Deep learning
Detecting autism in children through drawing characteristics using the visual-motor integration test
Health Inf Sci Syst. 2025 Jan 26;13(1):18. doi: 10.1007/s13755-025-00338-6. eCollection 2025 Dec.
ABSTRACT
This study introduces a novel classification method to distinguish children with autism from typically developing children. We recruited 50 school-age children in Taiwan, including 44 boys and 6 girls aged 6 to 12 years, and asked them to draw patterns from a visual-motor integration test to collect data and train deep learning classification models. Ensemble learning was adopted to significantly improve the classification accuracy to 0.934. Moreover, we identified five patterns that most effectively differentiate the drawing performance between children with and without ASD. From these five patterns we found that children with ASD had difficulty producing patterns that include circles and spatial relationships. These results align with previous findings in the field of visual-motor perceptions of individuals with autism. Our results offer a potential cross-cultural tool to detect autism, which can further promote early detection and intervention of autism.
PMID:39877430 | PMC:PMC11769875 | DOI:10.1007/s13755-025-00338-6
TrimNN: Characterizing cellular community motifs for studying multicellular topological organization in complex tissues
Res Sq [Preprint]. 2025 Jan 17:rs.3.rs-5584635. doi: 10.21203/rs.3.rs-5584635/v1.
ABSTRACT
The spatial arrangement of cells plays a pivotal role in shaping tissue functions in various biological systems and diseased microenvironments. However, it is still under-investigated of the topological coordinating rules among different cell types as tissue spatial patterns. Here, we introduce the Triangulation cellular community motif Neural Network (TrimNN), a bottom-up approach to estimate the prevalence of sizeable conservative cell organization patterns as Cellular Community (CC) motifs in spatial transcriptomics and proteomics. Different from clustering cell type composition from classical top-down analysis, TrimNN differentiates cellular niches as countable topological blocks in recurring interconnections of various types, representing multicellular neighborhoods with interpretability and generalizability. This graph-based deep learning framework adopts inductive bias in CCs and uses a semi-divide and conquer approach in the triangulated space. In spatial omics studies, various sizes of CC motifs identified by TrimNN robustly reveal relations between spatially distributed cell-type patterns and diverse phenotypical biological functions.
PMID:39877090 | PMC:PMC11774463 | DOI:10.21203/rs.3.rs-5584635/v1
LEHP-DETR: A model with backbone improved and hybrid encoding innovated for flax capsule detection
iScience. 2024 Dec 9;28(1):111558. doi: 10.1016/j.isci.2024.111558. eCollection 2025 Jan 17.
ABSTRACT
Flax, as a functional crop with rich essential fatty acids and nutrients, is important in nutrition and industrial applications. However, the current process of flax seed detection relies mainly on manual operation, which is not only inefficient but also prone to error. The development of computer vision and deep learning techniques offers a new way to solve this problem. In this study, based on RT-DETR, we introduced the RepNCSPELAN4 module, ADown module, Context Aggregation module, and TFE module, and designed the HWD-ADown module, HiLo-AIFI module, and DSSFF module, and proposed an improved model, called LEHP-DETR. Experimental results show that LEHP-DETR achieves significant performance improvement on the flax dataset and comprehensively outperforms the comparison model. Compared to the base model, LEHP-DETR reduces the number of parameters by 67.3%, the model size by 66.3%, and the FLOPs by 37.6%. the average detection accuracy mAP50 and mAP50:95 increased by 2.6% and 3.5%, respectively.
PMID:39877068 | PMC:PMC11773470 | DOI:10.1016/j.isci.2024.111558
Using machine and deep learning to predict short-term complications following trigger digit release surgery
J Hand Microsurg. 2024 Oct 28;17(1):100171. doi: 10.1016/j.jham.2024.100171. eCollection 2025 Jan.
ABSTRACT
BACKGROUND: Trigger finger is a common disorder of the hand characterized by pain and locking of the digits during flexion or extension. In cases refractory to nonoperative management, surgical release of the A1 pulley can be performed. This study evaluates the ability of machine learning (ML) techniques to predict short-term complications following trigger digit release surgery.
METHODS: A retrospective study was conducted using data for trigger digit release from the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) years 2005-2020. Outcomes of interest were 30-day complications and 30-day return to the operating room. Three ML algorithms were evaluated - a Random Forest (RF), Elastic-Net Regression (ENet), and Extreme Gradient Boosted Tree (XGBoost), along with a deep learning Neural Network (NN). Feature importance analysis was performed in the highest performing model for each outcome to identify predictors with the greatest contributions.
RESULTS: We included a total of 1209 cases of trigger digit release. The best algorithm for predicting wound complications was the RF, with an AUC of 0.64 ± 0.04. The XGBoost algorithm was best performing for medical complications (AUC: 0.70 ± 0.06) and reoperations (AUC: 0.60 ± 0.07). All three models had performance significantly above the AUC benchmark of 0.50 ± 0.00. On our feature importance analysis, age was distinctively the highest contributing predictor of wound complications.
CONCLUSIONS: Machine learning can be successfully used for risk stratification in surgical patients. Moving forwards, it is imperative for hand surgeons to continue evaluating applications of ML in the field.
PMID:39876951 | PMC:PMC11770221 | DOI:10.1016/j.jham.2024.100171
Leveraging synthetic data to improve regional sea level predictions
Sci Rep. 2025 Jan 28;15(1):3546. doi: 10.1038/s41598-025-88078-1.
ABSTRACT
The rapid increase in sea levels driven by climate change presents serious risks to coastal communities around the globe. Traditional prediction models frequently concentrate on developed regions with extensive tide gauge networks, leaving a significant gap in data and forecasts for developing countries where the tide gauges are sparse. This study presents a novel deep learning approach that combines TimesGAN with ConvLSTM to enhance regional sea level predictions using the more widely available satellite altimetry data. By generating synthetic training data with TimesGAN, we can significantly improve the predictive accuracy of the ConvLSTM model. Our method is tested across three developed regions-Shanghai, New York, and Lisbon-and three developing regions-Liberia, Gabon, and Somalia. The results reveal that integrating TimesGAN reduces the average mean squared error of the ConvLSTM prediction by approximately 66.1%, 76.6%, 64.5%, 78.2%, 81.7% and 85.1% for Shanghai, New York, Lisbon, Liberia, Gabon, and Somalia, respectively. This underscores the effectiveness of synthetic data in enhancing sea level prediction accuracy, across all regions studied.
PMID:39875524 | DOI:10.1038/s41598-025-88078-1
Using partially shared radiomics features to simultaneously identify isocitrate dehydrogenase mutation status and epilepsy in glioma patients from MRI images
Sci Rep. 2025 Jan 28;15(1):3591. doi: 10.1038/s41598-025-87778-y.
ABSTRACT
Prediction of isocitrate dehydrogenase (IDH) mutation status and epilepsy occurrence are important to glioma patients. Although machine learning models have been constructed for both issues, the correlation between them has not been explored. Our study aimed to exploit this correlation to improve the performance of both of the IDH mutation status identification and epilepsy diagnosis models in patients with glioma II-IV. 399 patients were retrospectively enrolled and divided into a training (n = 279) and an independent test (n = 120) cohort. Multi-center dataset (n = 228) from The Cancer Imaging Archive (TCIA) was used for external test for identification of IDH mutation status. Region of interests comprising the entire tumor and peritumoral edema were automatically segmented using a pre-trained deep learning model. Radiomic features were extracted from T1-weighted, T2-weighted, post-Gadolinium T1 weighted, and T2 fluid-attenuated inversion recovery images. We proposed an iterative approach derived from LASSO to select features shared by two tasks and features specific to each task, before using them to construct the final models. Receiver operating characteristic (ROC) analysis was employed to evaluate the model. The IDH mutation identification model achieved area under the ROC curve (AUC) values of 0.948, 0.946 and 0.860 on the training, internal test, and external test cohorts, respectively. The epilepsy diagnosis model achieved AUCs of 0.924 and 0.880 on the training and internal test cohorts, respectively. The proposed models can identify IDH status and epilepsy with fewer features, thus having better interpretability and lower risk of overfitting. This not only improves its chance of application in clinical settings, but also provides a new scheme to study multiple correlated clinical tasks.
PMID:39875517 | DOI:10.1038/s41598-025-87778-y
hERGAT: predicting hERG blockers using graph attention mechanism through atom- and molecule-level interaction analyses
J Cheminform. 2025 Jan 28;17(1):11. doi: 10.1186/s13321-025-00957-x.
ABSTRACT
The human ether-a-go-go-related gene (hERG) channel plays a critical role in the electrical activity of the heart, and its blockers can cause serious cardiotoxic effects. Thus, screening for hERG channel blockers is a crucial step in the drug development process. Many in silico models have been developed to predict hERG blockers, which can efficiently save time and resources. However, previous methods have found it hard to achieve high performance and to interpret the predictive results. To overcome these challenges, we have proposed hERGAT, a graph neural network model with an attention mechanism, to consider compound interactions on atomic and molecular levels. In the atom-level interaction analysis, we applied a graph attention mechanism (GAT) that integrates information from neighboring nodes and their extended connections. The hERGAT employs a gated recurrent unit (GRU) with the GAT to learn information between more distant atoms. To confirm this, we performed clustering analysis and visualized a correlation heatmap, verifying the interactions between distant atoms were considered during the training process. In the molecule-level interaction analysis, the attention mechanism enables the target node to focus on the most relevant information, highlighting the molecular substructures that play crucial roles in predicting hERG blockers. Through a literature review, we confirmed that highlighted substructures have a significant role in determining the chemical and biological characteristics related to hERG activity. Furthermore, we integrated physicochemical properties into our hERGAT model to improve the performance. Our model achieved an area under the receiver operating characteristic of 0.907 and an area under the precision-recall of 0.904, demonstrating its effectiveness in modeling hERG activity and offering a reliable framework for optimizing drug safety in early development stages.Scientific contribution:hERGAT is a deep learning model for predicting hERG blockers by combining GAT and GRU, enabling it to capture complex interactions at atomic and molecular levels. We improve the model's interpretability by analyzing the highlighted molecular substructures, providing valuable insights into their roles in determining hERG activity. The model achieves high predictive performance, confirming its potential as a preliminary tool for early cardiotoxicity assessment and enhancing the reliability of the results.
PMID:39875959 | DOI:10.1186/s13321-025-00957-x
Impacted lower third molar classification and difficulty index assessment: comparisons among dental students, general practitioners and deep learning model assistance
BMC Oral Health. 2025 Jan 28;25(1):152. doi: 10.1186/s12903-025-05425-4.
ABSTRACT
BACKGROUND: Assessing the difficulty of impacted lower third molar (ILTM) surgical extraction is crucial for predicting postoperative complications and estimating procedure duration. The aim of this study was to evaluate the effectiveness of a convolutional neural network (CNN) in determining the angulation, position, classification and difficulty index (DI) of ILTM. Additionally, we compared these parameters and the time required for interpretation among deep learning (DL) models, sixth-year dental students (DSs), and general dental practitioners (GPs) with and without CNN assistance.
MATERIALS AND METHODS: The dataset included cropped panoramic radiographs of 1200 ILTMs. The parameters examined were ILTM angulation, class, and position. The radiographs were randomly split into test datasets, while the remaining images were utilized for training and validation. Data augmentation techniques were applied. Another set of radiographs was used to compare the accuracy between human experts and the top-performing CNN. This dataset was also given to DSs and GPs. The participants were instructed to classify the parameters of the ILTMs both with and without the aid of the best-performing CNN model. The results, as well as the Pederson DI and time taken for both groups with and without CNN assistance, were statistically analyzed.
RESULTS: All the selected CNN models successfully classified ILTM angulation, class, and position. Within the DS and GP groups, the accuracy and kappa scores were significantly greater when CNN assistance was used. Among the groups, performance tests without CNN assistance revealed no significant differences in any category. However, compared with DSs, GPs took significantly less time for the class and total time, a trend that persisted when CNN assistance was used. With the CNN, the GPs achieved significantly higher accuracy and kappa scores for class classification than the DSs did (p = 0.035 and 0.010). Conversely, the DS group, with the CNN, exhibited higher accuracy and kappa scores for position classification than did the GP group (p < 0.001).
CONCLUSION: The CNN can achieve accuracies ranging from 87 to 96% for ILTM classification. With the assistance of the CNN, both DSs and GPs exhibited significantly higher accuracy in ILTM classification. Additionally, compared with DSs with and without CNN assistance, GPs took significantly less time to inspect the class and overall.
PMID:39875882 | DOI:10.1186/s12903-025-05425-4
Virtual biopsy for non-invasive identification of follicular lymphoma histologic transformation using radiomics-based imaging biomarker from PET/CT
BMC Med. 2025 Jan 29;23(1):49. doi: 10.1186/s12916-025-03893-7.
ABSTRACT
BACKGROUND: This study aimed to construct a radiomics-based imaging biomarker for the non-invasive identification of transformed follicular lymphoma (t-FL) using PET/CT images.
METHODS: A total of 784 follicular lymphoma (FL), diffuse large B-cell lymphoma, and t-FL patients from 5 independent medical centers were included. The unsupervised EMFusion method was applied to fuse PET and CT images. Deep-based radiomic features were extracted from the fusion images using a deep learning model (ResNet18). These features, along with handcrafted radiomics, were utilized to construct a radiomic signature (R-signature) using automatic machine learning in the training and internal validation cohort. The R-signature was then tested for its predictive ability in the t-FL test cohort. Subsequently, this R-signature was combined with clinical parameters and SUVmax to develop a t-FL scoring system.
RESULTS: The R-signature demonstrated high accuracy, with mean AUC values as 0.994 in the training cohort and 0.976 in the internal validation cohort. In the t-FL test cohort, the R-signature achieved an AUC of 0.749, with an accuracy of 75.2%, sensitivity of 68.0%, and specificity of 77.5%. Furthermore, the t-FL scoring system, incorporating the R-signature along with clinical parameters (age, LDH, and ECOG PS) and SUVmax, achieved an AUC of 0.820, facilitating the stratification of patients into low, medium, and high transformation risk groups.
CONCLUSIONS: This study offers a promising approach for identifying t-FL non-invasively by radiomics analysis on PET/CT images. The developed t-FL scoring system provides a valuable tool for clinical decision-making, potentially improving patient management and outcomes.
PMID:39875864 | DOI:10.1186/s12916-025-03893-7
Artificial intelligence methods applied to longitudinal data from electronic health records for prediction of cancer: a scoping review
BMC Med Res Methodol. 2025 Jan 28;25(1):24. doi: 10.1186/s12874-025-02473-w.
ABSTRACT
BACKGROUND: Early detection and diagnosis of cancer are vital to improving outcomes for patients. Artificial intelligence (AI) models have shown promise in the early detection and diagnosis of cancer, but there is limited evidence on methods that fully exploit the longitudinal data stored within electronic health records (EHRs). This review aims to summarise methods currently utilised for prediction of cancer from longitudinal data and provides recommendations on how such models should be developed.
METHODS: The review was conducted following PRISMA-ScR guidance. Six databases (MEDLINE, EMBASE, Web of Science, IEEE Xplore, PubMed and SCOPUS) were searched for relevant records published before 2/2/2024. Search terms related to the concepts "artificial intelligence", "prediction", "health records", "longitudinal", and "cancer". Data were extracted relating to several areas of the articles: (1) publication details, (2) study characteristics, (3) input data, (4) model characteristics, (4) reproducibility, and (5) quality assessment using the PROBAST tool. Models were evaluated against a framework for terminology relating to reporting of cancer detection and risk prediction models.
RESULTS: Of 653 records screened, 33 were included in the review; 10 predicted risk of cancer, 18 performed either cancer detection or early detection, 4 predicted recurrence, and 1 predicted metastasis. The most common cancers predicted in the studies were colorectal (n = 9) and pancreatic cancer (n = 9). 16 studies used feature engineering to represent temporal data, with the most common features representing trends. 18 used deep learning models which take a direct sequential input, most commonly recurrent neural networks, but also including convolutional neural networks and transformers. Prediction windows and lead times varied greatly between studies, even for models predicting the same cancer. High risk of bias was found in 90% of the studies. This risk was often introduced due to inappropriate study design (n = 26) and sample size (n = 26).
CONCLUSION: This review highlights the breadth of approaches to cancer prediction from longitudinal data. We identify areas where reporting of methods could be improved, particularly regarding where in a patients' trajectory the model is applied. The review shows opportunities for further work, including comparison of these approaches and their applications in other cancers.
PMID:39875808 | DOI:10.1186/s12874-025-02473-w
Whole slide image based deep learning refines prognosis and therapeutic response evaluation in lung adenocarcinoma
NPJ Digit Med. 2025 Jan 29;8(1):69. doi: 10.1038/s41746-025-01470-z.
ABSTRACT
Existing prognostic models are useful for estimating the prognosis of lung adenocarcinoma patients, but there remains room for improvement. In the current study, we developed a deep learning model based on histopathological images to predict the recurrence risk of lung adenocarcinoma patients. The efficiency of the model was then evaluated in independent multicenter cohorts. The model defined high- and low-risk groups successfully stratified prognosis of the entire cohort. Moreover, multivariable Cox analysis identified the model defined risk groups as an independent predictor for disease-free survival. Importantly, combining TNM stage with the established model helped to distinguish subgroups of patients with high-risk stage II and stage III disease who are highly likely to benefit from adjuvant chemotherapy. Overall, our study highlights the significant value of the constructed model to serve as a complementary biomarker for survival stratification and adjuvant therapy selection for lung adenocarcinoma patients after resection.
PMID:39875799 | DOI:10.1038/s41746-025-01470-z
MHNet: Multi-view High-Order Network for Diagnosing Neurodevelopmental Disorders Using Resting-State fMRI
J Imaging Inform Med. 2025 Jan 28. doi: 10.1007/s10278-025-01399-5. Online ahead of print.
ABSTRACT
Deep learning models have shown promise in diagnosing neurodevelopmental disorders (NDD) like ASD and ADHD. However, many models either use graph neural networks (GNN) to construct single-level brain functional networks (BFNs) or employ spatial convolution filtering for local information extraction from rs-fMRI data, often neglecting high-order features crucial for NDD classification. We introduce a Multi-view High-order Network (MHNet) to capture hierarchical and high-order features from multi-view BFNs derived from rs-fMRI data for NDD prediction. MHNet has two branches: the Euclidean Space Features Extraction (ESFE) module and the Non-Euclidean Space Features Extraction (Non-ESFE) module, followed by a Feature Fusion-based Classification (FFC) module for NDD identification. ESFE includes a Functional Connectivity Generation (FCG) module and a High-order Convolutional Neural Network (HCNN) module to extract local and high-order features from BFNs in Euclidean space. Non-ESFE comprises a Generic Internet-like Brain Hierarchical Network Generation (G-IBHN-G) module and a High-order Graph Neural Network (HGNN) module to capture topological and high-order features in non-Euclidean space. Experiments on three public datasets show that MHNet outperforms state-of-the-art methods using both AAL1 and Brainnetome Atlas templates. Extensive ablation studies confirm the superiority of MHNet and the effectiveness of using multi-view fMRI information and high-order features. Our study also offers atlas options for constructing more sophisticated hierarchical networks and explains the association between key brain regions and NDD. MHNet leverages multi-view feature learning from both Euclidean and non-Euclidean spaces, incorporating high-order information from BFNs to enhance NDD classification performance.
PMID:39875742 | DOI:10.1007/s10278-025-01399-5
End-to-End Deep Learning Prediction of Neoadjuvant Chemotherapy Response in Osteosarcoma Patients Using Routine MRI
J Imaging Inform Med. 2025 Jan 28. doi: 10.1007/s10278-025-01424-7. Online ahead of print.
ABSTRACT
This study aims to develop an end-to-end deep learning (DL) model to predict neoadjuvant chemotherapy (NACT) response in osteosarcoma (OS) patients using routine magnetic resonance imaging (MRI). We retrospectively analyzed data from 112 patients with histologically confirmed OS who underwent NACT prior to surgery. Multi-sequence MRI data (including T2-weighted and contrast-enhanced T1-weighted images) and physician annotations were utilized to construct an end-to-end DL model. The model integrates ResUNet for automatic tumor segmentation and 3D-ResNet-18 for predicting NACT efficacy. Model performance was assessed using area under the curve (AUC) and accuracy (ACC). Among the 112 patients, 51 exhibited a good NACT response, while 61 showed a poor response. No statistically significant differences were found in age, sex, alkaline phosphatase levels, tumor size, or location between these groups (P > 0.05). The ResUNet model achieved robust performance, with an average Dice coefficient of 0.579 and average Intersection over Union (IoU) of 0.463. The T2-weighted 3D-ResNet-18 classification model demonstrated superior performance in the test set with an AUC of 0.902 (95% CI: 0.766-1), ACC of 0.783, sensitivity of 0.909, specificity of 0.667, and F1 score of 0.800. Our proposed end-to-end DL model can effectively predict NACT response in OS patients using routine MRI, offering a potential tool for clinical decision-making.
PMID:39875741 | DOI:10.1007/s10278-025-01424-7
Enhancing quantitative coronary angiography (QCA) with advanced artificial intelligence: comparison with manual QCA and visual estimation
Int J Cardiovasc Imaging. 2025 Jan 29. doi: 10.1007/s10554-025-03342-9. Online ahead of print.
ABSTRACT
Artificial intelligence-based quantitative coronary angiography (AI-QCA) was introduced to address manual QCA's limitations in reproducibility and correction process. The present study aimed to assess the performance of an updated AI-QCA solution (MPXA-2000) in lesion detection and quantification using manual QCA as the reference standard, and to demonstrate its superiority over visual estimation. This multi-center retrospective study analyzed 1,076 coronary angiography images obtained from 420 patients, comparing AI-QCA and visual estimation against manual QCA as the reference standard. A lesion was classified as 'detected' when the minimum lumen diameter (MLD) identified by manual QCA fell within the boundaries of the lesion delineated by AI-QCA or visual estimation. The detected lesions were evaluated in terms of diameter stenosis (DS), MLD, and lesion length (LL). AI-QCA accurately detected lesions with a sensitivity of 93% (1705/1828) and showed strong correlations with manual QCA for DS, MLD, and LL (R² = 0.65, 0.83 and 0.71, respectively). In views targeting the major vessels, the proportion of undetected lesions by AI-QCA was less than 4% (56/1492). For lesions in the side branches, AI-QCA also demonstrated high sensitivity (> 92%) in detecting them. Compared to visual estimation, AI-QCA showed significantly better lesion detection capability (93% vs. 69%, p < 0.001), and had a higher probability of detecting all lesions in images with multiple lesions (86% vs. 33%, p < 0.001). The updated AI-QCA demonstrated robust performance in lesion detection and quantification without operator intervention, enabling reproducible vessel analysis. The automated process of AI-QCA has the potential to optimize angiography-guided interventions by providing quantitative metrics.
PMID:39875702 | DOI:10.1007/s10554-025-03342-9
Correction: Deep learning model for automated detection of fresh and old vertebral fractures on thoracolumbar CT
Eur Spine J. 2025 Jan 29. doi: 10.1007/s00586-024-08636-5. Online ahead of print.
NO ABSTRACT
PMID:39875623 | DOI:10.1007/s00586-024-08636-5
A novel arc detection and identification method in pantograph-catenary system based on deep learning
Sci Rep. 2025 Jan 28;15(1):3511. doi: 10.1038/s41598-025-88109-x.
ABSTRACT
Arc detection is crucial for ensuring the safe operation of power systems, where timely and accurate detection of arcs can prevent potential hazards such as fires, equipment damage, or system failures. Traditional arc detection methods, while functional, often suffer from low detection accuracy and high computational complexity, especially in complex operational environments. This limitation is particularly problematic in real-time monitoring and the efficient operation of power systems. In order to solve these problems, this paper proposes a method of arc detection based on deep learning, called arc multi-scene detection (ArcMSD), which leverages deep learning techniques to address these challenges. The primary distinction of this method lies in its enhancement of the Inception V3 model. This paper has redesigned the original Inception module by incorporating a guided anchor mechanism, an attention mechanism, and upsampling techniques to optimize detection performance. The improved Inception V3 network uses an attention mechanism to allow the model to focus on arc features in complex backgrounds, which can also prevent the model from overfitting. It performs upsampling and fusion with low-level features in the model. The fused features have better arc discrimination capabilities than the original input features, which better improves the accuracy of the model. In order to adapt to arcs with large size differences and improve detection efficiency, the guided anchor is selected to adjust the anchor generation algorithm. In terms of dataset, continuous frame images are intercepted from the video of Integrated Supervision and Control System (ISCS), and image preprocessing operations are performed to improve the model's detection accuracy of pantograph arcs. Experimental results show that the mean Average Precision (mAP) of the deep learning model proposed in this article is 95.4%, which is far better than other models, thus verify the method's efficacy.
PMID:39875621 | DOI:10.1038/s41598-025-88109-x
Deep learning aided determination of the optimal number of detectors for photoacoustic tomography
Biomed Phys Eng Express. 2025 Jan 28. doi: 10.1088/2057-1976/adaf29. Online ahead of print.
ABSTRACT
Photoacoustic tomography (PAT) is a non-destructive, non-ionizing, and rapidly expanding hybrid biomedical imaging technique, yet it faces challenges in obtaining clear images due to limited data from detectors or angles. As a result, the methodology suffers from significant streak artifacts and low-quality images. The integration of deep learning (DL), specifically convolutional neural networks (CNNs), has recently demonstrated powerful performance in various fields of PAT. This work introduces a post-processing-based CNN architecture named residual-dense UNet (RDUNet) to address the stride artifacts in reconstructed PA images. The framework adopts the benefits of residual and dense blocks to form high-resolution reconstructed images. The network is trained with two different types of datasets to learn the relationship between the reconstructed images and their corresponding ground truths (GTs). In the first protocol, RDUNet (identified as RDUNet I) underwent training on heterogeneous simulated images featuring three distinct phantom types. Subsequently, in the second protocol, RDUNet (referred to as RDUNet II) was trained on a heterogeneous composition of 81% simulated data and 19% experimental data. The motivation behind this is to allow the network to adapt to diverse experimental challenges. The RDUNet algorithm was validated by performing numerical and experimental studies involving single-disk, T-shape, and vasculature phantoms. The performance of this protocol was compared with the famous backprojection (BP) and the traditional UNet algorithms. This study shows that RDUNet can substantially reduce the number of detectors from 100 to 25 for simulated testing images and 30 for experimental scenarios.
PMID:39874604 | DOI:10.1088/2057-1976/adaf29
Multiplex Detection and Quantification of Virus Co-Infections Using Label-free Surface-Enhanced Raman Spectroscopy and Deep Learning Algorithms
ACS Sens. 2025 Jan 28. doi: 10.1021/acssensors.4c03209. Online ahead of print.
ABSTRACT
Multiple respiratory viruses can concurrently or sequentially infect the respiratory tract, making their identification crucial for diagnosis, treatment, and disease management. We present a label-free diagnostic platform integrating surface-enhanced Raman scattering (SERS) with deep learning for rapid, quantitative detection of respiratory virus coinfections. Using sensitive silica-coated silver nanorod array substrates, over 1.2 million SERS spectra are collected from 11 viruses, nine two-virus mixtures, and four three-virus mixtures at various concentrations in saliva. A deep learning model, MultiplexCR, is developed to simultaneously predict virus species and concentrations from SERS spectra. It achieves an impressive 98.6% accuracy in classifying virus coinfections and a mean absolute error of 0.028 for concentration regression. In blind tests, the model demonstrates consistent high accuracy and precise concentration predictions. This SERS-MultiplexCR platform completes the entire detection process in just 15 min, offering significant potential for rapid, point-of-care diagnostics in infection detection, as well as applications in food safety and environmental monitoring.
PMID:39874586 | DOI:10.1021/acssensors.4c03209
DO-GMA: An End-to-End Drug-Target Interaction Identification Framework with a Depthwise Overparameterized Convolutional Network and the Gated Multihead Attention Mechanism
J Chem Inf Model. 2025 Jan 28. doi: 10.1021/acs.jcim.4c02088. Online ahead of print.
ABSTRACT
Identification of potential drug-target interactions (DTIs) is a crucial step in drug discovery and repurposing. Although deep learning effectively deciphers DTIs, most deep learning-based methods represent drug features from only a single perspective. Moreover, the fusion method of drug and protein features needs further refinement. To address the above two problems, in this study, we develop a novel end-to-end framework named DO-GMA for potential DTI identification by incorporating Depthwise Overparameterized convolutional neural network and the Gated Multihead Attention mechanism with shared-learned queries and bilinear model concatenation. DO-GMA first designs a depthwise overparameterized convolutional neural network to learn drug representations from their SMILES strings and protein representations from their amino acid sequences. Next, it extracts drug representations from their 2D molecular graphs through a graph convolutional network. Subsequently, it fuses drug and protein features by combining the gated attention mechanism and the multihead attention mechanism with shared-learned queries and bilinear model concatenation. Finally, it takes the fused drug-target features as inputs and builds a multilayer perceptron to classify unlabeled drug-target pairs (DTPs). DO-GMA was benchmarked against six newest DTI prediction methods (CPI-GNN, BACPI, CPGL, DrugBAN, BINDTI, and FOTF-CPI) under four different experimental settings on four DTI data sets (i.e., DrugBank, BioSNAP, C.elegans, and BindingDB). The results show that DO-GMA significantly outperformed the above six methods based on AUC, AUPR, accuracy, F1-score, and MCC. An ablation study, robust statistical analysis, sensitivity analysis of parameters, visualization of the fused features, computational cost analysis, and case analysis further validated the powerful DTI identification performance of DO-GMA. In addition, DO-GMA predicted that two drug-protein pairs (i.e., DB00568 and P06276, and DB09118 and Q9UQD0) could be interacting. DO-GMA is freely available at https://github.com/plhhnu/DO-GMA.
PMID:39874533 | DOI:10.1021/acs.jcim.4c02088
Intraindividual Comparison of Image Quality Between Low-Dose and Ultra-Low-Dose Abdominal CT With Deep Learning Reconstruction and Standard-Dose Abdominal CT Using Dual-Split Scan
Invest Radiol. 2025 Jan 28. doi: 10.1097/RLI.0000000000001151. Online ahead of print.
ABSTRACT
OBJECTIVE: The aim of this study was to intraindividually compare the conspicuity of focal liver lesions (FLLs) between low- and ultra-low-dose computed tomography (CT) with deep learning reconstruction (DLR) and standard-dose CT with model-based iterative reconstruction (MBIR) from a single CT using dual-split scan in patients with suspected liver metastasis via a noninferiority design.
MATERIALS AND METHODS: This prospective study enrolled participants who met the eligibility criteria at 2 tertiary hospitals in South Korea from June 2022 to January 2023. The criteria included (a) being aged between 20 and 85 years and (b) having suspected or known liver metastases. Dual-source CT scans were conducted, with the standard radiation dose divided in a 2:1 ratio between tubes A and B (67% and 33%, respectively). The voltage settings of 100/120 kVp were selected based on the participant's body mass index (<30 vs ≥30 kg/m2). For image reconstruction, MBIR was utilized for standard-dose (100%) images, whereas DLR was employed for both low-dose (67%) and ultra-low-dose (33%) images. Three radiologists independently evaluated FLL conspicuity, the probability of metastasis, and subjective image quality using a 5-point Likert scale, in addition to quantitative signal-to-noise and contrast-to-noise ratios. The noninferiority margins were set at -0.5 for conspicuity and -0.1 for detection.
RESULTS: One hundred thirty-three participants (male = 58, mean body mass index = 23.0 ± 3.4 kg/m2) were included in the analysis. The low- and ultra-low- dose had a lower radiation dose than the standard-dose (median CT dose index volume: 3.75, 1.87 vs 5.62 mGy, respectively, in the arterial phase; 3.89, 1.95 vs 5.84 in the portal venous phase, P < 0.001 for all). Median FLL conspicuity was lower in the low- and ultra-low-dose scans compared with the standard-dose (3.0 [interquartile range, IQR: 2.0, 4.0], 3.0 [IQR: 1.0, 4.0] vs 3.0 [IQR: 2.0, 4.0] in the arterial phase; 4.0 [IQR: 1.0, 5.0], 3.0 [IQR: 1.0, 4.0] vs 4.0 [IQR: 2.0, 5.0] in the portal venous phases), yet within the noninferiority margin (P < 0.001 for all). FLL detection was also lower but remained within the margin (lesion detection rate: 0.772 [95% confidence interval, CI: 0.727, 0.812], 0.754 [0.708, 0.795], respectively) compared with the standard-dose (0.810 [95% CI: 0.770, 0.844]). Sensitivity for liver metastasis differed between the standard- (80.6% [95% CI: 76.0, 84.5]), low-, and ultra-low-doses (75.7% [95% CI: 70.2, 80.5], 73.7 [95% CI: 68.3, 78.5], respectively, P < 0.001 for both), whereas specificity was similar (P > 0.05).
CONCLUSIONS: Low- and ultra-low-dose CT with DLR showed noninferior FLL conspicuity and detection compared with standard-dose CT with MBIR. Caution is needed due to a potential decrease in sensitivity for metastasis (clinicaltrials.gov/ NCT05324046).
PMID:39874436 | DOI:10.1097/RLI.0000000000001151