Deep learning
Genetic modifiers of multiple sclerosis progression, severity and onset.
Genetic modifiers of multiple sclerosis progression, severity and onset.
Clin Immunol. 2017 May 10;:
Authors: Dessa Sadovnick A, Traboulsee AL, Zhao Y, Bernales CQ, Encarnacion M, Ross JP, Yee IM, Criscuoli MG, Vilariño-Güell C
Abstract
The genetic contribution to clinical outcomes for multiple sclerosis (MS) has yet to be defined. We performed exome sequencing analysis in 100 MS patients presenting opposite extremes of clinical phenotype (discovery cohort), and genotyped variants of interest in 2016 MS patients (replication cohort). Linear and logistic regression analyses were used to identify significant associations with disease course, severity and onset. Our analysis of the discovery cohort nominated 38 variants in 21 genes. Replication analysis identified PSMG4 p.W99R and NLRP5 p.M459I to be associated with disease severity (p=0.002 and 0.008). CACNA1H p.R1871Q was found associated with patients presenting relapsing remitting MS at clinical onset (p=0.028) whereas NLRP5 p.M459I and EIF2AK1 p.K558R were associated with primary progressive disease (p=0.031 and 0.023). In addition, PSMG4 p.W99R and NLRP5 p.R761L were found to correlate with an earlier age at MS clinical onset, and MC1R p.R160W with delayed onset of clinical symptoms (p=0.010-0.041).
PMID: 28501589 [PubMed - as supplied by publisher]
HLAscan: genotyping of the HLA region using next-generation sequencing data.
HLAscan: genotyping of the HLA region using next-generation sequencing data.
BMC Bioinformatics. 2017 May 12;18(1):258
Authors: Ka S, Lee S, Hong J, Cho Y, Sung J, Kim HN, Kim HL, Jung J
Abstract
BACKGROUND: Several recent studies showed that next-generation sequencing (NGS)-based human leukocyte antigen (HLA) typing is a feasible and promising technique for variant calling of highly polymorphic regions. To date, however, no method with sufficient read depth has completely solved the allele phasing issue. In this study, we developed a new method (HLAscan) for HLA genotyping using NGS data.
RESULTS: HLAscan performs alignment of reads to HLA sequences from the international ImMunoGeneTics project/human leukocyte antigen (IMGT/HLA) database. The distribution of aligned reads was used to calculate a score function to determine correctly phased alleles by progressively removing false-positive alleles. Comparative HLA typing tests using public datasets from the 1000 Genomes Project and the International HapMap Project demonstrated that HLAscan could perform HLA typing more accurately than previously reported NGS-based methods such as HLAreporter and PHLAT. In addition, the results of HLA-A, -B, and -DRB1 typing by HLAscan using data generated by NextGen were identical to those obtained using a Sanger sequencing-based method. We also applied HLAscan to a family dataset with various coverage depths generated on the Illumina HiSeq X-TEN platform. HLAscan identified allele types of HLA-A, -B, -C, -DQB1, and -DRB1 with 100% accuracy for sequences at ≥ 90× depth, and the overall accuracy was 96.9%.
CONCLUSIONS: HLAscan, an alignment-based program that takes read distribution into account to determine true allele types, outperformed previously developed HLA typing tools. Therefore, HLAscan can be reliably applied for determination of HLA type across the whole-genome, exome, and target sequences.
PMID: 28499414 [PubMed - in process]
The New Genomics: What Molecular Databases Can Tell us About Human Population Variation and Endocrine Disease.
The New Genomics: What Molecular Databases Can Tell us About Human Population Variation and Endocrine Disease.
Endocrinology. 2017 May 11;:
Authors: Rotwein P
Abstract
Major recent advances in genetics and genomics present unique opportunities for enhancing our understanding of human physiology and disease predisposition. Here I demonstrate how analysis of genomic information can provide new understanding of endocrine systems, using the human growth hormone (GH) signaling pathway as an illustrative example. GH is essential for normal postnatal growth in children, and plays important roles in other biological processes throughout life. GH actions are mediated by the GH receptor, primarily via the JAK2 protein tyrosine kinase and the STAT5B transcription factor, and inactivating mutations in this pathway all lead to impaired somatic growth. Variation in GH signaling genes has been evaluated using DNA sequence data from the Exome Aggregation Consortium, a compendium of information from over 60,000 individuals. Results reveal many potential missense and other alterations in the coding regions of GH1, GHR, JAK2, and STAT5B, with most changes being uncommon. The total number of different alleles per gene varied by ∼3-fold, from 101 for GH1 to 338 for JAK2. Several known disease-linked mutations in GH1, GHR, and JAK2 were present but infrequent in the population, although three amino acid changes in the GHR were sufficiently prevalent (∼4% to 44% of chromosomes) to suggest that they are not disease causing. Collectively these data provide new opportunities to understand how genetically driven variability in GH signaling and action may modify human physiology and disease.
PMID: 28498917 [PubMed - as supplied by publisher]
Identification of a missense HOXD13 mutation in a Chinese family with syndactyly type I-c using exome sequencing.
Identification of a missense HOXD13 mutation in a Chinese family with syndactyly type I-c using exome sequencing.
Mol Med Rep. 2017 May 11;:
Authors: Deng H, Tan T, He Q, Lin Q, Yang Z, Zhu A, Guan L, Xiao J, Song Z, Guo Y
Abstract
Syndactyly is one of the most common hereditary limb malformations, and is characterized by the fusion of specific fingers and/or toes. Syndactyly type I‑c is associated with bilateral cutaneous or bony webbing of the third and fourth fingers and occasionally of the third to fifth fingers, with normal feet. The aim of the present study was to identify the genetic basis of syndactyly type I‑c in four generations of a Chinese Han family by exome sequencing. Exome sequencing was conducted in the proband of the family, followed by direct sequencing of other family members of the same ancestry, as well as 100 ethnically‑matched, unrelated normal controls. A missense mutation, c.917G>A (p.R306Q), was identified in the homeobox D13 gene (HOXD13). Sanger sequencing verified the presence of this mutation in all of the affected family members. By contrast, this mutation was absent in the unaffected family members and the 100 ethnically‑matched normal controls. The results suggest that the c.917G>A (p.R306Q) mutation in the HOXD13 gene, may be responsible for syndactyly type I‑c in this family. Exome sequencing may therefore be a powerful tool for identifying mutations associated with syndactyly, which is a disorder with high genetic and clinical heterogeneity. The results provide novel insights into the etiology and diagnosis of syndactyly, and may influence genetic counseling and the clinical management of the disease.
PMID: 28498426 [PubMed - as supplied by publisher]
Determination of disease phenotypes and pathogenic variants from exome sequence data in the CAGI 4 gene panel challenge.
Determination of disease phenotypes and pathogenic variants from exome sequence data in the CAGI 4 gene panel challenge.
Hum Mutat. 2017 May 12;:
Authors: Kundu K, Pal LR, Yin Y, Moult J
Abstract
The use of gene panel sequence for diagnostic and prognostic testing is now widespread, but there are so far few objective tests of methods to interpret these data. We describe the design and implementation of a gene panel sequencing data analysis pipeline (VarP) and its assessment in a CAGI4 community experiment. The method was applied to clinical gene panel sequencing data of 106 patients, with the goal of determining which of 14 disease classes each patient has and the corresponding causative variant(s). The disease class was correctly identified for 36 cases, including 10 where the original clinical pipeline did not find causative variants. For a further seven cases, we found strong evidence of an alternative disease to that tested. Many of the potentially causative variants are missense, with no previous association with disease, and these proved the hardest to correctly assign pathogenicity or otherwise. Post analysis showed that three-dimensional structure data could have helped for up to half of these cases. Over-reliance on HGMD annotation led to a number of incorrect disease assignments. We used a largely ad hoc method to assign probabilities of pathogenicity for each variant, and there is much work still to be done in this area. This article is protected by copyright. All rights reserved.
PMID: 28497567 [PubMed - as supplied by publisher]
Leveraging multiple genomic data to prioritize disease-causing indels from exome sequencing data.
Leveraging multiple genomic data to prioritize disease-causing indels from exome sequencing data.
Sci Rep. 2017 May 11;7(1):1804
Authors: Wu M, Chen T, Jiang R
Abstract
The emergence of exome sequencing in recent years has enabled rapid and cost-effective detection of genetic variants in coding regions and offers a great opportunity to combine sequencing experiments with subsequent computational analysis for dissecting genetic basis of human inherited diseases. However, this strategy, though successful in practice, still faces such challenges as limited sample size and substantial number or diversity of candidate variants. To overcome these obstacles, researchers have been concentrated in the development of advanced computational methods and have recently achieved great progress for analysing single nucleotide variant. Nevertheless, it still remains unclear on how to analyse indels, another type of genetic variant that accounts for substantial proportion of known disease-causing variants. In this paper, we proposed an integrative method to effectively identify disease-causing indels from exome sequencing data. Specifically, we put forward a statistical method to combine five functional prediction scores, four genic association scores and a genic intolerance score to produce an integrated p-value, which could then be used for prioritizing candidate indels. We performed extensive simulation studies and demonstrated that our method achieved high accuracy in uncovering disease-causing indels. Our software is available at http://bioinfo.au.tsinghua.edu.cn/jianglab/IndelPrioritizer/.
PMID: 28496131 [PubMed - in process]
Shared genetic predisposition in rheumatoid arthritis-interstitial lung disease and familial pulmonary fibrosis.
Shared genetic predisposition in rheumatoid arthritis-interstitial lung disease and familial pulmonary fibrosis.
Eur Respir J. 2017 May;49(5):
Authors: Juge PA, Borie R, Kannengiesser C, Gazal S, Revy P, Wemeau-Stervinou L, Debray MP, Ottaviani S, Marchand-Adam S, Nathan N, Thabut G, Richez C, Nunes H, Callebaut I, Justet A, Leulliot N, Bonnefond A, Salgado D, Richette P, Desvignes JP, Lioté H, Froguel P, Allanore Y, Sand O, Dromer C, Flipo RM, Clément A, Béroud C, Sibilia J, Coustet B, Cottin V, Boissier MC, Wallaert B, Schaeverbeke T, Dastot le Moal F, Frazier A, Ménard C, Soubrier M, Saidenberg N, Valeyre D, Amselem S, FREX consortium, Boileau C, Crestani B, Dieudé P
Abstract
Despite its high prevalence and mortality, little is known about the pathogenesis of rheumatoid arthritis-associated interstitial lung disease (RA-ILD). Given that familial pulmonary fibrosis (FPF) and RA-ILD frequently share the usual pattern of interstitial pneumonia and common environmental risk factors, we hypothesised that the two diseases might share additional risk factors, including FPF-linked genes. Our aim was to identify coding mutations of FPF-risk genes associated with RA-ILD.We used whole exome sequencing (WES), followed by restricted analysis of a discrete number of FPF-linked genes and performed a burden test to assess the excess number of mutations in RA-ILD patients compared to controls.Among the 101 RA-ILD patients included, 12 (11.9%) had 13 WES-identified heterozygous mutations in the TERT, RTEL1, PARN or SFTPC coding regions. The burden test, based on 81 RA-ILD patients and 1010 controls of European ancestry, revealed an excess of TERT, RTEL1, PARN or SFTPC mutations in RA-ILD patients (OR 3.17, 95% CI 1.53-6.12; p=9.45×10(-4)). Telomeres were shorter in RA-ILD patients with a TERT, RTEL1 or PARN mutation than in controls (p=2.87×10(-2)).Our results support the contribution of FPF-linked genes to RA-ILD susceptibility.
PMID: 28495692 [PubMed - in process]
Establishing a patient-derived xenograft model of human myxoid and round-cell liposarcoma.
Establishing a patient-derived xenograft model of human myxoid and round-cell liposarcoma.
Oncotarget. 2017 Apr 21;:
Authors: Qi Y, Hu Y, Yang H, Zhuang R, Hou Y, Tong H, Feng Y, Huang Y, Jiang Q, Ji Q, Gu Q, Zhang Z, Tang X, Lu W, Zhou Y
Abstract
Myxoid and round cell liposarcoma (MRCL) is a common type of soft tissue sarcoma. The lack of patient-derived tumor xenograft models that are highly consistent with human tumors has limited the drug experiments for this disease. Hence, we aimed to develop and validate a patient-derived tumor xenograft model of MRCL. A tumor sample from a patient with MRCL was implanted subcutaneously in an immunodeficient mouse shortly after resection to establish a patient-derived tumor xenograft model. After the tumor grew, it was resected and divided into several pieces for re-implantation and tumor passage. After passage 1, 3, and 5 (i.e. P1, P3, and P5, respectively), tumor morphology and the presence of the FUS-DDIT3 gene fusion were consistent with those of the original patient tumor. Short tandem repeat analysis demonstrated consistency from P1 to P5. Whole exome sequencing also showed that P5 tumors harbored many of the same gene mutations present in the original patient tumor, one of which was a PIK3CA mutation. PF-04691502 significantly inhibited tumor growth in P5 models (tumor volumes of 492.62 ± 652.80 vs 3303.81 ± 1480.79 mm3, P < 0.001, in treated vs control tumors, respectively) after 29 days of treatment. In conclusion, we have successfully established the first patient-derived xenograft model of MRCL. In addition to surgery, PI3K/mTOR inhibitors could potentially be used for the treatment of PIK3CA-positive MRCLs.
PMID: 28493834 [PubMed - as supplied by publisher]
Deficient activity of alanyl-tRNA synthetase underlies an autosomal recessive syndrome of progressive microcephaly, hypomyelination, and epileptic encephalopathy.
Deficient activity of alanyl-tRNA synthetase underlies an autosomal recessive syndrome of progressive microcephaly, hypomyelination, and epileptic encephalopathy.
Hum Mutat. 2017 May 11;:
Authors: Nakayama T, Wu J, Galvin-Parton P, Weiss J, Andriola MR, Hill RS, Vaughan D, El-Quessny M, Barry BJ, Partlow JN, Barkovich AJ, Ling J, Mochida GH
Abstract
Aminoacyl-transfer RNA (tRNA) synthetases ligate amino acids to specific tRNAs and are essential for protein synthesis. Although alanyl-tRNA synthetase (AARS) is a synthetase implicated in a wide range of neurological disorders from Charcot-Marie-Tooth (CMT) disease to infantile epileptic encephalopathy, there have been limited data on their pathogenesis. Here we report loss-of-function mutations in AARS in two siblings with progressive microcephaly with hypomyelination, intractable epilepsy and spasticity. Whole exome sequencing identified that the affected individuals were compound heterozygous for mutations in AARS gene, c.2067dupC (p.Tyr690Leufs*3) and c.2738G>A (p.Gly913Asp). A lymphoblastoid cell line developed from one of the affected individuals showed a strong reduction in AARS abundance. The mutations decrease aminoacylation efficiency by 70-90%. The p.Tyr690Leufs*3 mutation also abolished editing activity required for hydrolyzing misacylated tRNAs, thereby increasing errors during aminoacylation. Our study has extended potential mechanisms underlying AARS-related disorders to include destabilization of the protein, aminoacylation dysfunction, and defective editing activity. This article is protected by copyright. All rights reserved.
PMID: 28493438 [PubMed - as supplied by publisher]
Common Variable Immunodeficiency Caused by FANC Mutations.
Common Variable Immunodeficiency Caused by FANC Mutations.
J Clin Immunol. 2017 May 11;:
Authors: Sekinaka Y, Mitsuiki N, Imai K, Yabe M, Yabe H, Mitsui-Sekinaka K, Honma K, Takagi M, Arai A, Yoshida K, Okuno Y, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Muramatsu H, Kojima S, Hira A, Takata M, Ohara O, Ogawa S, Morio T, Nonoyama S
Abstract
Common variable immunodeficiency (CVID) is the most common adult-onset primary antibody deficiency disease due to various causative genes. Several genes, which are known to be the cause of different diseases, have recently been reported as the cause of CVID in patients by performing whole exome sequencing (WES) analysis. Here, we found FANC gene mutations as a cause of adult-onset CVID in two patients. B cells were absent and CD4(+) T cells were skewed toward CD45RO(+) memory T cells. T-cell receptor excision circles (TRECs) and signal joint kappa-deleting recombination excision circles (sjKRECs) were undetectable in both patients. Both patients had no anemia, neutropenia, or thrombocytopenia. Using WES, we identified compound heterozygous mutations of FANCE in one patient and homozygous mutation of FANCA in another patient. The impaired function of FANC protein complex was confirmed by a monoubiquitination assay and by chromosome fragility test. We then performed several immunological evaluations including quantitative lymphocyte analysis and TRECs/sjKRECs analysis for 32 individuals with Fanconi anemia (FA). In total, 22 FA patients (68.8%) were found to have immunological abnormalities, suggesting that such immunological findings may be common in FA patients. These data indicate that FANC mutations are involved in impaired lymphogenesis probably by the accumulation of DNA replication stress, leading to CVID. It is important to diagnose FA because it drastically changes clinical management. We propose that FANC mutations can cause isolated immunodeficiency in addition to bone marrow failure and malignancy.
PMID: 28493158 [PubMed - as supplied by publisher]
Hypomyelinating leukodystrophy associated with a deleterious mutation in the ATRN gene.
Hypomyelinating leukodystrophy associated with a deleterious mutation in the ATRN gene.
Neurogenetics. 2017 May 10;:
Authors: Shahrour MA, Ashhab M, Edvardson S, Gur M, Abu-Libdeh B, Elpeleg O
Abstract
Hypomyelinating leukodystrophies are a group of neurodevelopmental disorders that affect proper formation of the myelin sheath in the central nervous system. They are characterized by developmental delay, hypotonia, spasticity, and variable intellectual disability. We used whole exome analysis to study the molecular basis of hypomyelinating leukodystrophy in two sibs from a consanguineous family. A homozygous mutation, c.3068+5G>A, was identified in the ATRN gene, with the consequent insertion of an intronic sequence into the patients' cDNA and a predicted premature termination of the ATRN polypeptide. ATRN encodes Attractin, which was previously shown to play a critical role in central myelination. Several spontaneous ATRN rodent mutants exhibited impaired myelination which was attributed to oxidative stress and accelerated apoptosis. ATRN can now be added to the growing list of genes associated with hypomyelinating leukodystrophy. The disease seems to be confined to the CNS; however, given the young age of our patients, longer follow-up may be required.
PMID: 28493104 [PubMed - as supplied by publisher]
Progressive hereditary spastic paraplegia caused by a homozygous KY mutation.
Progressive hereditary spastic paraplegia caused by a homozygous KY mutation.
Eur J Hum Genet. 2017 May 10;:
Authors: Yogev Y, Perez Y, Noyman I, Madegem AA, Flusser H, Shorer Z, Cohen E, Kachko L, Michaelovsky A, Birk R, Koifman A, Drabkin M, Wormser O, Halperin D, Kadir R, Birk OS
Abstract
Twelve individuals of consanguineous Bedouin kindred presented with autosomal recessive progressive spastic paraplegia evident as of age 0-24 months, with spasticity of lower limbs, hyperreflexia, toe walking and equinus deformity. Kyphoscolisois was evident in older patients. Most had atrophy of the lateral aspects of the tongue and few had intellectual disability. Nerve conduction velocity, electromyography and head and spinal cord magnetic resonance imaging were normal in tested subjects. Muscle biopsy showed occasional central nuclei and fiber size variability with small angular fibers. Genome-wide linkage analysis identified a 6.7Mbp disease-associated locus on chromosome 3q21.3-3q22.2 (LOD score 9.02; D3S1290). Whole-exome sequencing identified a single homozygous variant within this locus, c.51_52ins(28); p.(V18fs56*) in KY, segregating in the family as expected and not found in 190 Bedouin controls. High KY transcript levels were demonstrated in muscular organs with lower expression in the CNS. The phenotype is reminiscent of kyphoscoliosis seen in Ky null mice. Two recent studies done independently and parallel to ours describe somewhat similar phenotypes in one and two patients with KY mutations. KY encodes a tranglutaminase-like peptidase, which interacts with muscle cytoskeletal proteins and is part of a Z-band protein complex, suggesting the disease mechanism may resemble myofibrillar myopathy. However, the mixed myopathic-neurologic features caused by human and mouse Ky mutations are difficult to explain by loss of KY sarcomere stabilizing function alone. KY transcription in CNS tissues may imply that it also has a role in neuromotor function, in line with the irregularity of neuromuscular junction in Ky null mutant mice.European Journal of Human Genetics advance online publication, 10 May 2017; doi:10.1038/ejhg.2017.85.
PMID: 28488683 [PubMed - as supplied by publisher]
Benchmarking outcomes in the Neonatal Intensive Care Unit: Cytogenetic and molecular diagnostic rates in a retrospective cohort.
Benchmarking outcomes in the Neonatal Intensive Care Unit: Cytogenetic and molecular diagnostic rates in a retrospective cohort.
Am J Med Genet A. 2017 May 09;:
Authors: Malam F, Hartley T, Gillespie MK, Armour CM, Bariciak E, Graham GE, Nikkel SM, Richer J, Sawyer SL, Boycott KM, Dyment DA
Abstract
Genetic disease and congenital anomalies continue to be a leading cause of neonate mortality and morbidity. A genetic diagnosis in the neonatal intensive care unit (NICU) can be a challenge given the associated genetic heterogeneity and early stage of a disease. We set out to evaluate the outcomes of Medical Genetics consultation in the NICU in terms of cytogenetic and molecular diagnostic rates and impact on management. We retrospectively reviewed 132 charts from patients admitted to the NICU who received a Medical Genetics diagnostic evaluation over a 2 year period. Of the 132 patients reviewed, 26% (34/132) received a cytogenetic or molecular diagnosis based on the Medical Genetics diagnostic evaluation; only 10% (13/132) received a diagnosis during their admission. The additional 16% (21 patients) received their diagnosis following NICU discharge, but based on a genetic test initiated during hospital-stay. Mean time from NICU admission to confirmed diagnosis was 24 days. For those who received a genetic diagnosis, the information was considered beneficial for clinical management in all, and a direct change to medical management occurred for 12% (4/32). For those non-diagnosed infants seen in out-patient follow-up clinic, diagnoses were made in 8% (3/37). The diagnoses made post-discharge from the NICU comprised a greater number of Mendelian disorders and represent an opportunity to improve genetic care. The adoption of diagnostic tools, such as exome sequencing, used in parallel with traditional approaches will improve rate of diagnoses and will have a significant impact, in particular when the differential diagnosis is broad.
PMID: 28488422 [PubMed - as supplied by publisher]
Identification of a novel RASD1 somatic mutation in a USP8-mutated corticotroph adenoma.
Identification of a novel RASD1 somatic mutation in a USP8-mutated corticotroph adenoma.
Cold Spring Harb Mol Case Stud. 2017 May;3(3):a001602
Authors: Uzilov AV, Cheesman KC, Fink MY, Newman LC, Pandya C, Lalazar Y, Hefti M, Fowkes M, Deikus G, Lau CY, Moe AS, Kinoshita Y, Kasai Y, Zweig M, Gupta A, Starcevic D, Mahajan M, Schadt EE, Post KD, Donovan MJ, Sebra R, Chen R, Geer EB
Abstract
Cushing's disease (CD) is caused by pituitary corticotroph adenomas that secrete excess adrenocorticotropic hormone (ACTH). In these tumors, somatic mutations in the gene USP8 have been identified as recurrent and pathogenic and are the sole known molecular driver for CD. Although other somatic mutations were reported in these studies, their contribution to the pathogenesis of CD remains unexplored. No molecular drivers have been established for a large proportion of CD cases and tumor heterogeneity has not yet been investigated using genomics methods. Also, even in USP8-mutant tumors, a possibility may exist of additional contributing mutations, following a paradigm from other neoplasm types where multiple somatic alterations contribute to neoplastic transformation. The current study utilizes whole-exome discovery sequencing on the Illumina platform, followed by targeted amplicon-validation sequencing on the Pacific Biosciences platform, to interrogate the somatic mutation landscape in a corticotroph adenoma resected from a CD patient. In this USP8-mutated tumor, we identified an interesting somatic mutation in the gene RASD1, which is a component of the corticotropin-releasing hormone receptor signaling system. This finding may provide insight into a novel mechanism involving loss of feedback control to the corticotropin-releasing hormone receptor and subsequent deregulation of ACTH production in corticotroph tumors.
PMID: 28487882 [PubMed - in process]
Novel mutations in ADSL for Adenylosuccinate Lyase Deficiency identified by the combination of Trio-WES and constantly updated guidelines.
Novel mutations in ADSL for Adenylosuccinate Lyase Deficiency identified by the combination of Trio-WES and constantly updated guidelines.
Sci Rep. 2017 May 09;7(1):1625
Authors: Mao X, Li K, Tang B, Luo Y, Ding D, Zhao Y, Wang C, Zhou X, Liu Z, Zhang Y, Wang P, Xu Q, Sun Q, Xia K, Yan X, Jiang H, Lu S, Guo J
Abstract
Whole-exome sequencing (WES), one of the next-generation sequencing (NGS), has become a powerful tool to identify exonic variants. Investigating causality of the sequence variants in human disease becomes an important part in NGS for the research and clinical applications. Recently, important guidelines on them have been published and will keep on updating. In our study, two Chinese families, with the clinical diagnosis of "Epilepsy", which presented with seizures, psychomotor retardation, hypotonia and etc. features, were sequenced by Trio-WES (including the proband and the unaffected parents), and a standard interpretation of the identified variants was performed referring to the recently updated guidelines. Finally, we identified three novel mutations (c.71 C > T, p.P24L; c.1387-1389delGAG, p.E463-; c.134 G > A, p.W45*; NM_000026) in ADSL in the two Chinese families, and confirmed them as the causal variants to the disease-Adenylosuccinate Lyase Deficiency. Previous reported specific therapy was also introduced to the patients after our refined molecular diagnosis, however, the effect was very limited success. In summary, our study demonstrated the power and advantages of WES in exploring the etiology of human disease. Using the constantly updated guidelines to conduct the WES study and to interpret the sequence variants are a necessary strategy to make the molecular diagnosis and to guide the individualized treatment of human disease.
PMID: 28487569 [PubMed - in process]
Sequencing of cancer cell subpopulations identifies micrometastases in a bladder cancer patient.
Sequencing of cancer cell subpopulations identifies micrometastases in a bladder cancer patient.
Oncotarget. 2017 Apr 21;:
Authors: Prado K, Zhang KX, Pellegrini M, Chin AI
Abstract
PURPOSE: Pathologic staging of bladder cancer patients remains a challenge. Standard-of-care histology exhibits limited sensitivity in detection of micrometastases, which can increase risk of cancer progression and delay potential adjuvant therapies. Here, we sought to develop a proof of concept novel molecular approach to improve detection of cancer micrometastasis.
EXPERIMENTAL DESIGN: We combined fluorescence activated cell sorting and next-generation sequencing and performed whole-exome sequencing of total cancer cells and cancer cell subpopulations in multiple tumor specimens and regional lymph nodes in a single patient with muscle-invasive urothelial carcinoma of the bladder following radical cystectomy.
RESULTS: Mean allele frequency analysis demonstrated a significant correlation between primary tumor cancer cells and cancer cells isolated from the lymph nodes, confirming lymph node disease despite negative pathologic staging. RNA-sequencing revealed intratumoral heterogeneity as well as enrichment for immune system and lipid metabolism gene sets in the micrometastatic cancer cell subpopulations.
CONCLUSIONS: Our analysis illustrates how next-generation sequencing of cancer cell subpopulations may be utilized to enrich for cancer cell markers and enhance detection of bladder cancer micrometastases to improve pathologic staging and provide insight into cancer cell biology.
PMID: 28487492 [PubMed - as supplied by publisher]
A Ribosomopathy Reveals Decoding Defective Ribosomes Driving Human Dysmorphism.
A Ribosomopathy Reveals Decoding Defective Ribosomes Driving Human Dysmorphism.
Am J Hum Genet. 2017 Mar 02;100(3):506-522
Authors: Paolini NA, Attwood M, Sondalle SB, Vieira CM, van Adrichem AM, di Summa FM, O'Donohue MF, Gleizes PE, Rachuri S, Briggs JW, Fischer R, Ratcliffe PJ, Wlodarski MW, Houtkooper RH, von Lindern M, Kuijpers TW, Dinman JD, Baserga SJ, Cockman ME, MacInnes AW
Abstract
Ribosomal protein (RP) gene mutations, mostly associated with inherited or acquired bone marrow failure, are believed to drive disease by slowing the rate of protein synthesis. Here de novo missense mutations in the RPS23 gene, which codes for uS12, are reported in two unrelated individuals with microcephaly, hearing loss, and overlapping dysmorphic features. One individual additionally presents with intellectual disability and autism spectrum disorder. The amino acid substitutions lie in two highly conserved loop regions of uS12 with known roles in maintaining the accuracy of mRNA codon translation. Primary cells revealed one substitution severely impaired OGFOD1-dependent hydroxylation of a neighboring proline residue resulting in 40S ribosomal subunits that were blocked from polysome formation. The other disrupted a predicted pi-pi stacking interaction between two phenylalanine residues leading to a destabilized uS12 that was poorly tolerated in 40S subunit biogenesis. Despite no evidence of a reduction in the rate of mRNA translation, these uS12 variants impaired the accuracy of mRNA translation and rendered cells highly sensitive to oxidative stress. These discoveries describe a ribosomopathy linked to uS12 and reveal mechanistic distinctions between RP gene mutations driving hematopoietic disease and those resulting in developmental disorders.
PMID: 28257692 [PubMed - indexed for MEDLINE]
Mutations in INPP5K Cause a Form of Congenital Muscular Dystrophy Overlapping Marinesco-Sjögren Syndrome and Dystroglycanopathy.
Mutations in INPP5K Cause a Form of Congenital Muscular Dystrophy Overlapping Marinesco-Sjögren Syndrome and Dystroglycanopathy.
Am J Hum Genet. 2017 Mar 02;100(3):537-545
Authors: Osborn DP, Pond HL, Mazaheri N, Dejardin J, Munn CJ, Mushref K, Cauley ES, Moroni I, Pasanisi MB, Sellars EA, Hill RS, Partlow JN, Willaert RK, Bharj J, Malamiri RA, Galehdari H, Shariati G, Maroofian R, Mora M, Swan LE, Voit T, Conti FJ, Jamshidi Y, Manzini MC
Abstract
Congenital muscular dystrophies display a wide phenotypic and genetic heterogeneity. The combination of clinical, biochemical, and molecular genetic findings must be considered to obtain the precise diagnosis and provide appropriate genetic counselling. Here we report five individuals from four families presenting with variable clinical features including muscular dystrophy with a reduction in dystroglycan glycosylation, short stature, intellectual disability, and cataracts, overlapping both the dystroglycanopathies and Marinesco-Sjögren syndrome. Whole-exome sequencing revealed homozygous missense and compound heterozygous mutations in INPP5K in the affected members of each family. INPP5K encodes the inositol polyphosphate-5-phosphatase K, also known as SKIP (skeletal muscle and kidney enriched inositol phosphatase), which is highly expressed in the brain and muscle. INPP5K localizes to both the endoplasmic reticulum and to actin ruffles in the cytoplasm. It has been shown to regulate myoblast differentiation and has also been implicated in protein processing through its interaction with the ER chaperone HSPA5/BiP. We show that morpholino-mediated inpp5k loss of function in the zebrafish results in shortened body axis, microphthalmia with disorganized lens, microcephaly, reduced touch-evoked motility, and highly disorganized myofibers. Altogether these data demonstrate that mutations in INPP5K cause a congenital muscular dystrophy syndrome with short stature, cataracts, and intellectual disability.
PMID: 28190459 [PubMed - indexed for MEDLINE]
Performance of ACMG-AMP Variant-Interpretation Guidelines among Nine Laboratories in the Clinical Sequencing Exploratory Research Consortium.
Performance of ACMG-AMP Variant-Interpretation Guidelines among Nine Laboratories in the Clinical Sequencing Exploratory Research Consortium.
Am J Hum Genet. 2016 Jun 02;98(6):1067-76
Authors: Amendola LM, Jarvik GP, Leo MC, McLaughlin HM, Akkari Y, Amaral MD, Berg JS, Biswas S, Bowling KM, Conlin LK, Cooper GM, Dorschner MO, Dulik MC, Ghazani AA, Ghosh R, Green RC, Hart R, Horton C, Johnston JJ, Lebo MS, Milosavljevic A, Ou J, Pak CM, Patel RY, Punj S, Richards CS, Salama J, Strande NT, Yang Y, Plon SE, Biesecker LG, Rehm HL
Abstract
Evaluating the pathogenicity of a variant is challenging given the plethora of types of genetic evidence that laboratories consider. Deciding how to weigh each type of evidence is difficult, and standards have been needed. In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published guidelines for the assessment of variants in genes associated with Mendelian diseases. Nine molecular diagnostic laboratories involved in the Clinical Sequencing Exploratory Research (CSER) consortium piloted these guidelines on 99 variants spanning all categories (pathogenic, likely pathogenic, uncertain significance, likely benign, and benign). Nine variants were distributed to all laboratories, and the remaining 90 were evaluated by three laboratories. The laboratories classified each variant by using both the laboratory's own method and the ACMG-AMP criteria. The agreement between the two methods used within laboratories was high (K-alpha = 0.91) with 79% concordance. However, there was only 34% concordance for either classification system across laboratories. After consensus discussions and detailed review of the ACMG-AMP criteria, concordance increased to 71%. Causes of initial discordance in ACMG-AMP classifications were identified, and recommendations on clarification and increased specification of the ACMG-AMP criteria were made. In summary, although an initial pilot of the ACMG-AMP guidelines did not lead to increased concordance in variant interpretation, comparing variant interpretations to identify differences and having a common framework to facilitate resolution of those differences were beneficial for improving agreement, allowing iterative movement toward increased reporting consistency for variants in genes associated with monogenic disease.
PMID: 27181684 [PubMed - indexed for MEDLINE]
(exome OR "exome sequencing") AND disease; +15 new citations
15 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
(exome OR "exome sequencing") AND disease
These pubmed results were generated on 2017/05/10
PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.