Deep learning

CT-based deep learning model for predicting the success of extracorporeal shock wave lithotripsy in treating ureteral stones larger than 1 cm

Tue, 2024-11-05 06:00

Urolithiasis. 2024 Nov 5;52(1):157. doi: 10.1007/s00240-024-01656-2.

ABSTRACT

OBJECTIVES: To develop a deep learning (DL) model based on computed tomography (CT) images to predict the success of extracorporeal shock wave lithotripsy (SWL) treatment for patients with ureteral stones larger than 1 cm.

MATERIALS AND METHODS: We enrolled 333 patients who underwent SWL treatment for ureteral stones and randomly divided them into training and test sets. A DL model was built based on CT images of ureteral stones to predict SWL outcomes. The predictive efficacy of the DL model was assessed by comparing it with traditional and radiomics models.

RESULTS: The DL model demonstrated significantly better predictive performance in both training and test sets compared to radiomics (training set, AUC: 0.993 vs. 0.923, P < 0.001; test set AUC: 0.982 vs. 0.846, P < 0.001) and traditional models (training set AUC: 0.993 vs. 0.75, P = 0.005; test set AUC: 0.982 vs. 0.677, P < 0.001). Decision curve analysis (DCA) also proved that the DL model brought more benefit in predicting the success of SWL treatment than other methods.

CONCLUSION: The DL model based on CT images showed excellent ability to predict the probability of success of SWL treatment for patients with ureteral stones larger than 1 cm, providing a new auxiliary tool for clinical treatment decision-making.

PMID:39499273 | DOI:10.1007/s00240-024-01656-2

Categories: Literature Watch

A deep learning approach for gastroscopic manifestation recognition based on Kyoto Gastritis Score

Tue, 2024-11-05 06:00

Ann Med. 2024 Dec;56(1):2418963. doi: 10.1080/07853890.2024.2418963. Epub 2024 Nov 5.

ABSTRACT

OBJECTIVE: The risk of gastric cancer can be predicted by gastroscopic manifestation recognition and the Kyoto Gastritis Score. This study aims to validate the applicability of AI approaches for recognizing gastroscopic manifestations according to the definition of Kyoto Gastritis Score, with the goal of improving early gastric cancer detection and reducing gastric cancer mortality.

METHODS: In this retrospective study, 29013 gastric endoscopy images were collected and carefully annotated into five categories according to the Kyoto Gastritis Score, i.e. atrophy (A), diffuse redness (DR), enlarged folds (H), intestinal metaplasia (IM), and nodularity (N). As a multi-label recognition task, we propose a deep learning approach composed of five GAM-EfficientNet models, each performing a multiple classification to quantify gastroscopic manifestations, i.e. no presentation or the severity score 0-2. This approach was compared with endoscopists of varying years of experience in terms of accuracy, specificity, precision, recall, and F1 score.

RESULTS: The approach demonstrated good performance in identifying the five manifestations of the Kyoto Gastritis Score, with an average accuracy, specificity, precision, recall, and F1 score of 78.70%, 91.92%, 80.23%, 78.70%, and 0.78, respectively. The average performance of five experienced endoscopists was 72.63%, 90.00%, 77.68%, 72.63%, and 0.73, while that of five less experienced endoscopists was 66.60%, 87.44%, 70.88%, 66.60%, and 0.66, respectively. The sample t-test indicates that the approach's average accuracy, specificity, precision, recall, and F1 score for identifying the five manifestations were significantly higher than those of less experienced endoscopists, experienced endoscopists, and all endoscopists on average (p < 0.05).

CONCLUSION: Our study demonstrates the potential of deep learning approaches on gastric manifestation recognition over junior, even senior endoscopists. Thus, the deep learning approach holds potential as an auxiliary tool, although prospective validation is still needed to assess its clinical applicability.

PMID:39498518 | DOI:10.1080/07853890.2024.2418963

Categories: Literature Watch

Enzyme catalytic efficiency prediction: employing convolutional neural networks and XGBoost

Tue, 2024-11-05 06:00

Front Artif Intell. 2024 Oct 21;7:1446063. doi: 10.3389/frai.2024.1446063. eCollection 2024.

ABSTRACT

INTRODUCTION: In the intricate realm of enzymology, the precise quantification of enzyme efficiency, epitomized by the turnover number (k cat), is a paramount yet elusive objective. Existing methodologies, though sophisticated, often grapple with the inherent stochasticity and multifaceted nature of enzymatic reactions. Thus, there arises a necessity to explore avant-garde computational paradigms.

METHODS: In this context, we introduce "enzyme catalytic efficiency prediction (ECEP)," leveraging advanced deep learning techniques to enhance the previous implementation, TurNuP, for predicting the enzyme catalase k cat. Our approach significantly outperforms prior methodologies, incorporating new features derived from enzyme sequences and chemical reaction dynamics. Through ECEP, we unravel the intricate enzyme-substrate interactions, capturing the nuanced interplay of molecular determinants.

RESULTS: Preliminary assessments, compared against established models like TurNuP and DLKcat, underscore the superior predictive capabilities of ECEP, marking a pivotal shift in silico enzymatic turnover number estimation. This study enriches the computational toolkit available to enzymologists and lays the groundwork for future explorations in the burgeoning field of bioinformatics. This paper suggested a multi-feature ensemble deep learning-based approach to predict enzyme kinetic parameters using an ensemble convolution neural network and XGBoost by calculating weighted-average of each feature-based model's output to outperform traditional machine learning methods. The proposed "ECEP" model significantly outperformed existing methodologies, achieving a mean squared error (MSE) reduction of 0.35 from 0.81 to 0.46 and R-squared score from 0.44 to 0.54, thereby demonstrating its superior accuracy and effectiveness in enzyme catalytic efficiency prediction.

DISCUSSION: This improvement underscores the model's potential to enhance the field of bioinformatics, setting a new benchmark for performance.

PMID:39498388 | PMC:PMC11532030 | DOI:10.3389/frai.2024.1446063

Categories: Literature Watch

Can point cloud networks learn statistical shape models of anatomies?

Tue, 2024-11-05 06:00

Med Image Comput Comput Assist Interv. 2023 Oct;14220:486-496. doi: 10.1007/978-3-031-43907-0_47. Epub 2023 Oct 1.

ABSTRACT

Statistical Shape Modeling (SSM) is a valuable tool for investigating and quantifying anatomical variations within populations of anatomies. However, traditional correspondence-based SSM generation methods have a prohibitive inference process and require complete geometric proxies (e.g., high-resolution binary volumes or surface meshes) as input shapes to construct the SSM. Unordered 3D point cloud representations of shapes are more easily acquired from various medical imaging practices (e.g., thresholded images and surface scanning). Point cloud deep networks have recently achieved remarkable success in learning permutation-invariant features for different point cloud tasks (e.g., completion, semantic segmentation, classification). However, their application to learning SSM from point clouds is to-date unexplored. In this work, we demonstrate that existing point cloud encoder-decoder-based completion networks can provide an untapped potential for SSM, capturing population-level statistical representations of shapes while reducing the inference burden and relaxing the input requirement. We discuss the limitations of these techniques to the SSM application and suggest future improvements. Our work paves the way for further exploration of point cloud deep learning for SSM, a promising avenue for advancing shape analysis literature and broadening SSM to diverse use cases.

PMID:39498296 | PMC:PMC11534086 | DOI:10.1007/978-3-031-43907-0_47

Categories: Literature Watch

Rapid discovery of Transglutaminase 2 inhibitors for celiac disease with boosting ensemble machine learning

Tue, 2024-11-05 06:00

Comput Struct Biotechnol J. 2024 Oct 16;23:3669-3679. doi: 10.1016/j.csbj.2024.10.019. eCollection 2024 Dec.

ABSTRACT

Celiac disease poses a significant health challenge for individuals consuming gluten-containing foods. While the availability of gluten-free products has increased, there is still a need for therapeutic treatments. The advancement of computational drug design, particularly using bio-cheminformatics-oriented machine learning, offers promising avenues for developing such therapies. One promising target is Transglutaminase 2 (TG2), a protein involved in the autoimmune response triggered by gluten consumption. In this study, we utilized data from approximately 1100 TG2 inhibition assays to develop ligand-based molecular screening techniques using ensemble machine-learning models and extensive molecular feature libraries. Various classifiers, including tree-based methods, artificial neural networks, and graph neural networks, were evaluated to identify primary systems for predictive analysis and feature significance assessment. Boosting ensembles of perceptron deep learning and low-depth random forest weak learners emerged as the most effective, achieving over 90 % accuracy, significantly outperforming a baseline of 64 %. Key features, such as the presence of a terminal Michael acceptor group and a sulfonamide group, were identified as important for activity. Additionally, a regression model was created to rank active compounds. We developed a web application, Celiac Informatics (https://celiac-informatics-v1-2b0a85e75868.herokuapp.com), to facilitate the screening of potential therapeutic molecules for celiac disease. The web app also provides drug-likeness reports, supporting the development of novel drugs.

PMID:39498152 | PMC:PMC11532751 | DOI:10.1016/j.csbj.2024.10.019

Categories: Literature Watch

Advancements in the use of AI in the diagnosis and management of inflammatory bowel disease

Tue, 2024-11-05 06:00

Front Robot AI. 2024 Oct 21;11:1453194. doi: 10.3389/frobt.2024.1453194. eCollection 2024.

ABSTRACT

Inflammatory bowel disease (IBD) causes chronic inflammation of the colon and digestive tract, and it can be classified as Crohn's disease (CD) and Ulcerative colitis (UC). IBD is more prevalent in Europe and North America, however, since the beginning of the 21st century it has been increasing in South America, Asia, and Africa, leading to its consideration as a worldwide problem. Optical colonoscopy is one of the crucial tests in diagnosing and assessing the progression and prognosis of IBD, as it allows a real-time optical visualization of the colonic wall and ileum and allows for the collection of tissue samples. The accuracy of colonoscopy procedures depends on the expertise and ability of the endoscopists. Therefore, algorithms based on Deep Learning (DL) and Convolutional Neural Networks (CNN) for colonoscopy images and videos are growing in popularity, especially for the detection and classification of colorectal polyps. The performance of this system is dependent on the quality and quantity of the data used for training. There are several datasets publicly available for endoscopy images and videos, but most of them are solely specialized in polyps. The use of DL algorithms to detect IBD is still in its inception, most studies are based on assessing the severity of UC. As artificial intelligence (AI) grows in popularity there is a growing interest in the use of these algorithms for diagnosing and classifying the IBDs and managing their progression. To tackle this, more annotated colonoscopy images and videos will be required for the training of new and more reliable AI algorithms. This article discusses the current challenges in the early detection of IBD, focusing on the available AI algorithms, and databases, and the challenges ahead to improve the detection rate.

PMID:39498116 | PMC:PMC11532194 | DOI:10.3389/frobt.2024.1453194

Categories: Literature Watch

Biofuser: a multi-source data fusion platform for fusing the data of fermentation process devices

Tue, 2024-11-05 06:00

Front Digit Health. 2024 Oct 21;6:1390622. doi: 10.3389/fdgth.2024.1390622. eCollection 2024.

ABSTRACT

In the past decade, the progress of traditional bioprocess optimization technique has lagged far behind the rapid development of synthetic biology, which has hindered the industrialization process of synthetic biology achievements. Recently, more and more advanced equipment and sensors have been applied for bioprocess online inspection to improve the understanding and optimization efficiency of the process. This has resulted in large amounts of process data from various sources with different communication protocols and data formats, requiring the development of techniques for integration and fusion of these heterogeneous data. Here we describe a multi-source fusion platform (Biofuser) that is designed to collect and process multi-source heterogeneous data. Biofuser integrates various data to a unique format that facilitates data visualization, further analysis, model construction, and automatic process control. Moreover, Biofuser also provides additional APIs that support machine learning or deep learning using the integrated data. We illustrate the application of Biofuser with a case study on riboflavin fermentation process development, demonstrating its ability in device faulty identification, critical process factor identification, and bioprocess prediction. Biofuser has the potential to significantly enhance the development of fermentation optimization techniques and is expected to become an important infrastructure for artificial intelligent integration into bioprocess optimization, thereby promoting the development of intelligent biomanufacturing.

PMID:39498098 | PMC:PMC11532143 | DOI:10.3389/fdgth.2024.1390622

Categories: Literature Watch

Evaluation of asphalt anti-cracking performance of SBS polymer with SCB method and deep learning

Tue, 2024-11-05 06:00

Heliyon. 2024 Oct 19;10(20):e39613. doi: 10.1016/j.heliyon.2024.e39613. eCollection 2024 Oct 30.

ABSTRACT

In recent years, there have been unprecedented developments in artificial intelligence. Object detection, voice recognition, face recognition etc. are some of the artificial intelligence applications. In this study, an auxiliary method for the automatic detection of cracks, one of the main deterioration problems on highways, is proposed. The crack formation of hot mix asphalts is investigated with an image processing method modeled with Attention SegNet architecture. Styrene-butadiene-styrene (SBS), the most widely used additive in bitumen modification, was used at 2 %, 3 %, and 4 % ratios to modify 50/70 bitumen. Semi-circular asphalt specimens obtained with SBS modified bitumen were subjected to a semicircular bending (SCB) test and fracture performance was investigated. The effects of different temperature, notch size and additive on crack detection performance are evaluated. In the experimental study, maximum load, fracture energy, fracture toughness (KIC) values were obtained at low temperature, and resistance values against crack propagation were obtained by applying the J-integral method at intermediate temperature. The results demonstrated that with the addition of SBS, the fracture strength and maximum load values increased at each temperature value, with the 4 % SBS mixture offering the highest performance. Moreover, the image segmentation performed with SegNet provided high accuracy and precision values for cracks. It was observed that the accuracy values of the image processing methods decreased at low temperature, while at high temperature, higher accuracy values were obtained as the cracking rate.

PMID:39498054 | PMC:PMC11532877 | DOI:10.1016/j.heliyon.2024.e39613

Categories: Literature Watch

A multi-center big-data approach for precise PICC-RVT prognosis and identification of major risk factors in clinical practice

Tue, 2024-11-05 06:00

Heliyon. 2024 Oct 12;10(20):e39178. doi: 10.1016/j.heliyon.2024.e39178. eCollection 2024 Oct 30.

ABSTRACT

BACKGROUND: The Peripherally Inserted Central Catheter (PICC) is a widely used technique for delivering intravenous fluids and medications, especially in critical care units. PICC may induce venous thrombosis (PICC-RVT), which is a frequent and serious complication. In clinical practice, Color Doppler Flow Imaging (CDFI) is regarded as the gold standard for diagnosing PICC-RVT. However, CDFI not only requires prominent time and effort from experienced healthcare professionals, but also relies on the formation and development of PICC-RVT, especially at early stages of PICC-RVT, when PICC-RVT is not apparent. A prognosis tool for PICC-RVT is crucial to bridge the gap between its diagnosis and treatment, especially in resource-limited settings, such as remote healthcare facilities.

OBJECTIVE: Evaluate over 14,885 models from various machine learning techniques to identify an effective prognostic model (referred to as PRAD - PICC-RVT Assessment via Deep-learning) for quantifying the risks associated with PICC-RVT.

METHODS: To tackle the challenges associated with PICC-RVT diagnosis, we gathered a comprehensive dataset of 5,272 patients from 27 healthcare centers across China. From a pool of 14885 models from various machine learning techniques, we systematically screened a data-driven prognostic model to quantify the risks associated with PICC-RVT. This model aims to provide objective evidence, and facilitate timely interventions.

RESULTS: The proposed model displayed exceptional predictive accuracy, achieving an accuracy of 86.4 % and an AUC of 0.837. Based on the prognosis model, we further incorporated a weight analysis to identify the major contributing factors for PICC-RVT risk during catheterization. Albumin levels, primary diagnosis, hemoglobin levels, platelet levels, and education level are emphasized as important risk factors.

CONCLUSIONS: Our method excels in predicting early PICC-RVT risks, especially in asymptomatic patients. The findings in this paper offers insights into controllable PICC risk factors that could benefit vast patients and reduce disease burden through stratification and early intervention.

PMID:39498031 | PMC:PMC11532296 | DOI:10.1016/j.heliyon.2024.e39178

Categories: Literature Watch

Fractional gradient optimized explainable convolutional neural network for Alzheimer's disease diagnosis

Tue, 2024-11-05 06:00

Heliyon. 2024 Oct 9;10(20):e39037. doi: 10.1016/j.heliyon.2024.e39037. eCollection 2024 Oct 30.

ABSTRACT

Alzheimer's is one of the brain syndromes that steadily affects the brain memory. The early stage of Alzheimer's disease (AD) is referred to as mild cognitive impairment (MCI), and the growth of Alzheimer's is not certain in patients with MCI. The premature detection of Alzheimer's is crucial for maintaining healthy brain function and avoiding memory loss. Different multi-neural network architectures have been proposed by researchers for efficient and accurate AD detection. The absence of improved feature extraction mechanisms and unexplored efficient optimizers in complex benchmark architectures lead to an inefficient and inaccurate AD classification. Moreover, the standard convolutional neural network (CNN)-based architectures for Alzheimer's diagnosis lack interpretability in their predictions. An interpretable, simplified, yet effective deep learning model is required for the accurate classification of AD. In this study, a generalized fractional order-based CNN classifier with explainable artificial intelligence (XAI) capabilities is proposed for accurate, efficient, and interpretable classification of AD diagnosis. The proposed study (a) classifies AD accurately by incorporating unexplored pooling technique with enhanced feature extraction mechanism, (b) provides fractional order-based optimization approach for adaptive learning and fast convergence speed, and (c) suggests an interpretable method for proving the transparency of the model. The proposed model outperforms complex benchmark architectures with regard to accuracy using standard ADNI dataset. The proposed fractional order-based CNN classifier achieves an improved accuracy of 99 % as compared to the state-of-the-art models.

PMID:39498007 | PMC:PMC11532259 | DOI:10.1016/j.heliyon.2024.e39037

Categories: Literature Watch

Machine Learning-powered 28-day Mortality Prediction Model for Hospitalized Patients with Acute Decompensation of Liver Cirrhosis

Tue, 2024-11-05 06:00

Oman Med J. 2024 May 30;39(3):e632. doi: 10.5001/omj.2024.79. eCollection 2024 May.

ABSTRACT

OBJECTIVES: Chronic liver disease and cirrhosis are persistent global health threats, ranking among the top causes of death. Despite medical advancements, their mortality rates have remained stagnant for decades. Existing scoring systems such as Child-Turcotte-Pugh and Mayo End-Stage Liver Disease have limitations, prompting the exploration of more accurate predictive methods using artificial intelligence and machine learning (ML).

METHODS: We retrospectively reviewed the data of all adult patients with acute decompensated liver cirrhosis admitted to a tertiary hospital during 2015-2021. The dataset underwent preprocessing to handle missing values and standardize continuous features. Traditional ML and deep learning algorithms were applied to build a 28-day mortality prediction model.

RESULTS: The subjects were 173 cirrhosis patients, whose medical records were examined. We developed and evaluated multiple models for 28-day mortality prediction. Among traditional ML algorithms, logistic regression outperformed was achieving an accuracy of 82.9%, precision of 55.6%, recall of 71.4%, and an F1-score of 0.625. Naive Bayes and Random Forest models also performed well, both achieving the same accuracy (82.9%) and precision (54.5%). The deep learning models (multilayer artificial neural network, recurrent neural network, and Long Short-Term Memory) exhibited mixed results, with the multilayer artificial neural network achieving an accuracy of 74.3% but lower precision and recall. The feature importance analysis identified key predictability contributors, including admission in the intensive care unit (importance: 0.112), use of mechanical ventilation (importance: 0.095), and mean arterial pressure (importance: 0.073).

CONCLUSIONS: Our study demonstrates the potential of ML in predicting 28-day mortality following hospitalization with acute decompensation of liver cirrhosis. Logistic Regression, Naive Bayes, and Random Forest models proved effective, while deep learning models exhibited variable performance. These models can serve as useful tools for risk stratification and timely intervention. Implementing these models in clinical practice has the potential to improve patient outcomes and resource allocation.

PMID:39497942 | PMC:PMC11532584 | DOI:10.5001/omj.2024.79

Categories: Literature Watch

Accurate prediction of protein-ligand interactions by combining physical energy functions and graph-neural networks

Mon, 2024-11-04 06:00

J Cheminform. 2024 Nov 4;16(1):121. doi: 10.1186/s13321-024-00912-2.

ABSTRACT

We introduce an advanced model for predicting protein-ligand interactions. Our approach combines the strengths of graph neural networks with physics-based scoring methods. Existing structure-based machine-learning models for protein-ligand binding prediction often fall short in practical virtual screening scenarios, hindered by the intricacies of binding poses, the chemical diversity of drug-like molecules, and the scarcity of crystallographic data for protein-ligand complexes. To overcome the limitations of existing machine learning-based prediction models, we propose a novel approach that fuses three independent neural network models. One classification model is designed to perform binary prediction of a given protein-ligand complex pose. The other two regression models are trained to predict the binding affinity and root-mean-square deviation of a ligand conformation from an input complex structure. We trained the model to account for both deviations in experimental and predicted binding affinities and pose prediction uncertainties. By effectively integrating the outputs of the triplet neural networks with a physics-based scoring function, our model showed a significantly improved performance in hit identification. The benchmark results with three independent decoy sets demonstrate that our model outperformed existing models in forward screening. Our model achieved top 1% enrichment factors of 32.7 and 23.1 with the CASF2016 and DUD-E benchmark sets, respectively. The benchmark results using the LIT-PCBA set further confirmed its higher average enrichment factors, emphasizing the model's efficiency and generalizability. The model's efficiency was further validated by identifying 23 active compounds from 63 candidates in experimental screening for autotaxin inhibitors, demonstrating its practical applicability in hit discovery.Scientific contributionOur work introduces a novel training strategy for a protein-ligand binding affinity prediction model by integrating the outputs of three independent sub-models and utilizing expertly crafted decoy sets. The model showcases exceptional performance across multiple benchmarks. The high enrichment factors in the LIT-PCBA benchmark demonstrate its potential to accelerate hit discovery.

PMID:39497201 | DOI:10.1186/s13321-024-00912-2

Categories: Literature Watch

Computer vision applications for the detection or analysis of tuberculosis using digitised human lung tissue images - a systematic review

Mon, 2024-11-04 06:00

BMC Med Imaging. 2024 Nov 5;24(1):298. doi: 10.1186/s12880-024-01443-w.

ABSTRACT

OBJECTIVE: To conduct a systematic review of the computer vision applications that detect, diagnose, or analyse tuberculosis (TB) pathology or bacilli using digitised human lung tissue images either through automatic or semi-automatic methods. We categorised the computer vision platform into four technologies: image processing, object/pattern recognition, computer graphics, and deep learning. In this paper, the focus is on image processing and deep learning (DL) applications for either 2D or 3D digitised human lung tissue images. This review is useful for establishing a common practice in TB analysis using human lung tissue as well as identifying opportunities for further research in this space. The review brings attention to the state-of-art techniques for detecting TB, with emphasis on the challenges and limitations of the current techniques. The ultimate goal is to promote the development of more efficient and accurate algorithms for the detection or analysis of TB, and raise awareness about the importance of early detection.

DESIGN: We searched five databases and Google Scholar for articles published between January 2017 and December 2022 that focus on Mycobacterium tuberculosis detection, or tuberculosis pathology using digitised human lung tissue images. Details regarding design, image processing and computer-aided techniques, deep learning models, and datasets were collected and summarised. Discussions, analysis, and comparisons of state-of-the-art methods are provided to help guide future research. Further, a brief update on the relevant techniques and their performance is provided.

RESULTS: Several studies have been conducted to develop automated and AI-assisted methods for diagnosing Mtb and TB pathology from digitised human lung tissue images. Some studies presented a completely automated method of diagnosis, while other studies developed AI-assisted diagnostic methods. Low-level focus areas included the development of a novel μ CT scanner for soft tissue image contract, and use of multiresolution computed tomography to analyse the 3D structure of the human lung. High-level focus areas included the investigation the effects of aging on the number and size of small airways in the lungs using CT and whole lung high-resolution μ CT, and the 3D microanatomy characterisation of human tuberculosis lung using μ CT in conjunction with histology and immunohistochemistry. Additionally, a novel method for acquiring high-resolution 3D images of human lung structure and topology is also presented.

CONCLUSION: The literature indicates that post 1950s, TB was predominantly studied using animal models even though no animal model reflects the full spectrum of human pulmonary TB disease and does not reproducibly transmit Mtb infection to other animals (Hunter, 2011). This explains why there are very few studies that used human lung tissue for detection or analysis of Mtb. Nonetheless, we found 10 studies that used human tissues (predominately lung) of which five studies proposed machine learning (ML) models for the detection of bacilli and the other five used CT on human lung tissue scanned ex-vivo.

PMID:39497049 | DOI:10.1186/s12880-024-01443-w

Categories: Literature Watch

Explainable fully automated CT scoring of interstitial lung disease for patients suspected of systemic sclerosis by cascaded regression neural networks and its comparison with experts

Mon, 2024-11-04 06:00

Sci Rep. 2024 Nov 4;14(1):26666. doi: 10.1038/s41598-024-78393-4.

ABSTRACT

Visual scoring of interstitial lung disease in systemic sclerosis (SSc-ILD) from CT scans is laborious, subjective and time-consuming. This study aims to develop a deep learning framework to automate SSc-ILD scoring. The automated framework is a cascade of two neural networks. The first network selects the craniocaudal positions of the five scoring levels. Subsequently, for each level, the second network estimates the ratio of three patterns to the total lung area: the total extent of disease (TOT), ground glass (GG) and reticulation (RET). To overcome the score imbalance in the second network, we propose a method to augment the training dataset with synthetic data. To explain the network's output, a heat map method is introduced to highlight the candidate interstitial lung disease regions. The explainability of heat maps was evaluated by two human experts and a quantitative method that uses the heat map to produce the score. The results show that our framework achieved a κ of 0.66, 0.58, and 0.65, for the TOT, GG and RET scoring, respectively. Both experts agreed with the heat maps in 91%, 90% and 80% of cases, respectively. Therefore, it is feasible to develop a framework for automated SSc-ILD scoring, which performs competitively with human experts and provides high-quality explanations using heat maps. Confirming the model's generalizability is needed in future studies.

PMID:39496802 | DOI:10.1038/s41598-024-78393-4

Categories: Literature Watch

Convolutional neural network-based classification of craniosynostosis and suture lines from multi-view cranial X-rays

Mon, 2024-11-04 06:00

Sci Rep. 2024 Nov 5;14(1):26729. doi: 10.1038/s41598-024-77550-z.

ABSTRACT

Early and precise diagnosis of craniosynostosis (CSO), which involves premature fusion of cranial sutures in infants, is crucial for effective treatment. Although computed topography offers detailed imaging, its high radiation poses risks, especially to children. Therefore, we propose a deep-learning model for CSO and suture-line classification using 2D cranial X-rays that minimises radiation-exposure risks and offers reliable diagnoses. We used data comprising 1,047 normal and 277 CSO cases from 2006 to 2023. Our approach integrates X-ray-marker removal, head-pose standardisation, skull-cropping, and fine-tuning modules for CSO and suture-line classification using convolution neural networks (CNNs). It enhances the diagnostic accuracy and efficiency of identifying CSO from X-ray images, offering a promising alternative to traditional methods. Four CNN backbones exhibited robust performance, with F1-scores exceeding 0.96 and sensitivity and specificity exceeding 0.9, proving the potential for clinical applications. Additionally, preprocessing strategies further enhanced the accuracy, demonstrating the highest F1-scores, precision, and specificity. A qualitative analysis using gradient-weighted class activation mapping illustrated the focal points of the models. Furthermore, the suture-line classification model distinguishes five suture lines with an accuracy of > 0.9. Thus, the proposed approach can significantly reduce the time and labour required for CSO diagnosis, streamlining its management in clinical settings.

PMID:39496759 | DOI:10.1038/s41598-024-77550-z

Categories: Literature Watch

A deep learning framework for hepatocellular carcinoma diagnosis using MS1 data

Mon, 2024-11-04 06:00

Sci Rep. 2024 Nov 4;14(1):26705. doi: 10.1038/s41598-024-77494-4.

ABSTRACT

Clinical proteomics analysis is of great significance for analyzing pathological mechanisms and discovering disease-related biomarkers. Using computational methods to accurately predict disease types can effectively improve patient disease diagnosis and prognosis. However, how to eliminate the errors introduced by peptide precursor identification and protein identification for pathological diagnosis remains a major unresolved issue. Here, we develop a powerful end-to-end deep learning model, termed "MS1Former", that is able to classify hepatocellular carcinoma tumors and adjacent non-tumor (normal) tissues directly using raw MS1 spectra without peptide precursor identification. Our model provides accurate discrimination of subtle m/z differences in MS1 between tumor and adjacent non-tumor tissue, as well as more general performance predictions for data-dependent acquisition, data-independent acquisition, and full-scan data. Our model achieves the best performance on multiple external validation datasets. Additionally, we perform a detailed exploration of the model's interpretability. Prospectively, we expect that the advanced end-to-end framework will be more applicable to the classification of other tumors.

PMID:39496730 | DOI:10.1038/s41598-024-77494-4

Categories: Literature Watch

Prediction and clustering of Alzheimer's disease by race and sex: a multi-head deep-learning approach to analyze irregular and heterogeneous data

Mon, 2024-11-04 06:00

Sci Rep. 2024 Nov 4;14(1):26668. doi: 10.1038/s41598-024-77829-1.

ABSTRACT

Early detection of Alzheimer's disease (AD) is crucial to maximize clinical outcomes. Most disease progression analyses include people with diagnoses of cognitive impairment, limiting understanding of AD risk among those with normal cognition. The objective was to establish AD progression models through a deep learning approach to analyze heterogeneous, multi-modal datasets, including clustering analyses of population subsets. A multi-head deep-learning architecture was built to process and learn from biomedical and imaging data from the National Alzheimer's Coordinating Center. Shapley additive explanation algorithms for feature importance ranking and pairwise correlation analysis were used to identify predictors of disease progression. Four primary disease progression clusters (slow, moderate and rapid converters or non-converters) were subdivided into groups by race and sex, yielding 16 sub-clusters of participants with distinct progression patterns. A multi-head and early-fusion convolutional neural network achieved the most competitive performance and demonstrated superiority over a single-head deep learning architecture and conventional tree-based machine-learning methods, with 97% test accuracy, 96% F1 score and 0.19 root mean square error. From 447 features, 2 sets of 100 predictors of disease progression were extracted. Feature importance ranking, correlation analysis and descriptive statistics further enriched cluster analysis and validation of the heterogeneity of risk factors.

PMID:39496718 | DOI:10.1038/s41598-024-77829-1

Categories: Literature Watch

WCAY object detection of fractures for X-ray images of multiple sites

Mon, 2024-11-04 06:00

Sci Rep. 2024 Nov 4;14(1):26702. doi: 10.1038/s41598-024-77878-6.

ABSTRACT

The WCAY (weighted channel attention YOLO) model, which is meticulously crafted to identify fracture features across diverse X-ray image sites, is presented herein. This model integrates novel core operators and an innovative attention mechanism to enhance its efficacy. Initially, leveraging the benefits of dynamic snake convolution (DSConv), which is adept at capturing elongated tubular structural features, we introduce the DSC-C2f module to augment the model's fracture detection performance by replacing a portion of C2f. Subsequently, we integrate the newly proposed weighted channel attention (WCA) mechanism into the architecture to bolster feature fusion and improve fracture detection across various sites. Comparative experiments were conducted, to evaluate the performances of several attention mechanisms. These enhancement strategies were validated through experimentation on public X-ray image datasets (FracAtlas and GRAZPEDWRI-DX). Multiple experimental comparisons substantiated the model's efficacy, demonstrating its superior accuracy and real-time detection capabilities. According to the experimental findings, on the FracAtlas dataset, our WCAY model exhibits a notable 8.8% improvement in mean average precision (mAP) over the original model. On the GRAZPEDWRI-DX dataset, the mAP reaches 64.4%, with a detection accuracy of 93.9% for the "fracture" category alone. The proposed model represents a substantial improvement over the original algorithm compared to other state-of-the-art object detection models. The code is publicly available at https://github.com/cccp421/Fracture-Detection-WCAY .

PMID:39496710 | DOI:10.1038/s41598-024-77878-6

Categories: Literature Watch

Ensemble based high performance deep learning models for fake news detection

Mon, 2024-11-04 06:00

Sci Rep. 2024 Nov 4;14(1):26591. doi: 10.1038/s41598-024-76286-0.

ABSTRACT

Social media has emerged as a dominant platform where individuals freely share opinions and communicate globally. Its role in disseminating news worldwide is significant due to its easy accessibility. However, the increase in the use of these platforms presents severe risks for potentially misleading people. Our research aims to investigate different techniques within machine learning, deep learning, and ensemble learning frameworks in Arabic fake news detection. We integrated FastText word embeddings with various machine learning and deep learning methods. We then leveraged advanced transformer-based models, including BERT, XLNet, and RoBERTa, optimizing their performance through careful hyperparameter tuning. The research methodology involves utilizing two Arabic news article datasets, AFND and ARABICFAKETWEETS datasets, categorized into fake and real subsets and applying comprehensive preprocessing techniques to the text data. Four hybrid deep learning models are presented: CNN-LSTM, RNN-CNN, RNN-LSTM, and Bi-GRU-Bi-LSTM. The Bi-GRU-Bi-LSTM model demonstrated superior performance regarding the F1 score, accuracy, and loss metrics. The precision, recall, F1 score, and accuracy of the hybrid Bi-GRU-Bi-LSTM model on the AFND Dataset are 0.97, 0.97, 0.98, and 0.98, and on the ARABICFAKETWEETS dataset are 0.98, 0.98, 0.99, and 0.99 respectively. The study's primary conclusion is that when spotting fake news in Arabic, the Bi-GRU-Bi-LSTM model outperforms other models by a significant margin. It significantly aids the global fight against false information by setting the stage for future research to expand fake news detection to multiple languages.

PMID:39496680 | DOI:10.1038/s41598-024-76286-0

Categories: Literature Watch

A novel digital-twin approach based on transformer for photovoltaic power prediction

Mon, 2024-11-04 06:00

Sci Rep. 2024 Nov 4;14(1):26661. doi: 10.1038/s41598-024-76711-4.

ABSTRACT

The prediction of photovoltaic (PV) system performance has been intensively studied as it plays an important role in the context of sustainability and renewable energy generation. In this paper, a digital twin (DT) model based on a domain-matched transformer is proposed using convolutional neural network (CNN) for domain-invariant feature extraction, transformer for PV performance prediction, and domain adaptation neural network (DANN) for domain adaptation. The effectiveness of the proposed framework is validated using a PV power prediction dataset. The results indicate an accuracy improvement of up to 39.99% in model performance. Additionally, experiments with varying numbers of timestamps demonstrate enhanced PV power prediction performance as parameters are continuously updated within the DT framework, offering a reliable solution for real-time and adaptive PV power forecasting.

PMID:39496679 | DOI:10.1038/s41598-024-76711-4

Categories: Literature Watch

Pages