42-1·67], asthma 0·99 [0·91-1·07], severe asthma 1·08 [0·98-1·19], bronchiectasis 1·12 [0·94-1·33], sarcoidosis 1·41 [0·99-1·99), extrinsic allergic alveolitis 1·56 [0·78-3·13], idiopathic pulmonary fibrosis 1·47 [1·12-1·92], other interstitial lung disease 2·05 [1·49-2·81], and lung cancer 1·77 [1·37-2·29]) due to COVID-19 compared with those without these diseases. Admission to ICU was rare, but the HR for people with asthma was 1·08 (0·93-1·25) and severe asthma was 1·30 (1·08-1·58). In a post-hoc analysis, relative risks of severe COVID-19 in people with respiratory disease were similar before and after shielding was introduced on March 23, 2020. In another post-hoc analysis, people with two or more prescriptions for ICS in the 150 days before study start were at a slightly higher risk of severe COVID-19 compared with all other individuals (ie, no or one ICS prescription): HR 1·13 (1·03-1·23) for hospitalisation, 1·63 (1·18-2·24) for ICU admission, and 1·15 (1·01-1·31) for death.

INTERPRETATION: The risk of severe COVID-19 in people with asthma is relatively small. People with COPD and interstitial lung disease appear to have a modestly increased risk of severe disease, but their risk of death from COVID-19 at the height of the epidemic was mostly far lower than the ordinary risk of death from any cause. Use of inhaled steroids might be associated with a modestly increased risk of severe COVID-19.

FUNDING: National Institute for Health Research Oxford Biomedical Research Centre and the Wellcome Trust.

PMID:33812494 | DOI:10.1016/S2213-2600(21)00095-3

Categories: Literature Watch

Immune Stroma in Lung Cancer and Idiopathic Pulmonary Fibrosis: A Common Biologic Landscape?

Sat, 2021-04-03 06:00

Int J Mol Sci. 2021 Mar 12;22(6):2882. doi: 10.3390/ijms22062882.

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) identifies a specific entity characterized by chronic, progressive fibrosing interstitial pneumonia of unknown cause, still lacking effective therapies. Growing evidence suggests that the biologic processes occurring in IPF recall those which orchestrate cancer onset and progression and these findings have already been exploited for therapeutic purposes. Notably, the incidence of lung cancer in patients already affected by IPF is significantly higher than expected. Recent advances in the knowledge of the cancer immune microenvironment have allowed a paradigm shift in cancer therapy. From this perspective, recent experimental reports suggest a rationale for immune checkpoint inhibition in IPF. Here, we recapitulate the most recent knowledge on lung cancer immune stroma and how it can be translated into the IPF context, with both diagnostic and therapeutic implications.

PMID:33809111 | DOI:10.3390/ijms22062882

Categories: Literature Watch

Telomeres in Interstitial Lung Disease

Sat, 2021-04-03 06:00

J Clin Med. 2021 Mar 30;10(7):1384. doi: 10.3390/jcm10071384.

ABSTRACT

Interstitial lung diseases (ILD) encompass a group of conditions involving fibrosis and/or inflammation of the pulmonary parenchyma. Telomeres are repetitive DNA sequences at chromosome ends which protect against genome instability. At each cell division, telomeres shorten, but the telomerase complex partially counteracts progressive loss of telomeres by catalysing the synthesis of telomeric repeats. Once critical telomere shortening is reached, cell cycle arrest or apoptosis are triggered. Telomeres progressively shorten with age. A number of rare genetic mutations have been identified in genes encoding for components of the telomerase complex, including telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC), in familial and, less frequently, in sporadic fibrotic ILDs. Defects in telomerase result in extremely short telomeres. More rapidly progressive disease is observed in fibrotic ILD patients with telomere gene mutations, regardless of underlying diagnosis. Associations with common single nucleotide polymorphisms in telomere related genes have also been demonstrated for various ILDs. Shorter peripheral blood telomere lengths compared to age-matched healthy individuals are found in a proportion of patients with fibrotic ILDs, and in idiopathic pulmonary fibrosis (IPF) and fibrotic hypersensitivity pneumonitis (HP) have been linked to worse survival, independently of disease severity. Greater susceptibility to immunosuppressant-induced side effects in patients with short telomeres has been described in patients with IPF and with fibrotic HP. Here, we discuss recent evidence for the involvement of telomere length and genetic variations in the development, progression, and treatment of fibrotic ILDs.

PMID:33808277 | DOI:10.3390/jcm10071384

Categories: Literature Watch

Progression in the Management of Non-Idiopathic Pulmonary Fibrosis Interstitial Lung Diseases, Where Are We Now and Where We Would Like to Be

Sat, 2021-04-03 06:00

J Clin Med. 2021 Mar 23;10(6):1330. doi: 10.3390/jcm10061330.

ABSTRACT

A significant proportion of patients with interstitial lung disease (ILD) may develop a progressive fibrosing phenotype characterized by worsening of symptoms and pulmonary function, progressive fibrosis on chest computed tomography and increased mortality. The clinical course in these patients mimics the relentless progressiveness of idiopathic pulmonary fibrosis (IPF). Common pathophysiological mechanisms such as a shared genetic susceptibility and a common downstream pathway-self-sustaining fibroproliferation-support the concept of a progressive fibrosing phenotype, which is applicable to a broad range of non-IPF ILDs. While antifibrotic drugs became the standard of care in IPF, immunosuppressive agents are still the mainstay of treatment in non-IPF fibrosing ILD (F-ILD). However, recently, randomized placebo-controlled trials have demonstrated the efficacy and safety of antifibrotic treatment in systemic sclerosis-associated F-ILD and a broad range of F-ILDs with a progressive phenotype. This review summarizes the current pharmacological management and highlights the unmet needs in patients with non-IPF ILD.

PMID:33807034 | DOI:10.3390/jcm10061330

Categories: Literature Watch

Mesenchymal-Epithelial Transition in Fibroblasts of Human Normal Lungs and Interstitial Lung Diseases

Sat, 2021-04-03 06:00

Biomolecules. 2021 Mar 4;11(3):378. doi: 10.3390/biom11030378.

ABSTRACT

. In passages above ten and growing very actively, we observed that some human lung fibroblasts cultured under standard conditions were transformed into a lineage of epithelial-like cells (ELC). To systematically evaluate the possible mesenchymal-epithelial transition (MET) occurrence, fibroblasts were obtained from normal lungs and also from lungs affected by idiopathic interstitial diseases. When an unusual epithelial-like phenotypic change was observed, cultured cells were characterized by confocal immunofluorescence microscopy, immunoblotting, immunocytochemistry, cytofluorometry, gelatin zymography, RT-qPCR, and hybridization in a whole-transcript human microarray. Additionally, microvesicles fraction (MVs) from ELC and fibroblasts were used to induce MET, while the microRNAs (miRNAs) contained in the MVs were identified. Pattern-gene expression of the original fibroblasts and the derived ELC revealed profound changes, upregulating characteristic epithelial-cell genes and downregulating mesenchymal genes, with a marked increase of E-cadherin, cytokeratin, and ZO-1, and the loss of expression of α-SMA, collagen type I, and Thy-1 cell surface antigen (CD90). Fibroblasts, exposed to culture media or MVs from the ELC, acquired ELC phenotype. The miRNAs in MVs shown six expressed exclusively in fibroblasts, and three only in ELC; moreover, twelve miRNAs were differentially expressed between fibroblasts and ELC, all of them but one was overexpressed in fibroblasts. These findings suggest that the MET-like process can occur in human lung fibroblasts, either from normal or diseased lungs. However, the biological implication is unclear.

PMID:33806618 | DOI:10.3390/biom11030378

Categories: Literature Watch

The History and Mystery of Alveolar Epithelial Type II Cells: Focus on Their Physiologic and Pathologic Role in Lung

Sat, 2021-04-03 06:00

Int J Mol Sci. 2021 Mar 4;22(5):2566. doi: 10.3390/ijms22052566.

ABSTRACT

Alveolar type II (ATII) cells are a key structure of the distal lung epithelium, where they exert their innate immune response and serve as progenitors of alveolar type I (ATI) cells, contributing to alveolar epithelial repair and regeneration. In the healthy lung, ATII cells coordinate the host defense mechanisms, not only generating a restrictive alveolar epithelial barrier, but also orchestrating host defense mechanisms and secreting surfactant proteins, which are important in lung protection against pathogen exposure. Moreover, surfactant proteins help to maintain homeostasis in the distal lung and reduce surface tension at the pulmonary air-liquid interface, thereby preventing atelectasis and reducing the work of breathing. ATII cells may also contribute to the fibroproliferative reaction by secreting growth factors and proinflammatory molecules after damage. Indeed, various acute and chronic diseases are associated with intensive inflammation. These include oedema, acute respiratory distress syndrome, fibrosis and numerous interstitial lung diseases, and are characterized by hyperplastic ATII cells which are considered an essential part of the epithelialization process and, consequently, wound healing. The aim of this review is that of revising the physiologic and pathologic role ATII cells play in pulmonary diseases, as, despite what has been learnt in the last few decades of research, the origin, phenotypic regulation and crosstalk of these cells still remain, in part, a mystery.

PMID:33806395 | DOI:10.3390/ijms22052566

Categories: Literature Watch

Loss of MT1-MMP in Alveolar Epithelial Cells Exacerbates Pulmonary Fibrosis

Sat, 2021-04-03 06:00

Int J Mol Sci. 2021 Mar 13;22(6):2923. doi: 10.3390/ijms22062923.

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a lethal age-related lung disease whose pathogenesis involves an aberrant response of alveolar epithelial cells (AEC). Activated epithelial cells secrete mediators that participate in the activation of fibroblasts and the excessive deposition of extracellular matrix proteins. Previous studies indicate that matrix metalloproteinase 14 (MMP14) is increased in the lung epithelium in patients with IPF, however, the role of this membrane-type matrix metalloproteinase has not been elucidated. In this study, the role of Mmp14 was explored in experimental lung fibrosis induced with bleomycin in a conditional mouse model of lung epithelial MMP14-specific genetic deletion. Our results show that epithelial Mmp14 deficiency in mice increases the severity and extension of fibrotic injury and affects the resolution of the lesions. Gain-and loss-of-function experiments with human epithelial cell line A549 demonstrated that cells with a deficiency of MMP14 exhibited increased senescence-associated markers. Moreover, conditioned medium from these cells increased fibroblast expression of fibrotic molecules. These findings suggest a new anti-fibrotic mechanism of MMP14 associated with anti-senescent activity, and consequently, its absence results in impaired lung repair. Increased MMP14 in IPF may represent an anti-fibrotic mechanism that is overwhelmed by the strong profibrotic microenvironment that characterizes this disease.

PMID:33805743 | DOI:10.3390/ijms22062923

Categories: Literature Watch

Hypoxia Inducible Factor 1A Supports a Pro-Fibrotic Phenotype Loop in Idiopathic Pulmonary Fibrosis

Sat, 2021-04-03 06:00

Int J Mol Sci. 2021 Mar 24;22(7):3331. doi: 10.3390/ijms22073331.

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. The IPF-conditioned matrix (IPF-CM) system enables the study of matrix-fibroblast interplay. While effective at slowing fibrosis, nintedanib has limitations and the mechanism is not fully elucidated. In the current work, we explored the underlying signaling pathways and characterized nintedanib involvement in the IPF-CM fibrotic process. Results were validated using IPF patient samples and bleomycin-treated animals with/without oral and inhaled nintedanib. IPF-derived primary human lung fibroblasts (HLFs) were cultured on Matrigel and then cleared using NH4OH, creating the IPF-CM. Normal HLF-CM served as control. RNA-sequencing, PCR and western-blots were performed. HIF1α targets were evaluated by immunohistochemistry in bleomycin-treated rats with/without nintedanib and in patient samples with IPF. HLFs cultured on IPF-CM showed over-expression of 'HIF1α signaling pathway' (KEGG, p < 0.0001), with emphasis on SERPINE1 (PAI-1), VEGFA and TIMP1. IPF patient samples showed high HIF1α staining, especially in established fibrous tissue. PAI-1 was overexpressed, mainly in alveolar macrophages. Nintedanib completely reduced HIF1α upregulation in the IPF-CM and rat-bleomycin models. IPF-HLFs alter the extracellular matrix, thus creating a matrix that further propagates an IPF-like phenotype in normal HLFs. This pro-fibrotic loop includes the HIF1α pathway, which can be blocked by nintedanib.

PMID:33805152 | DOI:10.3390/ijms22073331

Categories: Literature Watch

Oxidative Stress and Endoplasmic Reticulum Stress in Rare Respiratory Diseases

Sat, 2021-04-03 06:00

J Clin Med. 2021 Mar 18;10(6):1268. doi: 10.3390/jcm10061268.

ABSTRACT

Several studies have shown that some rare respiratory diseases, such as alpha-1 antitrypsin deficiency (AATD), idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF), and primary ciliary dyskinesia (PCD) present oxidative stress (OS) and endoplasmic reticulum (ER) stress. Their involvement in these pathologies and the use of antioxidants as therapeutic agents to minimize the effects of OS are discussed in this review.

PMID:33803835 | DOI:10.3390/jcm10061268

Categories: Literature Watch

Elevated Serum Amyloid a Levels Are not Specific for Sarcoidosis but Associate with a Fibrotic Pulmonary Phenotype

Sat, 2021-04-03 06:00

Cells. 2021 Mar 7;10(3):585. doi: 10.3390/cells10030585.

ABSTRACT

Elevated Serum Amyloid A (SAA) levels have been found in several inflammatory diseases, including sarcoidosis. SAA is suggested to be involved in sarcoidosis pathogenesis by involvement in granuloma formation and maintenance. We hypothesized that SAA serum levels would be higher in sarcoidosis compared to other non-infectious granulomatous and non-granulomatous diseases. SAA levels were measured in serum from sarcoidosis, Hypersensitivity pneumonitis (HP), and (eosinophilic) granulomatosis with polyangiitis ((E)GPA) patients. Idiopathic pulmonary fibrosis (IPF) patients were included as non-granulomatous disease group. SAA levels of patients with sarcoidosis (31.0 µg/mL), HP (23.4 µg/mL), (E)GPA (36.9 µg/mL), and IPF (22.1 µg/mL) were all higher than SAA levels of healthy controls (10.1 µg/mL). SAA levels did not differ between the diagnostic groups. When SAA serum levels were analyzed in sarcoidosis subgroups, fibrotic sarcoidosis patients showed higher SAA levels than sarcoidosis patients without fibrosis (47.8 µg/mL vs. 29.4 µg/mL, p = 0.005). To conclude, the observation that fibrotic sarcoidosis patients have higher SAA levels, together with our finding that SAA levels were also increased in IPF patients, suggests that SAA may next to granulomatous processes also reflect the process of fibrogenesis. Further studies should clarify the exact role of SAA in fibrosis and the underlying mechanisms involved.

PMID:33799927 | DOI:10.3390/cells10030585

Categories: Literature Watch

Prevalence, predicting factors and impact of internet use by patients with idiopathic pulmonary fibrosis: A cross-sectional observational study

Fri, 2021-04-02 06:00

Respir Med Res. 2021 Mar 11;79:100818. doi: 10.1016/j.resmer.2021.100818. Online ahead of print.

NO ABSTRACT

PMID:33799120 | DOI:10.1016/j.resmer.2021.100818

Categories: Literature Watch

Exposure-efficacy analyses of nintedanib in patients with chronic fibrosing interstitial lung disease

Fri, 2021-04-02 06:00

Respir Med. 2021 Mar 14;180:106369. doi: 10.1016/j.rmed.2021.106369. Online ahead of print.

ABSTRACT

BACKGROUND: The tyrosine kinase inhibitor nintedanib reduces the rate of decline in forced vital capacity (FVC) in patients with idiopathic pulmonary fibrosis (IPF), other chronic fibrosing interstitial lung diseases (ILDs) with a progressive phenotype and systemic sclerosis-associated ILD (SSc-ILD). The recommended dose of nintedanib is 150 mg twice daily (BID).

METHODS: Data from Phase II and III trials in IPF, SSc-ILD and progressive fibrosing ILDs other than IPF were analyzed to investigate the relationship between nintedanib plasma concentrations (exposure) and efficacy.

RESULTS: Using data from 1403 patients with IPF treated with 50-150 mg nintedanib BID in Phase II and III studies, a linear disease progression model with a maximum drug effect on the rate of decline in FVC was established. Age, height and gender were pre-specified covariates on baseline FVC. Stepwise analysis revealed no other covariates with a distinct effect on the exposure-efficacy relationship. The estimated plasma concentration producing 80% of the maximum drug effect was 10-13 ng/mL, close to the median exposure at 150 mg BID (10 ng/mL). The model in IPF was adapted using Phase III data from 575 patients with SSc-ILD and 663 patients with progressive fibrosing ILDs other than IPF. Besides differences in the natural decline in FVC without treatment, data were consistent with the exposure-efficacy relationship in IPF.

CONCLUSIONS: For most patients with chronic fibrosing ILDs, the 150 mg nintedanib BID dose provides exposure levels associated with a therapeutic effect close to the maximum nintedanib effect independent of disease condition or baseline demographics.

PMID:33798871 | DOI:10.1016/j.rmed.2021.106369

Categories: Literature Watch

Pirfenidone in patients with progressive fibrotic interstitial lung diseases other than idiopathic pulmonary fibrosis (RELIEF): a double-blind, randomised, placebo-controlled, phase 2b trial

Fri, 2021-04-02 06:00

Lancet Respir Med. 2021 Mar 30:S2213-2600(20)30554-3. doi: 10.1016/S2213-2600(20)30554-3. Online ahead of print.

ABSTRACT

BACKGROUND: Pirfenidone has been shown to slow disease progression in patients with idiopathic pulmonary fibrosis (IPF). However, there are few treatment options for progressive fibrotic interstitial lung diseases (ILDs)) other than IPF. In view of the pathomechanistic and clinical similarities between IPF and other progressive fibrotic ILDs, we aimed to assess the efficacy and safety of pirfenidone in patients with four non-IPF progressive fibrotic ILDs.

METHODS: We did a multicentre, double-blind, randomised, placebo-controlled, parallel phase 2b trial (RELIEF) in 17 centres with expertise in ILD in Germany. Eligible participants were patients aged 18-80 years with progressive fibrotic ILD due to four diagnoses: collagen or vascular diseases (ie, connective tissue disease-associated ILDs), fibrotic non-specific interstitial pneumonia, chronic hypersensitivity pneumonitis, or asbestos-induced lung fibrosis. Other eligibility criteria included a forced vital capacity (FVC) of 40-90% predicted, a diffusing capacity of the lung for carbon monoxide of 10-90% predicted, and an annual decline of FVC of at least 5% predicted despite conventional therapy, based on at least three measurements within 6-24 months before enrolment. Patients who had received any previous antifibrotic therapy were excluded. We randomly assigned patients (1:1) to either oral pirfenidone (267 mg three times per day in week 1, 534 mg three times per day in week 2, and 801 mg three times per day thereafter) or matched placebo, added to their ongoing medication. Randomisation was done centrally using permuted block randomisation with varying block sizes stratified by the four diagnostic groups. Patients, investigators, statisticians, monitors, and the study coordinator were masked to treatment assignment until database closure. The placebo-controlled study period was 48 weeks (including up-titration). The primary endpoint was absolute change in percentage of predicted FVC (FVC % predicted) from baseline to week 48 in the intention-to-treat population, with imputation of missing data by the smallest sum of squared differences and attribution of deceased patients to the lowest rank in a rank ANCOVA model. Additionally, we did linear mixed-model repeated measures slope analyses of FVC % predicted longitudinal data over the course of the study as a prespecified sensitivity analysis and post-hoc sensitivity analyses of the primary endpoint in the intention-to-treat population using imputation methods of last observation carried forward [LOCF] and a regression-based multiple imputation procedure. Safety was assessed in all patients who received at least one dose of study medication. This trial is registered with EudraCT 2014-000861-32; DRKS00009822 and is no longer recruiting.

FINDINGS: Between April 5, 2016, and Oct 4, 2018, we randomly assigned 127 patients to treatment: 64 to pirfenidone, 63 to placebo. After 127 patients had been randomised, the study was prematurely terminated on the basis of an interim analysis for futility triggered by slow recruitment. After 48 weeks and in the overall population of 127 patients, rank ANCOVA with diagnostic group included as a factor showed a significantly lower decline in FVC % predicted in the pirfenidone group compared with placebo (p=0·043); the result was similar when the model was stratified by diagnostic group (p=0·042). A significant treatment effect was also observed when applying the LOCF and multiple imputation methods to analyses of the primary endpoint. The median difference (Hodges-Lehmann estimate) between pirfenidone and placebo groups for the primary endpoint was 1·69 FVC % predicted (95% CI -0·65 to 4·03). In the linear mixed-model repeated measures slope analysis of FVC % predicted, the estimated difference between treatment and placebo groups from baseline to week 48 was 3·53 FVC % predicted (95% CI 0·21 to 6·86) with imputation of deaths as prespecified, or 2·79 FVC % predicted (95% CI 0·03 to 5·54) without imputation. One death (non-respiratory) occurred in the pirfenidone group (2%) and five deaths (three of which were respiratory) occurred in the placebo group (8%). The most frequent serious adverse events in both groups were infections and infestations (five [8%] in the pirfenidone group, ten [16%] in the placebo group); general disorders including disease worsening (two [3%] in the pirfenidone group, seven [11%] in the placebo group); and cardiac disorders (one ([2%] in the pirfenidone group, 5 [8%] in the placebo group). Adverse events (grade 3-4) of nausea (two patients on pirfenidone, two on placebo), dyspnoea (one patient on pirfenidone, one on placebo), and diarrhoea (one patient on pirfenidone) were also observed.

INTERPRETATION: In view of the premature study termination, results should be interpreted with care. Nevertheless, our data suggest that in patients with fibrotic ILDs other than IPF who deteriorate despite conventional therapy, adding pirfenidone to existing treatment might attenuate disease progression as measured by decline in FVC.

FUNDING: German Center for Lung Research, Roche Pharma.

PMID:33798455 | DOI:10.1016/S2213-2600(20)30554-3

Categories: Literature Watch

Interstitial lung abnormality (ILA) and nonspecific interstitial pneumonia (NSIP)

Fri, 2021-04-02 06:00

Eur J Radiol Open. 2021 Mar 16;8:100336. doi: 10.1016/j.ejro.2021.100336. eCollection 2021.

ABSTRACT

This review article aims to address mysteries existing between Interstitial Lung Abnormality (ILA) and Nonspecific Interstitial Pneumonia (NSIP). The concept and definition of ILA are based upon CT scans from multiple large-scale cohort studies, whereas the concept and definition of NSIP originally derived from pathology with evolution to multi-disciplinary diagnosis. NSIP is the diagnosis as Interstitial Lung Disease (ILD) with clinical significance, whereas only a part of subjects with ILA have clinically significant ILD. Eventually, both ILA and NSIP must be understood in the context of chronic fibrosing ILD and progressive ILD, which remains to be further investigated.

PMID:33796637 | PMC:PMC7995484 | DOI:10.1016/j.ejro.2021.100336

Categories: Literature Watch

CREB-dependent LPA-induced signaling initiates a pro-fibrotic feedback loop between small airway basal cells and fibroblasts

Fri, 2021-04-02 06:00

Respir Res. 2021 Apr 1;22(1):97. doi: 10.1186/s12931-021-01677-0.

ABSTRACT

BACKGROUND: Lysophosphatidic acid (LPA), generated extracellularly by the action of autotaxin and phospholipase A2, functions through LPA receptors (LPARs) or sphingosine-1-phosphate receptors (S1PRs) to induce pro-fibrotic signaling in the lower respiratory tract of patients with idiopathic pulmonary fibrosis (IPF). We hypothesized that LPA induces changes in small airway epithelial (SAE) basal cells (BC) that create cross-talk between the BC and normal human lung fibroblasts (NHLF), enhancing myofibroblast formation.

METHODS: To assess LPA-induced signaling, BC were treated with LPA for 2.5 min and cell lysates were analyzed by phosphokinase array and Western blot. To assess transcriptional changes, BC were treated with LPA for 3 h and harvested for collection and analysis of RNA by quantitative polymerase chain reaction (qPCR). To assess signaling protein production and function, BC were washed thoroughly after LPA treatment and incubated for 24 h before collection for protein analysis by ELISA or functional analysis by transfer of conditioned medium to NHLF cultures. Transcription, protein production, and proliferation of NHLF were assessed.

RESULTS: LPA treatment induced signaling by cAMP response element-binding protein (CREB), extracellular signal-related kinases 1 and 2 (Erk1/2), and epithelial growth factor receptor (EGFR) resulting in elevated expression of connective tissue growth factor (CTGF), endothelin-1 (EDN1/ET-1 protein), and platelet derived growth factor B (PDGFB) at the mRNA and protein levels. The conditioned medium from LPA-treated BC induced NHLF proliferation and increased NHLF expression of collagen I (COL1A1), smooth muscle actin (ACTA2), and autotaxin (ENPP2) at the mRNA and protein levels. Increased autotaxin secretion from NHLF correlated with increased LPA in the NHLF culture medium. Inhibition of CREB signaling blocked LPA-induced changes in BC transcription and translation as well as the pro-fibrotic effects of the conditioned medium on NHLF.

CONCLUSION: Inhibition of CREB signaling may represent a novel target for alleviating the LPA-induced pro-fibrotic feedback loop between SAE BC and NHLF.

PMID:33794877 | DOI:10.1186/s12931-021-01677-0

Categories: Literature Watch

Prognostic role of MUC5B rs35705950 genotype in patients with idiopathic pulmonary fibrosis (IPF) on antifibrotic treatment

Fri, 2021-04-02 06:00

Respir Res. 2021 Apr 1;22(1):98. doi: 10.1186/s12931-021-01694-z.

ABSTRACT

BACKGROUND: A common variant located in the promoter region of MUC5B (rs35705950) is the strongest risk factor for sporadic and familiar IPF, as well as a predictor of outcome. However, there are no data on the effect of MUC5B rs35705950 genotype on the prognosis of IPF patients on antifibrotic treatment. The aim of this study is to determine, in a phenotypically well-characterized population of patients with IPF treated with antifibrotics, the impact of MUC5B rs35705950 genotype on disease progression and survival.

METHODS: 88 IPF patients on antifibrotic treatment were followed-up from 2014 until transplantation, death or end of follow-up (December 2019). Disease progression was defined as a forced vital capacity (FVC) loss ≥ 5% per year. All patients were genotyped for MUC5B rs35705950 by PCR amplification and Sanger sequencing.

RESULTS: Out of 88 patients, 61 (69%) carried the mutant T allele (TT or TG) and 27 (31%) did not (GG). Carriage of the MUC5B rs35705950 T allele was not associated with a faster decline in FVC. Conversely, at the end of the follow-up, overall survival in carriers of the TT/TG genotype was longer compared to that of the GG genotype carriers. FVC (L) at baseline and time to respiratory failure at rest were independent predictors of worse prognosis.

CONCLUSIONS: In IPF patients on antifibrotic treatment, carriage of the MUC5B rs35705950 T allele is associated with longer survival, highlighting the usefulness of MUC5B genetic data in clinical decision making.

PMID:33794872 | DOI:10.1186/s12931-021-01694-z

Categories: Literature Watch

Changing priorities for pulmonary fibrosis: the patient will see you now!

Thu, 2021-04-01 06:00

Thorax. 2021 Mar 31:thoraxjnl-2020-216616. doi: 10.1136/thoraxjnl-2020-216616. Online ahead of print.

NO ABSTRACT

PMID:33790003 | DOI:10.1136/thoraxjnl-2020-216616

Categories: Literature Watch

Clinical characteristics of non-idiopathic pulmonary fibrosis, progressive fibrosing interstitial lung diseases: A single-center retrospective study

Wed, 2021-03-31 06:00

Medicine (Baltimore). 2021 Apr 2;100(13):e25322. doi: 10.1097/MD.0000000000025322.

NO ABSTRACT

PMID:33787626 | DOI:10.1097/MD.0000000000025322

Categories: Literature Watch

VEGF/Src signaling mediated pleural barrier damage and increased permeability contributes to sub-pleural pulmonary fibrosis

Wed, 2021-03-31 06:00

Am J Physiol Lung Cell Mol Physiol. 2021 Mar 31. doi: 10.1152/ajplung.00436.2020. Online ahead of print.

ABSTRACT

The distribution of fibrosis in idiopathic pulmonary fibrosis (IPF) is sub-pleural with basal predominance. Alveolar epithelial cell was considered as the key cell in the initial phase of IPF. However, the idea of activation and damage of alveolar epithelial cells is very difficult to explain why fibrosis distributes in the sub-pleural area. In this study, human pleural mesothelial cell (PMC) line and primary rat PMC was used as in vitro model. Intra-peritoneal injection of bleomycin was used for making a pulmonary fibrosis model. The integrity of cultured monolayer PMCs was determined by transepithelial electric resistance (TEER). Pleural permeability was estimated by measuring paracellular transport of fluorescein isothiocyanate (FITC)-conjugated dextran. Changes in lung tissue of IPF patients were analyzed by Masson's and immunofluorescence staining. We found bleomycin induced PMCs damage and increased PMCs permeability, increased PMCs permeability aggravated bleomycin-induced sub-pleural inflammation and pulmonary fibrosis. Moreover, bleomycin was found to activate VEGF/Src signaling which increased PMCs permeability. In vivo, inhibition of VEGF/Src signaling prevented bleomycin-induced sub-pleural pulmonary fibrosis. At last, activation of VEGF/Src signaling was confirmed in sub-pleural area in IPF patients. Taken together, our findings indicate that VEGF/Src signaling mediated pleural barrier damage and increased permeability which contributes to sub-pleural pulmonary fibrosis.

PMID:33787325 | DOI:10.1152/ajplung.00436.2020

Categories: Literature Watch

Pages