Idiopathic Pulmonary Fibrosis
O-GlcNAc regulates anti-fibrotic genes in lung fibroblasts through EZH2
J Cell Mol Med. 2024 Apr;28(7):e18191. doi: 10.1111/jcmm.18191.
ABSTRACT
Epigenetic modifications are involved in fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF), and contribute to the silencing of anti-fibrotic genes. H3K27me3, a key repressive histone mark, is catalysed by the methyltransferase enhancer of Zeste homologue 2 (EZH2), which is regulated by the post-translational modification, O-linked N-Acetylglucosamine (O-GlcNAc). In this study, we explored the effects of O-GlcNAc and EZH2 on the expression of antifibrotic genes, cyclooxygenase-2 (Cox2) and Heme Oxygenase (Homx1). The expression of Cox2 and Hmox1 was examined in primary IPF or non-IPF lung fibroblasts with or without EZH2 inhibitor EZP6438, O-GlcNAc transferase (OGT) inhibitor (OSMI-1) or O-GlcNAcase (OGA) inhibitor (thiamet G). Non-IPF cells were also subjected to TGF-β1 with or without OGT inhibition. The reduced expression of Cox2 and Hmox1 in IPF lung fibroblasts is restored by OGT inhibition. In non-IPF fibroblasts, TGF-β1 treatment reduces Cox2 and Hmox1 expression, which was restored by OGT inhibition. ChIP assays demonstrated that the association of H3K27me3 is reduced at the Cox2 and Hmox1 promoter regions following OGT or EZH2 inhibition. EZH2 levels and stability were decreased by reducing O-GlcNAc. Our study provided a novel mechanism of O-GlcNAc modification in regulating anti-fibrotic genes in lung fibroblasts and in the pathogenesis of IPF.
PMID:38494860 | DOI:10.1111/jcmm.18191
Sumatriptan mitigates bleomycin-induced lung fibrosis in male rats: Involvement of inflammation, oxidative stress and alpha-SMA
Tissue Cell. 2024 Mar 12;88:102349. doi: 10.1016/j.tice.2024.102349. Online ahead of print.
ABSTRACT
INTRODUCTION: Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung condition that produces symptoms including coughing which may cause by excessive accumulation of scar tissue inflammatory and oxidative stress exacerbation. Sumatriptan, utilized for migraine treatment as a selective 5-HT1B/1D receptor agonist, has demonstrated significant anti-inflammatory and antioxidant properties in multiple preclinical investigations. Operating primarily on serotonin receptors, sumatriptan leverages the diverse physiological functions of serotonin, playing a pivotal role in regulating both inflammation and oxidative stress which is particularly relevant in the context of IPF.
MATERIALS & METHODS: Thirty-five male Wistar rats were divided to five group, including: Sham (without IPF induction), control (BLM 5 mg/kg, intraperitoneally), and three fibrosis group with sumatriptan (0.5, 1, and 3 mg/kg, i.p. for 2 weeks) administration. IPF was induced by injection of BLM (single dose, 5 mg/kg intratracheally). Lung tissues were separated for measurement of myeloperoxidase (MPO) as an oxidative stress hallmark, and tumor necrosis factor-α (TNF-α), interleukin-1β (IL-β), and transforming growth factor-β (TGF-β) as inflammatory markers as well as alpha smooth muscle actin (α-SMA). Also, for histological investigations, tissue damages were assessed by Hematoxylin-eosin (H&E) and Masson's trichrome staining method.
RESULTS: BLM-induced fibrosis could increase α-SMA, MPO, TNF-α, IL-1β, and TGF-β, while treatment with sumatriptan has reversed the α-SMA, MPO, and IL-1β levels. Moreover, the results of H&E and Masson's trichrome staining indicated that sumatriptan (1 and 3 mg/kg) reduced tissue damages, alveolar wall thickness, collagen accumulation, and pulmonary fibrosis induced by BLM.
CONCLUSION: According to the data achieved from this study, Sumatriptan appears to have therapeutic benefits in IPF, possibly via reducing α-SMA as well as inflammation and the toxicity caused by oxidative stress.
PMID:38492426 | DOI:10.1016/j.tice.2024.102349
Clinical characteristics and outcome of lung cancer in patients with fibrosing interstitial lung disease
BMC Pulm Med. 2024 Mar 15;24(1):136. doi: 10.1186/s12890-024-02946-6.
ABSTRACT
BACKGROUND: Lung cancer (LC) is an important comorbidity of interstitial lung disease (ILD) and has a poor prognosis. The clinical characteristics and outcome of each ILD subtype in LC patients have not been sufficiently investigated. Therefore, this study aimed to evaluate the difference between idiopathic pulmonary fibrosis (IPF) and non-IPF ILD as well as prognostic factors in patients with ILD-LC.
METHODS: The medical records of 163 patients diagnosed with ILD-LC at Asan Medical Center from January 2018 to May 2023 were retrospectively reviewed. Baseline characteristics and clinical outcomes were compared between the IPF-LC and non-IPF ILD-LC groups, and prognostic factors were analyzed using the Cox proportional-hazard model.
RESULTS: The median follow-up period was 11 months after the cancer diagnosis. No statistically significant differences were observed in clinical characteristics and mortality rates (median survival: 26 vs. 20 months, p = 0.530) between the groups. The independent prognostic factors in patients with ILD-LC were higher level of Krebs von den Lungen-6 (≥ 1000 U/mL, hazard ratio [HR] 1.970, 95% confidence interval [CI] 1.026-3.783, p = 0.025) and advanced clinical stage of LC (compared with stage I, HR 3.876 for stage II, p = 0.025, HR 5.092 for stage III, p = 0.002, and HR 5.626 for stage IV, p = 0.002). In terms of treatment, surgery was the significant factor for survival (HR 0.235; 95% CI 0.106-0.520; p < 0.001).
CONCLUSIONS: No survival difference was observed between IPF-LC and non-IPF ILD-LC patients. A higher level of Krebs von den Lungen-6 may act as a prognostic marker in ILD-LC patients.
PMID:38491506 | DOI:10.1186/s12890-024-02946-6
Identifying a survival-associated cell type based on multi-level transcriptome analysis in idiopathic pulmonary fibrosis
Respir Res. 2024 Mar 15;25(1):126. doi: 10.1186/s12931-024-02738-w.
ABSTRACT
BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive disease with a five-year survival rate of less than 40%. There is significant variability in survival time among IPF patients, but the underlying mechanisms for this are not clear yet.
METHODS AND RESULTS: We collected single-cell RNA sequence data of 13,223 epithelial cells taken from 32 IPF patients and bulk RNA sequence data from 456 IPF patients in GEO. Based on unsupervised clustering analysis at the single-cell level and deconvolution algorithm at bulk RNA sequence data, we discovered a special alveolar type 2 cell subtype characterized by high expression of CCL20 (referred to as ATII-CCL20), and found that IPF patients with a higher proportion of ATII-CCL20 had worse prognoses. Furthermore, we uncovered the upregulation of immune cell infiltration and metabolic functions in IPF patients with a higher proportion of ATII-CCL20. Finally, the comprehensive decision tree and nomogram were constructed to optimize the risk stratification of IPF patients and provide a reference for accurate prognosis evaluation.
CONCLUSIONS: Our study by integrating single-cell and bulk RNA sequence data from IPF patients identified a special subtype of ATII cells, ATII-CCL20, which was found to be a risk cell subtype associated with poor prognosis in IPF patients. More importantly, the ATII-CCL20 cell subtype was linked with metabolic functions and immune infiltration.
PMID:38491375 | DOI:10.1186/s12931-024-02738-w
Retraction Note: Dietary intake and incidence risk of idiopathic pulmonary fibrosis: a Mendelian randomization study
BMC Pulm Med. 2024 Mar 15;24(1):131. doi: 10.1186/s12890-024-02963-5.
NO ABSTRACT
PMID:38491355 | DOI:10.1186/s12890-024-02963-5
Utility of peripheral protein biomarkers for the prediction of incident interstitial features: a multicentre retrospective cohort study
BMJ Open Respir Res. 2024 Mar 14;11(1):e002219. doi: 10.1136/bmjresp-2023-002219.
ABSTRACT
INTRODUCTION/RATIONALE: Protein biomarkers may help enable the prediction of incident interstitial features on chest CT.
METHODS: We identified which protein biomarkers in a cohort of smokers (COPDGene) differed between those with and without objectively measured interstitial features at baseline using a univariate screen (t-test false discovery rate, FDR p<0.001), and which of those were associated with interstitial features longitudinally (multivariable mixed effects model FDR p<0.05). To predict incident interstitial features, we trained four random forest classifiers in a two-thirds random subset of COPDGene: (1) imaging and demographic information, (2) univariate screen biomarkers, (3) multivariable confirmation biomarkers and (4) multivariable confirmation biomarkers available in a separate testing cohort (Pittsburgh Lung Screening Study (PLuSS)). We evaluated classifier performance in the remaining one-third of COPDGene, and, for the final model, also in PLuSS.
RESULTS: In COPDGene, 1305 biomarkers were available and 20 differed between those with and without interstitial features at baseline. Of these, 11 were associated with feature progression over a mean of 5.5 years of follow-up, and of these 4 were available in PLuSS, (angiopoietin-2, matrix metalloproteinase 7, macrophage inflammatory protein 1 alpha) over a mean of 8.8 years of follow-up. The area under the curve (AUC) of classifiers using demographics and imaging features in COPDGene and PLuSS were 0.69 and 0.59, respectively. In COPDGene, the AUC of the univariate screen classifier was 0.78 and of the multivariable confirmation classifier was 0.76. The AUC of the final classifier in COPDGene was 0.75 and in PLuSS was 0.76. The outcome for all of the models was the development of incident interstitial features.
CONCLUSIONS: Multiple novel and previously identified proteomic biomarkers are associated with interstitial features on chest CT and may enable the prediction of incident interstitial diseases such as idiopathic pulmonary fibrosis.
PMID:38485250 | DOI:10.1136/bmjresp-2023-002219
Japanese guidelines for the treatment of idiopathic pulmonary fibrosis 2023:Revised edition
Respir Investig. 2024 Mar 13;62(3):402-418. doi: 10.1016/j.resinv.2024.02.014. Online ahead of print.
ABSTRACT
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease with a poor prognosis and an unknown cause that generally progresses to pulmonary fibrosis and leads to irreversible tissue alteration. The "Guidelines for the treatment of idiopathic pulmonary fibrosis 2017," specializing in the treatment of IPF for the first time in Japan and presenting evidence-based standard treatment methods suited to the state of affairs in Japan, was published in 2017, in line with the 2014 version of "Formulation procedure for Minds Clinical Practice Guidelines." Because new evidence had accumulated, we formulated the "Guidelines for the treatment of Idiopathic Pulmonary Fibrosis 2023 (revised 2nd edition)." While keeping the revision consistent with the ATS/ERS/JRS/ALAT IPF treatment guidelines, new clinical questions (CQs) on pulmonary hypertension were added to the chronic stage, in addition to acute exacerbation and comorbid lung cancer, which greatly affect the prognosis but are not described in the ATS/ERS/JRS/ALAT IPF guidelines. Regarding the advanced stages, we additionally created expert consensus-based advice for palliative care and lung transplantation. The number of CQs increased from 17 in the first edition to 24. It is important that these guidelines be used not only by respiratory specialists but also by general practitioners, patients, and their families; therefore, we plan to revise them appropriately in line with ever-advancing medical progress.
PMID:38484504 | DOI:10.1016/j.resinv.2024.02.014
Advancing Drug Development in Idiopathic Pulmonary Fibrosis: Tomorrow Is Now
Am J Respir Crit Care Med. 2024 Mar 14. doi: 10.1164/rccm.202402-0381ED. Online ahead of print.
NO ABSTRACT
PMID:38484134 | DOI:10.1164/rccm.202402-0381ED
Phase 2, Double-Blind, Placebo-controlled Trial of a c-Jun N-Terminal Kinase Inhibitor in Idiopathic Pulmonary Fibrosis
Am J Respir Crit Care Med. 2024 Mar 14. doi: 10.1164/rccm.202310-1907OC. Online ahead of print.
ABSTRACT
Rationale: Idiopathic pulmonary fibrosis is a fatal and progressive disease with limited treatment options. Objectives: To assess the efficacy and safety of CC-90001, an oral inhibitor of c-Jun N-terminal kinase 1, in patients with idiopathic pulmonary fibrosis. Methods: NCT03142191 was a phase 2, randomized (1:1:1), double-blind, placebo-controlled study in which patients received CC-90001 (200 or 400 mg) or placebo once daily for 24 weeks. Background antifibrotic treatment (pirfenidone) was allowed. The primary endpoint was change in percentage of predicted forced vital capacity (ppFVC) from baseline to Week 24; secondary endpoints included safety. Measurements and Main Results: In total, 112 patients received ≥1 dose of study drug. The study was terminated early due to a strategic decision made by the sponsor. Ninety-one patients (81%) completed the study. The least-squares mean changes from baseline in ppFVC at Week 24 were -3.1% (placebo), -2.1% (200 mg), and -1.0% (400 mg); the differences compared with placebo were 1.1% (200 mg; 95% CI: -2.1, 4.3; P=.50) and 2.2% (400 mg; 95% CI: -1.1, 5.4; P=.19). Adverse event frequency was similar in patients in the combined CC-90001 arms versus placebo. The most common adverse events were nausea, diarrhea, and vomiting, which were more frequent in patients in CC-90001 arms versus placebo. Fewer patients in the CC-90001 than in the placebo arm experienced cough and dyspnea. Conclusions: Treatment with CC-90001 over 24 weeks led to numerical improvements in ppFVC in patients with idiopathic pulmonary fibrosis compared to placebo. CC-90001 was generally well tolerated, consistent with previous studies. Clinical trial registration available at www.clinicaltrials.gov, ID: NCT03142191.
PMID:38484130 | DOI:10.1164/rccm.202310-1907OC
Idiopathic pulmonary fibrosis: Desperately seeking a model
Rev Mal Respir. 2024 Mar 12:S0761-8425(24)00139-6. doi: 10.1016/j.rmr.2024.02.009. Online ahead of print.
ABSTRACT
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and fatal lung disease of which the origin and development mechanisms remain unknown. The few available pharmacological treatments can only slow the progression of the disease. The development of curative treatments is hampered by the absence of experimental models that can mimic the specific pathophysiological mechanisms of IPF. The aim of this mini-review is to provide an overview of the most commonly used experimental animal models in the study of IPF and to underline the urgent need to seek out new, more satisfactory models.
PMID:38480096 | DOI:10.1016/j.rmr.2024.02.009
The impact of hiatus hernia in hypersensitivity pneumonitis
Respirology. 2024 Mar 13. doi: 10.1111/resp.14701. Online ahead of print.
NO ABSTRACT
PMID:38479405 | DOI:10.1111/resp.14701
The preventative effects of statin on lung cancer development in patients with idiopathic pulmonary fibrosis using the National Health Insurance Service Database in Korea
PLoS One. 2024 Mar 13;19(3):e0299484. doi: 10.1371/journal.pone.0299484. eCollection 2024.
ABSTRACT
Little is known about the effect of statin use in lung cancer development in idiopathic pulmonary fibrosis (IPF). We analyzed the database of the National Health Insurance Service to further investigate the clinical impacts of statin on lung cancer development and overall survival (OS) in IPF patients. The analysis included 9,182 individuals diagnosed with IPF, of which 3,372 (36.7%) were statin users. Compared to statin non-users, the time from diagnosis of IPF to lung cancer development and OS were longer in statin users in IPF patients. In Cox proportional hazard regression models, higher statin compliance, statin use, and being female had an inverse association with lung cancer risk, while older age at diagnosis of IPF and smoking history were associated with higher risk of lung cancer in IPF patients. For OS, statin use, female sex, higher physical activity frequency, and diabetes were associated with longer survival. In contrast, older age at diagnosis of IPF and smoking history were associated with shorter OS in IPF patients. These data from a large population indicate that statin had an independent protective association with lung cancer development and mortality in IPF patients.
PMID:38478558 | DOI:10.1371/journal.pone.0299484
Mesenchymal stem cells-derived exosomes carrying microRNA-30b confer protection against pulmonary fibrosis by downregulating Runx1 via Spred2
Mol Genet Genomics. 2024 Mar 13;299(1):33. doi: 10.1007/s00438-024-02116-7.
ABSTRACT
Idiopathic pulmonary fibrosis (IPF) is a chronic pulmonary fibrosis disease that is fatal. Mesenchymal stem cells (MSCs)-secreted exosomes (exos) have been linked to improving PF. Moreover, exosomal microRNAs (miRs) can control the growth of numerous diseases, including lung disorders. Our bioinformatics analysis showed that miR-30b was downregulated in tissue samples from surgical remnants of biopsies or lungs explanted from patients with IPF who underwent pulmonary transplantation. This suggests that miR-30b plays an important role in both the pathogenesis and treatment of IPF. Herein, this research was designed to ascertain the mechanism of MSCs-exos-packaged miR-30b in alleviating PF. The serum was harvested from idiopathic PF (IPF) patients with interstitial pneumonia caused by dermatomyositis and the MLE12 lung epithelial cell fibrosis model was built with TGF-β1 (10 ng/mL), followed by miR-30b expression determination. TGF-β1-stimulated MLE12 cells were co-incubated with exos from MSCs with or without Spred2 or Runx1 overexpression, followed by measurement of cell viability and apoptosis. After establishing the IPF mouse model with bleomycin and injecting exos and/or silencing and overexpressing adenovirus vectors, fibrosis evaluation was conducted. In mice and cells, the expression of TGF-β1, TNF-α, and IL-1β was tested via ELISA, and the levels of E-cad, ZO-1, α-SMA, and collagen type I via western blot analysis. The promoters of miR-30b, Runx1, and Spred2 were investigated. miR-30b was downregulated in the serum of IPF patients and TGF-β1-stimulated MLE12 cells. Mechanistically, miR-30b inhibited Spred2 transcription by negatively targeting Runx1. MSCs-exos or MSCs-exo-miR-30b decreased the apoptosis, inflammation, and fibrosis while increasing their viability in TGF-β1-stimulated MLE12 cells, which was annulled by overexpressing Runx1 or Spred2. Exo-miR-30b decreased Runx1 expression to downregulate Spred2, reducing fibrosis and inflammation in IPF mice. Our results indicated that MSCs-exos-encapsulated miR-30b had a potential function to inhibit PF and part of its function may be achieved by targeting RUNX1 to reduce the Spred2 transcription level. Moreover, this work offered evidence and therapeutic targets for therapeutic strategies for managing clinical PF in patients.
PMID:38478174 | DOI:10.1007/s00438-024-02116-7
Deciphering the impacts of modulating the Wnt-planar cell polarity (PCP) pathway on alveolar repair
Front Cell Dev Biol. 2024 Feb 27;12:1349312. doi: 10.3389/fcell.2024.1349312. eCollection 2024.
ABSTRACT
Many adult lung diseases involve dysregulated lung repair. Deciphering the molecular and cellular mechanisms that govern intrinsic lung repair is essential to develop new treatments to repair/regenerate the lungs. Aberrant Wnt signalling is associated with lung diseases including emphysema, idiopathic pulmonary fibrosis and pulmonary arterial hypertension but how Wnt signalling contributes to these diseases is still unclear. There are several alternative pathways that can be stimulated upon Wnt ligand binding, one of these is the Planar Cell Polarity (PCP) pathway which induces actin cytoskeleton remodelling. Wnt5a is known to stimulate the PCP pathway and this ligand is of particular interest in regenerative lung biology because of its association with lung diseases and its role in the alveolar stem cell niche. To decipher the cellular mechanisms through which Wnt5a and the PCP pathway affect alveolar repair we utilised a 3-D ex-vivo model of lung injury and repair, the AIR model. Our results show that Wnt5a specifically enhances the alveolar epithelial progenitor cell population following injury and surprisingly, this function is attenuated but not abolished in Looptail (Lp) mouse lungs in which the PCP pathway is dysfunctional. However, Lp tracheal epithelial cells show reduced stiffness and Lp alveolar epithelial cells are less migratory than wildtype (WT), indicating that Lp lung epithelial cells have a reduced capacity for repair. These findings provide important mechanistic insight into how Wnt5a and the PCP pathway contribute to lung repair and indicate that these components of Wnt signalling may be viable targets for the development of pro-repair treatments.
PMID:38476262 | PMC:PMC10927798 | DOI:10.3389/fcell.2024.1349312
Pulmonary Effects of Traumatic Brain Injury in Mice: A Gene Set Enrichment Analysis
Int J Mol Sci. 2024 Mar 5;25(5):3018. doi: 10.3390/ijms25053018.
ABSTRACT
Acute lung injury occurs in 20-25% of cases following traumatic brain injury (TBI). We investigated changes in lung transcriptome expression post-TBI using animal models and bioinformatics. Employing unilateral controlled cortical impact for TBI, we conducted microarray analysis after lung acquisition, followed by gene set enrichment analysis of differentially expressed genes. Our findings indicate significant upregulation of inflammation-related genes and downregulation of nervous system genes. There was enhanced infiltration of adaptive immune cells, evidenced by positive enrichment in Lung-Th1, CD4, and CD8 T cells. Analysis using the Tabula Sapiens database revealed enrichment in lung-adventitial cells, pericytes, myofibroblasts, and fibroblasts, indicating potential effects on lung vasculature and fibrosis. Gene set enrichment analysis linked TBI to lung diseases, notably idiopathic pulmonary hypertension. A Venn diagram overlap analysis identified a common set of 20 genes, with FOSL2 showing the most significant fold change. Additionally, we observed a significant increase in ADRA1A→IL6 production post-TBI using the L1000 library. Our study highlights the impact of brain trauma on lung injury, revealing crucial gene expression changes related to immune cell infiltration, cytokine production, and potential alterations in lung vasculature and fibrosis, along with a specific spectrum of disease influence.
PMID:38474264 | DOI:10.3390/ijms25053018
Potential Rheumatoid Arthritis-Associated Interstitial Lung Disease Treatment and Computational Approach for Future Drug Development
Int J Mol Sci. 2024 Feb 26;25(5):2682. doi: 10.3390/ijms25052682.
ABSTRACT
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by swelling in at least one joint. Owing to an overactive immune response, extra-articular manifestations are observed in certain cases, with interstitial lung disease (ILD) being the most common. Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is characterized by chronic inflammation of the interstitial space, which causes fibrosis and the scarring of lung tissue. Controlling inflammation and pulmonary fibrosis in RA-ILD is important because they are associated with high morbidity and mortality. Pirfenidone and nintedanib are specific drugs against idiopathic pulmonary fibrosis and showed efficacy against RA-ILD in several clinical trials. Immunosuppressants and disease-modifying antirheumatic drugs (DMARDs) with anti-fibrotic effects have also been used to treat RA-ILD. Immunosuppressants moderate the overexpression of cytokines and immune cells to reduce pulmonary damage and slow the progression of fibrosis. DMARDs with mild anti-fibrotic effects target specific fibrotic pathways to regulate fibrogenic cellular activity, extracellular matrix homeostasis, and oxidative stress levels. Therefore, specific medications are required to effectively treat RA-ILD. In this review, the commonly used RA-ILD treatments are discussed based on their molecular mechanisms and clinical trial results. In addition, a computational approach is proposed to develop specific drugs for RA-ILD.
PMID:38473928 | DOI:10.3390/ijms25052682
SOCS domain targets ECM assembly in lung fibroblasts and experimental lung fibrosis
bioRxiv [Preprint]. 2024 Feb 15:2024.02.14.580347. doi: 10.1101/2024.02.14.580347.
ABSTRACT
Idiopathic pulmonary fibrosis (IPF) is a fatal disease defined by a progressive decline in lung function due to scarring and accumulation of extracellular matrix (ECM) proteins. The SOCS (Suppressor Of Cytokine Signaling) domain is a 40 amino acid conserved domain known to form a functional ubiquitin ligase complex targeting the Von Hippel Lindau (VHL) protein for proteasomal degradation. Here we show that the SOCS conserved domain operates as a molecular tool, to disrupt collagen and fibronectin fibrils in the ECM associated with fibrotic lung myofibroblasts. Our results demonstrate that fibroblasts differentiated using TGFß, followed by transduction with the SOCS domain, exhibit significantly reduced levels of the contractile myofibroblast-marker, α-SMA. Furthermore, in support of its role to retard differentiation, we find that lung fibroblasts expressing the SOCS domain present with significantly reduced levels of α-SMA and fibrillar fibronectin after differentiation with TGFß. We show that adenoviral delivery of the SOCS domain in the fibrotic phase of experimental lung fibrosis in mice, significantly reduces collagen accumulation in disease lungs. These data underscore a novel function for the SOCS domain and its potential in ameliorating pathologic matrix deposition in lung fibroblasts and experimental lung fibrosis.
PMID:38469152 | PMC:PMC10926664 | DOI:10.1101/2024.02.14.580347
Role of serum B-cell-activating factor and interleukin-17 as biomarkers in the classification of interstitial pneumonia with autoimmune features
Open Life Sci. 2024 Feb 8;19(1):20220814. doi: 10.1515/biol-2022-0814. eCollection 2024.
ABSTRACT
Interstitial pneumonia with autoimmune features (IPAF) is a type of interstitial lung disease (ILD) with immune features that do not meet the diagnostic criteria for specific connective tissue diseases (CTDs). This retrospective case-control study investigated the role of serum B-cell-activating factor of the tumor necrosis factor family (BAFF) and interleukin (IL)-17 as biomarkers for IPAF. The differences in serum BAFF, IL-17, and IL-10 were compared among patients with idiopathic pulmonary fibrosis (IPF), IPAF, ILD associated with CTD (CTD-ILD), and healthy controls. The patients were treatment naïve. The correlations of BAFF with IL-10, IL-17, and pulmonary function were analyzed. The classifiable value of BAFF for IPAF was examined. The results showed that the serum levels of BAFF and IL-17 in the IPAF and CTD-ILD groups were higher than in the IPF group. High BAFF levels and high predicted diffusion capacity of the lungs for carbon monoxide (DLCO) were independent predictive factors for IPAF vs IPF. In the IPAF and CTD-ILD groups, serum BAFF levels were negatively correlated with predicted values of forced vital capacity (FVC%) and diffusing capacity of the lungs for carbon monoxide (DLCO%) and positively correlated with serum IL-17 and IL-10 levels. The cutoff value of combined BAFF and IL-17 was 0.704, and the sensitivity and specificity for classifying IPAF were 78.9 and 95.7%, respectively. In conclusion, combining serum BAFF and IL-17 as a biomarker may have classifiable value in differentiating IPAF from other forms of ILD.
PMID:38465342 | PMC:PMC10921473 | DOI:10.1515/biol-2022-0814
MGA-NET: MULTI-SCALE GUIDED ATTENTION MODELS FOR AN AUTOMATED DIAGNOSIS OF IDIOPATHIC PULMONARY FIBROSIS (IPF)
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021:1777-1780. doi: 10.1109/isbi48211.2021.9433956. Epub 2021 May 25.
ABSTRACT
We propose a Multi-scale, domain knowledge-Guided Attention model (MGA-Net) for a weakly supervised problem - disease diagnosis with only coarse scan-level labels. The use of guided attention models encourages the deep learning-based diagnosis model to focus on the area of interests (in our case, lung parenchyma), at different resolutions, in an end-to-end manner. The research interest is to diagnose subjects with idiopathic pulmonary fibrosis (IPF) among subjects with interstitial lung disease (ILD) using an axial chest high resolution computed tomography (HRCT) scan. Our dataset contains 279 IPF patients and 423 non-IPF ILD patients. The network's performance was evaluated by the area under the receiver operating characteristic curve (AUC) with standard errors (SE) using stratified five-fold cross validation. We observe that without attention modules, the IPF diagnosis model performs unsatisfactorily (AUC±SE =0.690 ± 0.194); by including unguided attention module, the IPF diagnosis model reaches satisfactory performance (AUC±SE =0.956±0.040), but lack explainability; when including only guided high- or medium- resolution attention, the learned attention maps highlight the lung areas but the AUC decreases; when including both high- and medium- resolution attention, the model reaches the highest AUC among all experiments (AUC± SE =0.971 ±0.021) and the estimated attention maps concentrate on the regions of interests for this task. Our results suggest that, for a weakly supervised task, MGA-Net can utilize the population-level domain knowledge to guide the training of the network in an end-to-end manner, which increases both model accuracy and explainability.
PMID:38464881 | PMC:PMC10924672 | DOI:10.1109/isbi48211.2021.9433956
A real-world study of antifibrotic drugs-related adverse events based on the United States food and drug administration adverse event reporting system and VigiAccess databases
Front Pharmacol. 2024 Feb 23;15:1310286. doi: 10.3389/fphar.2024.1310286. eCollection 2024.
ABSTRACT
Objectives: This study aims to investigate adverse events (AEs) and adverse drug reactions (ADRs) associated with pirfenidone and nintedanib, two antifibrotic drugs used to treat idiopathic pulmonary fibrosis (IPF). Methods: Reporting odds ratio (ROR) and proportional reporting ratio (PRR) analyses were conducted to assess the association between these drugs and signals at both the preferred term (PT) and system organ class (SOC) levels. Results: 55,949 reports for pirfenidone and 35,884 reports for nintedanib were obtained from the FAERS database. The VigiAccess database provided 37,187 reports for pirfenidone and 23,134 reports for nintedanib. Male patients and individuals over the age of 65 were more likely to report AEs. Gastrointestinal disorders emerged as the most significant signal at SOC level for both drugs. Furthermore, nausea, diarrhoea, and decreased appetite were observed at the PT level. We further identified notable signals, including hemiplegic migraine for pirfenidone and asthenia, constipation, and flatulence for nintedanib, which were previously unknown or underestimated ADRs. Conclusion: This study has identified AEs and ADRs associated with pirfenidone and nintedanib, confirming that the majority of the corresponding label information indicates relative safety. However, it is essential to take unexpected risk signals seriously, necessitating further research to manage the safety profiles of these drugs.
PMID:38464722 | PMC:PMC10920264 | DOI:10.3389/fphar.2024.1310286