Deep learning

Whole exome sequencing of an asbestos-induced wild-type murine model of malignant mesothelioma.

Mon, 2017-06-05 06:42

Whole exome sequencing of an asbestos-induced wild-type murine model of malignant mesothelioma.

BMC Cancer. 2017 Jun 02;17(1):396

Authors: Sneddon S, Patch AM, Dick IM, Kazakoff S, Pearson JV, Waddell N, Allcock RJN, Holt RA, Robinson BWS, Creaney J

Abstract
BACKGROUND: Malignant mesothelioma (MM) is an aggressive cancer of the pleural and peritoneal cavities caused by exposure to asbestos. Asbestos-induced mesotheliomas in wild-type mice have been used extensively as a preclinical model because they are phenotypically identical to their human counterpart. However, it is not known if the genetic lesions in these mice tumours are similar to in the human disease, a prerequisite for any new preclinical studies that target genetic abnormalities.
METHODS: We performed whole exome sequencing of fifteen asbestos-induced murine MM tumour cell lines from BALB/c, CBA and C57BL/6 mouse strains and compared the somatic mutations and copy number variations with those recurrently reported in human MM. We then catalogued and characterised the mutational landscape of the wild-type murine MM tumours. Quantitative RT-PCR was used to interrogate the expression of key MM genes of interest in the mRNA.
RESULTS: Consistent with human MM tumours, we identified homozygous loss of the tumour suppressor Cdkn2a in 14/15 tumours. One tumour retained the first exon of both of the p16INK4a and p19ARF isoforms though this tumour also contained genetic amplification of Myc resulting in increased expression of the c-Myc proto-oncogene in the mRNA. There were no chromosomal losses in either the Bap1 or Nf2 regions. One tumour harbored homozygous loss of Trp53 in the DNA. Mutation rates were similar in tumours generated in the CBA and C57BL/6 strains when compared to human MM. Interestingly, all BALB/c tumour lines displayed high mutational loads, consistent with the known mutator phenotype of the host strain. The Wnt, MAPK and Jak-STAT signaling pathways were found to be the most commonly affected biological pathways. Mutations and copy number deletions also occurred in the Hedgehog and Hippo pathways.
CONCLUSIONS: These data suggest that in the wild-type murine model asbestos causes mesotheliomas in a similar way to in human MM. This further supports the notion that the murine model of MM represents a genuine homologue of the human disease, something uncommon in cancer, and is thus a valuable tool to provide insight into MM tumour development and to aide the search for novel therapeutic strategies.

PMID: 28577549 [PubMed - in process]

Categories: Literature Watch

[Search for risk genes in Alzheimer's disease].

Sun, 2017-06-04 06:11
Related Articles

[Search for risk genes in Alzheimer's disease].

Nervenarzt. 2017 Jun 02;:

Authors: Karaca I, Wagner H, Ramirez A

Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative dementia. The susceptibility to AD is determined by a complex interaction between genetic, epigenetic, and environmental factors. Herein, the risk that can be attributed to genetic factors is high (up to 80%). While most AD patients are sporadic, in rare families Mendelian mode of inheritance can be observed. In these rare familial cases, full penetrant mutations have been identified in APP, PSEN1, and PSEN2. Mutations in these three genes are however rarely found in sporadic AD. For over 20 years, the only known genetic risk factor in sporadic AD cases was the APOE-ε4 allele, which increases susceptibility to AD by approximately threefold. Unfortunately, none of these genes explain the frequency of AD. Identification of additional genetic factors was propelled by the advent of genomic approaches such as genome-wide association studies, which has already led to the characterization of 26 novel genetic risk factors. Interestingly, several of these genetic signals cluster in biological pathways including cholesterol, lipid metabolism, immune response, and endocytic trafficking. An additional impulse in genetic research came from the development of novel sequencing technologies. For example, the whole exome sequencing approach has identified an association between the risk of AD and rare coding variants (minor allele frequency <1%) located in genes such as TREM2, SORL1, and ABCA7. Thus, progress from genetic research has significantly increased our understanding of the disease mechanisms operating in AD. However, even though our knowledge of the genetics of sporadic forms of AD has progressed markedly over the last years, it is still far from complete. Additional research is needed to complete the genetic architecture of AD.

PMID: 28577227 [PubMed - as supplied by publisher]

Categories: Literature Watch

Recurrent elevated liver transaminases and acute liver failure in two siblings with novel bi-allelic mutations of NBAS.

Sun, 2017-06-04 06:11
Related Articles

Recurrent elevated liver transaminases and acute liver failure in two siblings with novel bi-allelic mutations of NBAS.

Eur J Med Genet. 2017 May 30;:

Authors: Regateiro FS, Belkaya S, Neves N, Ferreira S, Silvestre P, Lemos S, Venâncio M, Casanova JL, Gonçalves I, Jouanguy E, Diogo L

Abstract
BACKGROUND: Acute liver failure (ALF) in children can be life-threatening. Although many causes are known, ALF remains unexplained in about half of the cases. Recently, bi-allelic mutations in NBAS were reported to underlie recurrent episodes of elevated liver transaminases (ELT) and ALF in the context of diverse extrahepatic phenotypes.
RESULTS: We here describe two sisters, born to non-consanguineous Portuguese parents, who had short stature and presented with recurrent episodes of severe ELT triggered by febrile respiratory viral infections from early childhood. Patient 1 presented mild facial dysmorphism and died during the second ELT crisis at 3-11/12 years of age. Patient 2, currently 9 years old, had multiple episodes of ELT (>30), twice with ALF, often accompanied by extensive urticaria and facial angioedema. Whole-exome and Sanger sequencing revealed that both patients carried previously undescribed compound heterozygous mutations of NBAS (NM_015909.3): c.680A > C (p.His227Pro), affecting an evolutionarily conserved residue, and c.1749G > A (p.Trp583*), causing a premature stop codon. Both mutations are predicted to be highly damaging. The parents and two younger siblings are healthy and heterozygous for one or another mutant allele.
DISCUSSION: This multiplex kindred with autosomal recessive NBAS deficiency expands the genotypic and phenotypic spectrum of this recently described clinical syndrome. Novel analytical and histological abnormalities here reported might contribute to a better understanding of the disease pathophysiology.

PMID: 28576691 [PubMed - as supplied by publisher]

Categories: Literature Watch

Mutations in NKX6-2 Cause Progressive Spastic Ataxia and Hypomyelination.

Sat, 2017-06-03 08:56

Mutations in NKX6-2 Cause Progressive Spastic Ataxia and Hypomyelination.

Am J Hum Genet. 2017 Jun 01;100(6):969-977

Authors: Chelban V, Patel N, Vandrovcova J, Zanetti MN, Lynch DS, Ryten M, Botía JA, Bello O, Tribollet E, Efthymiou S, Davagnanam I, SYNAPSE Study Group, Bashiri FA, Wood NW, Rothman JE, Alkuraya FS, Houlden H

Abstract
Progressive limb spasticity and cerebellar ataxia are frequently found together in clinical practice and form a heterogeneous group of degenerative disorders that are classified either as pure spastic ataxia or as complex spastic ataxia with additional neurological signs. Inheritance is either autosomal dominant or autosomal recessive. Hypomyelinating features on MRI are sometimes seen with spastic ataxia, but this is usually mild in adults and severe and life limiting in children. We report seven individuals with an early-onset spastic-ataxia phenotype. The individuals come from three families of different ethnic backgrounds. Affected members of two families had childhood onset disease with very slow progression. They are still alive in their 30s and 40s and show predominant ataxia and cerebellar atrophy features on imaging. Affected members of the third family had a similar but earlier-onset presentation associated with brain hypomyelination. Using a combination of homozygozity mapping and exome sequencing, we mapped this phenotype to deleterious nonsense or homeobox domain missense mutations in NKX6-2. NKX6-2 encodes a transcriptional repressor with early high general and late focused CNS expression. Deficiency of its mouse ortholog results in widespread hypomyelination in the brain and optic nerve, as well as in poor motor coordination in a pattern consistent with the observed human phenotype. In-silico analysis of human brain expression and network data provides evidence that NKX6-2 is involved in oligodendrocyte maturation and might act within the same pathways of genes already associated with central hypomyelination. Our results support a non-redundant developmental role of NKX6-2 in humans and imply that NKX6-2 mutations should be considered in the differential diagnosis of spastic ataxia and hypomyelination.

PMID: 28575651 [PubMed - in process]

Categories: Literature Watch

Genetic Insights Into Bicuspid Aortic Valve Disease.

Sat, 2017-06-03 08:56

Genetic Insights Into Bicuspid Aortic Valve Disease.

Cardiol Rev. 2017 Jul/Aug;25(4):158-164

Authors: Debiec R, Sall H, Samani NJ, Bolger A

Abstract
Bicuspid aortic valve (BAV) is the most common valvular congenital heart defect in the general population. BAV is commonly associated with the presence of other congenital cardiovascular malformations, which leads to cardiovascular complications requiring surgery in around 27% of cases. Familial clustering of BAV is well-recognized, and international guidelines advocate that first-degree relatives of patients with BAV be screened. Studies of genetic linkage in affected families, syndromic forms of BAV, and sporadic patients led to discoveries of genetic loci harboring genes involved in the development of BAV. However, only a few of these findings have been replicated in other populations and been proven functional in animal models. This task is further complicated by the phenotypic and genetic heterogeneity of BAV disease. BAV differs in valve fusion patterns and some studies have suggested that different valve fusion patterns originate from different pathophysiological processes. We present an overview of the published work on genetic linkage and its association with BAV disease. Presented articles used different discovery strategies ranging from candidate gene association to whole exome sequencing, as well as various validation protocols. Although still very limited, our understanding of the molecular pathology of BAV disease is likely to influence current clinical practice by enabling genetic counseling, prenatal diagnosis, and risk stratification for individual patients. This task will be made possible thanks to increasing availability, as well as the reduced cost of next-generation sequencing and bioinformatic processing of data.

PMID: 28574935 [PubMed - in process]

Categories: Literature Watch

Detection of clinically relevant copy-number variants by exome sequencing in a large cohort of genetic disorders.

Sat, 2017-06-03 08:56

Detection of clinically relevant copy-number variants by exome sequencing in a large cohort of genetic disorders.

Genet Med. 2017 Jun;19(6):667-675

Authors: Pfundt R, Del Rosario M, Vissers LELM, Kwint MP, Janssen IM, de Leeuw N, Yntema HG, Nelen MR, Lugtenberg D, Kamsteeg EJ, Wieskamp N, Stegmann APA, Stevens SJC, Rodenburg RJT, Simons A, Mensenkamp AR, Rinne T, Gilissen C, Scheffer H, Veltman JA, Hehir-Kwa JY

Abstract
PURPOSE: Copy-number variation is a common source of genomic variation and an important genetic cause of disease. Microarray-based analysis of copy-number variants (CNVs) has become a first-tier diagnostic test for patients with neurodevelopmental disorders, with a diagnostic yield of 10-20%. However, for most other genetic disorders, the role of CNVs is less clear and most diagnostic genetic studies are generally limited to the study of single-nucleotide variants (SNVs) and other small variants. With the introduction of exome and genome sequencing, it is now possible to detect both SNVs and CNVs using an exome- or genome-wide approach with a single test.
METHODS: We performed exome-based read-depth CNV screening on data from 2,603 patients affected by a range of genetic disorders for which exome sequencing was performed in a diagnostic setting.
RESULTS: In total, 123 clinically relevant CNVs ranging in size from 727 bp to 15.3 Mb were detected, which resulted in 51 conclusive diagnoses and an overall increase in diagnostic yield of ~2% (ranging from 0 to -5.8% per disorder).
CONCLUSIONS: This study shows that CNVs play an important role in a broad range of genetic disorders and that detection via exome-based CNV profiling results in an increase in the diagnostic yield without additional testing, bringing us closer to single-test genomics.Genet Med advance online publication 27 October 2016.

PMID: 28574513 [PubMed - in process]

Categories: Literature Watch

[Genetic architecture of amyotrophic lateral sclerosis and frontotemporal dementia : Overlap and differences].

Sat, 2017-06-03 08:56
Related Articles

[Genetic architecture of amyotrophic lateral sclerosis and frontotemporal dementia : Overlap and differences].

Nervenarzt. 2017 Jun 01;:

Authors: Synofzik M, Otto M, Ludolph A, Weishaupt JH

Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) overlap not only clinically, but also with respect to shared neuropathology and genes. A large number of novel genes has recently been identified which underlie both diseases, e. g., C9orf72, TARDBP, GRN, TBK1, UBQLN2, VCP, CHCHD10, or SQSTM1. In contrast, other genes are still largely associated with only one of the two diseases, e. g., SOD1 with ALS or MAPT with FTD. These genetic findings indicate a large number of shared mechanisms, yet along with still a certain cell-specific vulnerability. The recently identified genes are not only key to investigate the pathophysiology underlying ALS and FTD, but also the first step in the development of causal gene- or pathway-specific therapies. Mutations in these genes are also found in a substantial share of seemingly "sporadic" ALS and FTD patients. Given the large genetic heterogeneity with more than >25 genes having been identified for ALS and FTD, genetic diagnostics should - after exclusion of C9orf72 repeat expansions - no longer resort to single gene-diagnostics, but rather use next generation sequencing panels or whole exome sequencing.

PMID: 28573364 [PubMed - as supplied by publisher]

Categories: Literature Watch

Isolated Congenital Anosmia and CNGA2 Mutation.

Sat, 2017-06-03 08:56
Related Articles

Isolated Congenital Anosmia and CNGA2 Mutation.

Sci Rep. 2017 Jun 01;7(1):2667

Authors: Sailani MR, Jingga I, MirMazlomi SH, Bitarafan F, Bernstein JA, Snyder MP, Garshasbi M

Abstract
Isolated congenital anosmia (ICA) is a rare condition that is associated with life-long inability to smell. Here we report a genetic characterization of a large Iranian family segregating ICA. Whole exome sequencing in five affected family members and five healthy members revealed a stop gain mutation in CNGA2 (OMIM 300338) (chrX:150,911,102; CNGA2. c.577C > T; p.Arg193*). The mutation segregates in an X-linked pattern, as all the affected family members are hemizygotes, whereas healthy family members are either heterozygote or homozygote for the reference allele. cnga2 knockout mice are congenitally anosmic and have abnormal olfactory system physiology, additionally Karstensen et al. recently reported two anosmic brothers sharing a CNGA2 truncating variant. Our study in concert with these findings provides strong support for role of CNGA2 gene with pathogenicity of ICA in humans. Together, these results indicate that mutations in key olfactory signaling pathway genes are responsible for human disease.

PMID: 28572688 [PubMed - in process]

Categories: Literature Watch

Alport syndrome cold cases: Missing mutations identified by exome sequencing and functional analysis.

Fri, 2017-06-02 08:22

Alport syndrome cold cases: Missing mutations identified by exome sequencing and functional analysis.

PLoS One. 2017;12(6):e0178630

Authors: Chiereghin C, Robusto M, Mastrangelo A, Castorina P, Montini G, Giani M, Duga S, Asselta R, Soldà G

Abstract
Alport syndrome (AS) is an inherited progressive renal disease caused by mutations in COL4A3, COL4A4, and COL4A5 genes. Despite simultaneous screening of these genes being widely available, mutation detection still remains incomplete in a non-marginal portion of patients. Here, we applied whole-exome sequencing (WES) in 3 Italian families negative after candidate-gene analyses. In Family 1, we identified a novel heterozygous intronic variant (c.2245-40A>G) -outside the conventionally screened candidate region for diagnosis- potentially disrupting COL4A5 exon29 splicing. Using a minigene-based approach in HEK293 cells we demonstrated that this variant abolishes exon29 branch site, causing exon skipping. Moreover, skewed X-inactivation of the c.2245-40A>G allele correlated with disease severity in heterozygous females. In Family 2, WES highlighted a novel COL4A5 hemizygous missense mutation (p.Gly491Asp), which segregates with the phenotype and impacts on a highly-conserved residue. Finally, in Family 3, we detected a homozygous 24-bp in-frame deletion in COL4A3 exon1 (NM_000091.4:c.30_53del:p.Val11_Leu18del or c.40_63del24:p.Leu14_Leu21del), which is ambiguously annotated in databases, although it corresponds to a recurrent AS mutation. Functional analyses showed that this deletion disrupts COL4A3 signal peptide, possibly altering protein secretion. In conclusion, WES -together with functional studies- was fundamental for molecular diagnosis in 3 AS families, highlighting pathogenic variants that escaped previous screenings.

PMID: 28570636 [PubMed - in process]

Categories: Literature Watch

An evaluation of copy number variation detection tools for cancer using whole exome sequencing data.

Fri, 2017-06-02 08:22

An evaluation of copy number variation detection tools for cancer using whole exome sequencing data.

BMC Bioinformatics. 2017 May 31;18(1):286

Authors: Zare F, Dow M, Monteleone N, Hosny A, Nabavi S

Abstract
BACKGROUND: Recently copy number variation (CNV) has gained considerable interest as a type of genomic/genetic variation that plays an important role in disease susceptibility. Advances in sequencing technology have created an opportunity for detecting CNVs more accurately. Recently whole exome sequencing (WES) has become primary strategy for sequencing patient samples and study their genomics aberrations. However, compared to whole genome sequencing, WES introduces more biases and noise that make CNV detection very challenging. Additionally, tumors' complexity makes the detection of cancer specific CNVs even more difficult. Although many CNV detection tools have been developed since introducing NGS data, there are few tools for somatic CNV detection for WES data in cancer.
RESULTS: In this study, we evaluated the performance of the most recent and commonly used CNV detection tools for WES data in cancer to address their limitations and provide guidelines for developing new ones. We focused on the tools that have been designed or have the ability to detect cancer somatic aberrations. We compared the performance of the tools in terms of sensitivity and false discovery rate (FDR) using real data and simulated data. Comparative analysis of the results of the tools showed that there is a low consensus among the tools in calling CNVs. Using real data, tools show moderate sensitivity (~50% - ~80%), fair specificity (~70% - ~94%) and poor FDRs (~27% - ~60%). Also, using simulated data we observed that increasing the coverage more than 10× in exonic regions does not improve the detection power of the tools significantly.
CONCLUSIONS: The limited performance of the current CNV detection tools for WES data in cancer indicates the need for developing more efficient and precise CNV detection methods. Due to the complexity of tumors and high level of noise and biases in WES data, employing advanced novel segmentation, normalization and de-noising techniques that are designed specifically for cancer data is necessary. Also, CNV detection development suffers from the lack of a gold standard for performance evaluation. Finally, developing tools with user-friendly user interfaces and visualization features can enhance CNV studies for a broader range of users.

PMID: 28569140 [PubMed - in process]

Categories: Literature Watch

Targeted Exome Sequencing Identifies PBX1 as Involved in Monogenic Congenital Anomalies of the Kidney and Urinary Tract.

Fri, 2017-06-02 08:22

Targeted Exome Sequencing Identifies PBX1 as Involved in Monogenic Congenital Anomalies of the Kidney and Urinary Tract.

J Am Soc Nephrol. 2017 May 31;:

Authors: Heidet L, Morinière V, Henry C, De Tomasi L, Reilly ML, Humbert C, Alibeu O, Fourrage C, Bole-Feysot C, Nitschké P, Tores F, Bras M, Jeanpierre M, Pietrement C, Gaillard D, Gonzales M, Novo R, Schaefer E, Roume J, Martinovic J, Malan V, Salomon R, Saunier S, Antignac C, Jeanpierre C

Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) occur in three to six of 1000 live births, represent about 20% of the prenatally detected anomalies, and constitute the main cause of CKD in children. These disorders are phenotypically and genetically heterogeneous. Monogenic causes of CAKUT in humans and mice have been identified. However, despite high-throughput sequencing studies, the cause of the disease remains unknown in most patients, and several studies support more complex inheritance and the role of environmental factors and/or epigenetics in the pathophysiology of CAKUT. Here, we report the targeted exome sequencing of 330 genes, including genes known to be involved in CAKUT and candidate genes, in a cohort of 204 unrelated patients with CAKUT; 45% of the patients were severe fetal cases. We identified pathogenic mutations in 36 of 204 (17.6%) patients. These mutations included five de novo heterozygous loss of function mutations/deletions in the PBX homeobox 1 gene (PBX1), a gene known to have a crucial role in kidney development. In contrast, the frequency of SOX17 and DSTYK variants recently reported as pathogenic in CAKUT did not indicate causality. These findings suggest that PBX1 is involved in monogenic CAKUT in humans and call into question the role of some gene variants recently reported as pathogenic in CAKUT. Targeted exome sequencing also proved to be an efficient and cost-effective strategy to identify pathogenic mutations and deletions in known CAKUT genes.

PMID: 28566479 [PubMed - as supplied by publisher]

Categories: Literature Watch

Association of a synonymous SCN1B variant affecting splicing efficiency with Benign Familial Infantile Epilepsy (BFIE).

Fri, 2017-06-02 08:22

Association of a synonymous SCN1B variant affecting splicing efficiency with Benign Familial Infantile Epilepsy (BFIE).

Eur J Paediatr Neurol. 2017 May 13;:

Authors: Usluer S, Kayserili MA, Eken AG, Yiş U, Leu C, Altmüller J, Thiele H, Nürnberg P, Sander T, Çağlayan SH

Abstract
Benign Familial Infantile Epilepsy (BFIE) is clinically characterized by clusters of brief partial seizures progressing to secondarily generalized seizures with onset at the age of 3-7 months and with favorable outcome. PRRT2 mutations are the most common cause of BFIE, and found in about 80% of BFIE families. In this study, we analyzed a large multiplex BFIE family by linkage and whole exome sequencing (WES) analyses. Genome-wide linkage analysis revealed significant evidence for linkage in the chromosomal region 19p12-q13 (LOD score 3.48). Mutation screening of positional candidate genes identified a synonymous SCN1B variant (c.492T>C, p.Tyr164Tyr) affecting splicing by the removal of a splicing silencer sequence, shown by in silico analysis, as the most likely causative mutation. In addition, the PRRT2 frameshift mutation (c.649dupC/p.Arg217Profs*8) was observed, showing incomplete, but high segregation with the phenotype. In vitro splicing assay of SCN1B expression confirmed the in silico findings showing a splicing imbalance between wild type and mutant exons. Herein, the involvement of the SCN1B gene in the etiology of BFIE, contributing to the disease phenotype as a modifier or part of an oligogenic predisposition, is shown for the first time.

PMID: 28566192 [PubMed - as supplied by publisher]

Categories: Literature Watch

Homozygous ARHGEF2 mutation causes intellectual disability and midbrain-hindbrain malformation.

Fri, 2017-06-02 08:22
Related Articles

Homozygous ARHGEF2 mutation causes intellectual disability and midbrain-hindbrain malformation.

PLoS Genet. 2017 Apr;13(4):e1006746

Authors: Ravindran E, Hu H, Yuzwa SA, Hernandez-Miranda LR, Kraemer N, Ninnemann O, Musante L, Boltshauser E, Schindler D, Hübner A, Reinecker HC, Ropers HH, Birchmeier C, Miller FD, Wienker TF, Hübner C, Kaindl AM

Abstract
Mid-hindbrain malformations can occur during embryogenesis through a disturbance of transient and localized gene expression patterns within these distinct brain structures. Rho guanine nucleotide exchange factor (ARHGEF) family members are key for controlling the spatiotemporal activation of Rho GTPase, to modulate cytoskeleton dynamics, cell division, and cell migration. We identified, by means of whole exome sequencing, a homozygous frameshift mutation in the ARHGEF2 as a cause of intellectual disability, a midbrain-hindbrain malformation, and mild microcephaly in a consanguineous pedigree of Kurdish-Turkish descent. We show that loss of ARHGEF2 perturbs progenitor cell differentiation and that this is associated with a shift of mitotic spindle plane orientation, putatively favoring more symmetric divisions. The ARHGEF2 mutation leads to reduction in the activation of the RhoA/ROCK/MLC pathway crucial for cell migration. We demonstrate that the human brain malformation is recapitulated in Arhgef2 mutant mice and identify an aberrant migration of distinct components of the precerebellar system as a pathomechanism underlying the midbrain-hindbrain phenotype. Our results highlight the crucial function of ARHGEF2 in human brain development and identify a mutation in ARHGEF2 as novel cause of a neurodevelopmental disorder.

PMID: 28453519 [PubMed - indexed for MEDLINE]

Categories: Literature Watch

Definition of mutations in polyautoimmunity.

Fri, 2017-06-02 08:22
Related Articles

Definition of mutations in polyautoimmunity.

J Autoimmun. 2016 Aug;72:65-72

Authors: Johar A, Sarmiento-Monroy JC, Rojas-Villarraga A, Silva-Lara MF, Patel HR, Mantilla RD, Velez JI, Schulte KM, Mastronardi C, Arcos-Burgos M, Anaya JM

Abstract
OBJECTIVES: Familial autoimmunity and polyautoimmunity represent extreme phenotypes ideal for identifying major genomic variants contributing to autoimmunity. Whole exome sequencing (WES) and linkage analysis are well suited for this purpose due to its strong resolution upon familial segregation patterns of functional protein coding and splice variants. The primary objective of this study was to identify potentially autoimmune causative variants using WES data from extreme pedigrees segregating polyautoimmunity phenotypes.
METHODS: DNA of 47 individuals across 10 extreme pedigrees, ascertained from probands affected with polyautoimmunity and familial autoimmunity, were selected for WES. Variant calls were obtained through Genome Analysis Toolkit. Filtration and prioritization framework to identify mutation(s) were applied, and later implemented for genetic linkage analysis. Sanger sequencing corroborated variants with significant linkage.
RESULTS: Novel and mostly rare variants harbored in SRA1, MLL4, ABCB8, DHX34 and PLAUR showed significant linkage (LOD scores are >3.0). The strongest signal was in SRA1, with a LOD score of 5.48. Network analyses indicated that SRA1, PLAUR and ABCB8 contribute to regulation of apoptotic processes.
CONCLUSIONS: Novel and rare variants in genetic linkage with polyautoimmunity were identified throughout WES. Genes harboring these variants might be major players of autoimmunity.

PMID: 27209085 [PubMed - indexed for MEDLINE]

Categories: Literature Watch

Single nucleotide variant in Nucleoporin 107 may be predictive of sensitivity to chemotherapy in patients with ovarian cancer.

Thu, 2017-06-01 07:59

Single nucleotide variant in Nucleoporin 107 may be predictive of sensitivity to chemotherapy in patients with ovarian cancer.

Pharmacogenet Genomics. 2017 May 30;:

Authors: Alanee S, Delfino K, Wilber A, Robinson K, Brard L, Semaan A

Abstract
BACKGROUND: Alterations in nuclear pore complex (NPC) genes have been previously associated with response to chemotherapy. Using agnostic exome sequencing, we envisioned that new alleles in NPC genes, predictive of sensitivity to platinum treatment, could be discovered.
METHODS: Twenty-two platinum-sensitive and six platinum-resistant ovarian cancer patients were tested. Platinum sensitivity was defined as disease-free survival greater than 6 months. Next-generation sequencing of exomes was used to compare platinum-sensitive and platinum-resistant patients. Single nucleotide variants (SNVs) associated with platinum sensitivity in NPC genes (n=30 genes) were identified.
RESULTS: SNVs in three NPC genes were associated with response to platinum on univariate analysis. SNV rs79419059 (10T>C) in Nucleoporin 107 (Nup107) was associated with platinum resistance (P=0.0061), whereas rs2302811 (3662-4A>G) in Nucleoporin 188 (Nup188) and rs77246077 (3420-67T>A) in Nucleoporin 214 (Nup214) were associated with platinum sensitivity (P=0.0483 and 0.0091, respectively). Controlling for other confounders, multivariate age-adjusted Cox proportional hazard analysis showed rs79419059 to be significantly associated with platinum resistance (odds ratio: 4.519, 95% confidence interval: 1.317-15.501, P=0.0457).
CONCLUSION: We identified a variant in the 3'-UTR region Nup107 unique to sensitivity to platinum in ovarian cancer. With validation of this variant, it is possible that a new marker predictive of patient response may be identified.

PMID: 28562428 [PubMed - as supplied by publisher]

Categories: Literature Watch

Clinically Focused Molecular Investigation of 1000 Consecutive Families with Inherited Retinal Disease.

Thu, 2017-06-01 07:59
Related Articles

Clinically Focused Molecular Investigation of 1000 Consecutive Families with Inherited Retinal Disease.

Ophthalmology. 2017 May 27;:

Authors: Stone EM, Andorf JL, Whitmore SS, DeLuca AP, Giacalone JC, Streb LM, Braun TA, Mullins RF, Scheetz TE, Sheffield VC, Tucker BA

Abstract
PURPOSE: To devise a comprehensive multiplatform genetic testing strategy for inherited retinal disease and to describe its performance in 1000 consecutive families seen by a single clinician.
DESIGN: Retrospective series.
PARTICIPANTS: One thousand consecutive families seen by a single clinician.
METHODS: The clinical records of all patients seen by a single retina specialist between January 2010 and June 2016 were reviewed, and all patients who met the clinical criteria for a diagnosis of inherited retinal disease were included in the study. Each patient was assigned to 1 of 62 diagnostic categories, and this clinical diagnosis was used to define the scope and order of the molecular investigations that were performed. The number of nucleotides evaluated in a given subject ranged from 2 to nearly 900 000.
MAIN OUTCOME MEASURES: Sensitivity and false genotype rate.
RESULTS: Disease-causing genotypes were identified in 760 families (76%). These genotypes were distributed across 104 different genes. More than 75% of these 104 genes have coding sequences small enough to be packaged efficiently into an adeno-associated virus. Mutations in ABCA4 were the most common cause of disease in this cohort (173 families), whereas mutations in 80 genes caused disease in 5 or fewer families (i.e., 0.5% or less). Disease-causing genotypes were identified in 576 of the families without next-generation sequencing (NGS). This included 23 families with mutations in the repetitive region of RPGR exon 15 that would have been missed by NGS. Whole-exome sequencing of the remaining 424 families revealed mutations in an additional 182 families, and whole-genome sequencing of 4 of the remaining 242 families revealed 2 additional genotypes that were invisible by the other methods. Performing the testing in a clinically focused tiered fashion would be 6.1% more sensitive and 17.7% less expensive and would have a significantly lower average false genotype rate than using whole-exome sequencing to assess more than 300 genes in all patients (7.1% vs. 128%; P < 0.001).
CONCLUSIONS: Genetic testing for inherited retinal disease is now more than 75% sensitive. A clinically directed tiered testing strategy can increase sensitivity and improve statistical significance without increasing cost.

PMID: 28559085 [PubMed - as supplied by publisher]

Categories: Literature Watch

Sphingomyelin Phosphodiesterase 3 Enhances Cytodifferentiation of Periodontal Ligament Cells.

Thu, 2017-06-01 07:59
Related Articles

Sphingomyelin Phosphodiesterase 3 Enhances Cytodifferentiation of Periodontal Ligament Cells.

J Dent Res. 2017 Mar;96(3):339-346

Authors: Miyauchi S, Kitagaki J, Masumoto R, Imai A, Kobayashi K, Nakaya A, Kawai S, Fujihara C, Asano Y, Yamashita M, Yanagita M, Yamada S, Kitamura M, Murakami S

Abstract
Sphingomyelin phosphodiesterase 3 ( Smpd3), which encodes neutral sphingomyelinase 2 (nSMase2), is a key molecule for skeletal development as well as for the cytodifferentiation of odontoblasts and alveolar bone. However, the effects of nSMase2 on the cytodifferentiation of periodontal ligament (PDL) cells are still unclear. In this study, the authors analyzed the effects of Smpd3 on the cytodifferentiation of human PDL (HPDL) cells. The authors found that Smpd3 increases the mRNA expression of calcification-related genes, such as alkaline phosphatase (ALPase), type I collagen, osteopontin, Osterix (Osx), and runt-related transcription factor (Runx)-2 in HPDL cells. In contrast, GW4869, an inhibitor of nSMase2, clearly decreased the mRNA expression of ALPase, type I collagen, and osteocalcin in HPDL cells, suggesting that Smpd3 enhances HPDL cytodifferentiation. Next, the authors used exome sequencing to evaluate the genetic variants of Smpd3 in a Japanese population with aggressive periodontitis (AgP). Among 44 unrelated subjects, the authors identified a single nucleotide polymorphism (SNP), rs145616324, in Smpd3 as a putative genetic variant for AgP among Japanese people. Moreover, Smpd3 harboring this SNP did not increase the sphingomyelinase activity or mRNA expression of ALPase, type I collagen, osteopontin, Osx, or Runx2, suggesting that this SNP inhibits Smpd3 such that it has no effect on the cytodifferentiation of HPDL cells. These data suggest that Smpd3 plays a crucial role in maintaining the homeostasis of PDL tissue.

PMID: 28221099 [PubMed - indexed for MEDLINE]

Categories: Literature Watch

SOS2 and ACP1 Loci Identified through Large-Scale Exome Chip Analysis Regulate Kidney Development and Function.

Thu, 2017-06-01 07:59
Related Articles

SOS2 and ACP1 Loci Identified through Large-Scale Exome Chip Analysis Regulate Kidney Development and Function.

J Am Soc Nephrol. 2017 Mar;28(3):981-994

Authors: Li M, Li Y, Weeks O, Mijatovic V, Teumer A, Huffman JE, Tromp G, Fuchsberger C, Gorski M, Lyytikäinen LP, Nutile T, Sedaghat S, Sorice R, Tin A, Yang Q, Ahluwalia TS, Arking DE, Bihlmeyer NA, Böger CA, Carroll RJ, Chasman DI, Cornelis MC, Dehghan A, Faul JD, Feitosa MF, Gambaro G, Gasparini P, Giulianini F, Heid I, Huang J, Imboden M, Jackson AU, Jeff J, Jhun MA, Katz R, Kifley A, Kilpeläinen TO, Kumar A, Laakso M, Li-Gao R, Lohman K, Lu Y, Mägi R, Malerba G, Mihailov E, Mohlke KL, Mook-Kanamori DO, Robino A, Ruderfer D, Salvi E, Schick UM, Schulz CA, Smith AV, Smith JA, Traglia M, Yerges-Armstrong LM, Zhao W, Goodarzi MO, Kraja AT, Liu C, Wessel J, CHARGE Glycemic-T2D Working Group,, CHARGE Blood Pressure Working Group,, Boerwinkle E, Borecki IB, Bork-Jensen J, Bottinger EP, Braga D, Brandslund I, Brody JA, Campbell A, Carey DJ, Christensen C, Coresh J, Crook E, Curhan GC, Cusi D, de Boer IH, de Vries AP, Denny JC, Devuyst O, Dreisbach AW, Endlich K, Esko T, Franco OH, Fulop T, Gerhard GS, Glümer C, Gottesman O, Grarup N, Gudnason V, Hansen T, Harris TB, Hayward C, Hocking L, Hofman A, Hu FB, Husemoen LL, Jackson RD, Jørgensen T, Jørgensen ME, Kähönen M, Kardia SL, König W, Kooperberg C, Kriebel J, Launer LJ, Lauritzen T, Lehtimäki T, Levy D, Linksted P, Linneberg A, Liu Y, Loos RJ, Lupo A, Meisinger C, Melander O, Metspalu A, Mitchell P, Nauck M, Nürnberg P, Orho-Melander M, Parsa A, Pedersen O, Peters A, Peters U, Polasek O, Porteous D, Probst-Hensch NM, Psaty BM, Qi L, Raitakari OT, Reiner AP, Rettig R, Ridker PM, Rivadeneira F, Rossouw JE, Schmidt F, Siscovick D, Soranzo N, Strauch K, Toniolo D, Turner ST, Uitterlinden AG, Ulivi S, Velayutham D, Völker U, Völzke H, Waldenberger M, Wang JJ, Weir DR, Witte D, Kuivaniemi H, Fox CS, Franceschini N, Goessling W, Köttgen A, Chu AY

Abstract
Genome-wide association studies have identified >50 common variants associated with kidney function, but these variants do not fully explain the variation in eGFR. We performed a two-stage meta-analysis of associations between genotypes from the Illumina exome array and eGFR on the basis of serum creatinine (eGFRcrea) among participants of European ancestry from the CKDGen Consortium (nStage1: 111,666; nStage2: 48,343). In single-variant analyses, we identified single nucleotide polymorphisms at seven new loci associated with eGFRcrea (PPM1J, EDEM3, ACP1, SPEG, EYA4, CYP1A1, and ATXN2L; PStage1<3.7×10(-7)), of which most were common and annotated as nonsynonymous variants. Gene-based analysis identified associations of functional rare variants in three genes with eGFRcrea, including a novel association with the SOS Ras/Rho guanine nucleotide exchange factor 2 gene, SOS2 (P=5.4×10(-8) by sequence kernel association test). Experimental follow-up in zebrafish embryos revealed changes in glomerular gene expression and renal tubule morphology in the embryonic kidney of acp1- and sos2-knockdowns. These developmental abnormalities associated with altered blood clearance rate and heightened prevalence of edema. This study expands the number of loci associated with kidney function and identifies novel genes with potential roles in kidney formation.

PMID: 27920155 [PubMed - indexed for MEDLINE]

Categories: Literature Watch

Molecular complexity of the megakaryocyte-platelet system in health and disease.

Thu, 2017-06-01 07:59
Related Articles

Molecular complexity of the megakaryocyte-platelet system in health and disease.

Hamostaseologie. 2016 Aug 03;36(3):159-60

Authors: Scharf RE

PMID: 27485023 [PubMed - indexed for MEDLINE]

Categories: Literature Watch

A whole genome approach to platelet and bleeding disorders.

Thu, 2017-06-01 07:59
Related Articles

A whole genome approach to platelet and bleeding disorders.

Hamostaseologie. 2016 Aug 03;36(3):161-6

Authors: Laffan M, BRIDGE Bleeding and Platelet Disorders Consortium

Abstract
The sequencing of hundreds of thousands of human exomes and hundreds of thousands of whole genomes is providing a progressively accurate and complete catalogue of human genetic variation. The initial studies to use genome wide data to help understand platelet disorders performed genome wide association studies to identify loci linked to variations in blood cell parameters. These studies used normal variation to find corresponding genetic variation. We next wished to investigate the genetic basis of bleeding disorders which may also provide a key to novel genes regulating platelet and haemostatic functions. The BRIDGE consortium (www.bridgestudy.org) is funded by the NIHR and brings together 13 rare disease gene discovery projects. The aim of these projects is to investigate as yet undiagnosed rare inherited diseases and identify the underlying mutational basis. We have used a cluster analysis based on the Human Phenotype Ontology in combination with next generation sequencing techniques to help identify patients with similar phenotypes which we hypothesise will arise from defects in the same gene. Preliminary results validate the clustering approach and have also resulted in a number of novel genes important for normal and pathogenic platelet physiology.

PMID: 26781766 [PubMed - indexed for MEDLINE]

Categories: Literature Watch

Pages