Deep learning

Accelerating Evidence Synthesis in Observational Studies: Development of a Living Natural Language Processing-Assisted Intelligent Systematic Literature Review System

Wed, 2024-10-23 06:00

JMIR Med Inform. 2024 Oct 23;12:e54653. doi: 10.2196/54653.

ABSTRACT

BACKGROUND: Systematic literature review (SLR), a robust method to identify and summarize evidence from published sources, is considered to be a complex, time-consuming, labor-intensive, and expensive task.

OBJECTIVE: This study aimed to present a solution based on natural language processing (NLP) that accelerates and streamlines the SLR process for observational studies using real-world data.

METHODS: We followed an agile software development and iterative software engineering methodology to build a customized intelligent end-to-end living NLP-assisted solution for observational SLR tasks. Multiple machine learning-based NLP algorithms were adopted to automate article screening and data element extraction processes. The NLP prediction results can be further reviewed and verified by domain experts, following the human-in-the-loop design. The system integrates explainable articificial intelligence to provide evidence for NLP algorithms and add transparency to extracted literature data elements. The system was developed based on 3 existing SLR projects of observational studies, including the epidemiology studies of human papillomavirus-associated diseases, the disease burden of pneumococcal diseases, and cost-effectiveness studies on pneumococcal vaccines.

RESULTS: Our Intelligent SLR Platform covers major SLR steps, including study protocol setting, literature retrieval, abstract screening, full-text screening, data element extraction from full-text articles, results summary, and data visualization. The NLP algorithms achieved accuracy scores of 0.86-0.90 on article screening tasks (framed as text classification tasks) and macroaverage F1 scores of 0.57-0.89 on data element extraction tasks (framed as named entity recognition tasks).

CONCLUSIONS: Cutting-edge NLP algorithms expedite SLR for observational studies, thus allowing scientists to have more time to focus on the quality of data and the synthesis of evidence in observational studies. Aligning the living SLR concept, the system has the potential to update literature data and enable scientists to easily stay current with the literature related to observational studies prospectively and continuously.

PMID:39441204 | DOI:10.2196/54653

Categories: Literature Watch

Self-Supervised Learning for Generic Raman Spectrum Denoising

Wed, 2024-10-23 06:00

Anal Chem. 2024 Oct 23. doi: 10.1021/acs.analchem.4c01550. Online ahead of print.

ABSTRACT

Raman and surface-enhanced Raman scattering (SERS) spectroscopy are highly specific and sensitive optical modalities that have been extensively investigated in diverse applications. Noise reduction is demanding in the preprocessing procedure, especially for weak Raman/SERS spectra. Existing denoising methods require manual optimization of parameters, which is time-consuming and laborious and cannot always achieve satisfactory performance. Deep learning has been increasingly applied in Raman/SERS spectral denoising but usually requires massive training data, where the true labels may not exist. Aiming at these challenges, this work presents a generic Raman spectrum denoising algorithm with self-supervised learning for accurate, rapid, and robust noise reduction. A specialized network based on U-Net is established, which first extracts high-level features and then restores key peak profiles of the spectra. A subsampling strategy is proposed to refine the raw Raman spectrum and avoid the underlying biased interference. The effectiveness of the proposed approach has been validated by a broad range of spectral data, exhibiting its strong generalization ability. In the context of photosafe detection of deep-seated tumors, our method achieved signal-to-noise ratio enhancement by over 400%, which resulted in a significant increase in the limit of detection thickness from 10 to 18 cm. Our approach demonstrates superior denoising performance compared to the state-of-the-art denoising methods. The occlusion method further showed that the proposed algorithm automatically focuses on characterized peaks, enhancing the interpretability of our approach explicitly in Raman and SERS spectroscopy.

PMID:39441128 | DOI:10.1021/acs.analchem.4c01550

Categories: Literature Watch

Extraction of agricultural plastic greenhouses based on a U-Net Convolutional Neural Network Coupled with edge expansion and loss function improvement

Wed, 2024-10-23 06:00

J Air Waste Manag Assoc. 2024 Oct 23. doi: 10.1080/10962247.2024.2412708. Online ahead of print.

ABSTRACT

Compared to traditional interpretation methods, which suffer problems such as heavy workloads, small adaptation ranges and poor repeatability, deep learning network models can better extract target features from remote sensing images. In this study, we used GF-7 image data to improve the traditional U-Net convolutional neural network (CNN) model. The Canny operator and Gaussian kernel (GK) function were used for sample edge expansion, and the binary cross-entropy and GK functions were used to jointly constrain the loss. Finally, APGs were accurately extracted and compared to those obtained with the original model. The results indicated that the APG extraction accuracy of the U-Net network was improved through the expansion of sample edge information and adoption of joint loss function constraints.

PMID:39440842 | DOI:10.1080/10962247.2024.2412708

Categories: Literature Watch

A deep-learning-based histopathology classifier for focal cortical dysplasia (FCD) unravels a complex scenario of comorbid FCD subtypes

Wed, 2024-10-23 06:00

Epilepsia. 2024 Oct 23. doi: 10.1111/epi.18161. Online ahead of print.

ABSTRACT

OBJECTIVE: Recently, we developed a first artificial intelligence (AI)-based digital pathology classifier for focal cortical dysplasia (FCD) as defined by the ILAE classification. Herein, we tested the usefulness of the classifier in a retrospective histopathology workup scenario.

METHODS: Eighty-six new cases with histopathologically confirmed FCD ILAE type Ia (FCDIa), FCDIIa, FCDIIb, mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE), or mild malformations of cortical development were selected, 20 of which had confirmed gene mosaicism.

RESULTS: The classifier always recognized the correct histopathology diagnosis in four or more 1000 × 1000-μm digital tiles in all cases. Furthermore, the final diagnosis overlapped with the largest batch of tiles assigned by the algorithm to one diagnostic entity in 80.2% of all cases. However, 86.2% of all cases revealed more than one diagnostic category. As an example, FCDIIb was identified in all of the 23 patients with histopathologically assigned FCDIIb, whereas the classifier correctly recognized FCDIIa tiles in 19 of these cases (83%), that is, dysmorphic neurons but no balloon cells. In contrast, the classifier misdiagnosed FCDIIb tiles in seven of 23 cases histopathologically assigned to FCDIIa (33%). This mandates a second look by the signing histopathologist to either confirm balloon cells or differentiate from reactive astrocytes. The algorithm also recognized coexisting architectural dysplasia, for example, vertically oriented microcolumns as in FCDIa, in 22% of cases classified as FCDII and in 62% of cases with MOGHE. Microscopic review confirmed microcolumns in the majority of tiles, suggesting that vertically oriented architectural abnormalities are more common than previously anticipated.

SIGNIFICANCE: An AI-based diagnostic classifier will become a helpful tool in our future histopathology laboratory, in particular when large anatomical resections from epilepsy surgery require extensive resources. We also provide an open access web application allowing the histopathologist to virtually review digital tiles obtained from epilepsy surgery to corroborate their final diagnosis.

PMID:39440630 | DOI:10.1111/epi.18161

Categories: Literature Watch

CellSAM: Advancing Pathologic Image Cell Segmentation via Asymmetric Large-Scale Vision Model Feature Distillation Aggregation Network

Wed, 2024-10-23 06:00

Microsc Res Tech. 2024 Oct 23. doi: 10.1002/jemt.24716. Online ahead of print.

ABSTRACT

Segment anything model (SAM) has attracted extensive interest as a potent large-scale image segmentation model, with prior efforts adapting it for use in medical imaging. However, the precise segmentation of cell nucleus instances remains a formidable challenge in computational pathology, given substantial morphological variations and the dense clustering of nuclei with unclear boundaries. This study presents an innovative cell segmentation algorithm named CellSAM. CellSAM has the potential to improve the effectiveness and precision of disease identification and therapy planning. As a variant of SAM, CellSAM integrates dual-image encoders and employs techniques such as knowledge distillation and mask fusion. This innovative model exhibits promising capabilities in capturing intricate cell structures and ensuring adaptability in resource-constrained scenarios. The experimental results indicate that this structure effectively enhances the quality and precision of cell segmentation. Remarkably, CellSAM demonstrates outstanding results even with minimal training data. In the evaluation of particular cell segmentation tasks, extensive comparative analyzes show that CellSAM outperforms both general fundamental models and state-of-the-art (SOTA) task-specific models. Comprehensive evaluation metrics yield scores of 0.884, 0.876, and 0.768 for mean accuracy, recall, and precision respectively. Extensive experiments show that CellSAM excels in capturing subtle details and complex structures and is capable of segmenting cells in images accurately. Additionally, CellSAM demonstrates excellent performance on clinical data, indicating its potential for robust applications in treatment planning and disease diagnosis, thereby further improving the efficiency of computer-aided medicine.

PMID:39440549 | DOI:10.1002/jemt.24716

Categories: Literature Watch

Reconstructing Molecular Networks by Causal Diffusion Do-Calculus Analysis with Deep Learning

Wed, 2024-10-23 06:00

Adv Sci (Weinh). 2024 Oct 23:e2409170. doi: 10.1002/advs.202409170. Online ahead of print.

ABSTRACT

Quantifying molecular regulations between genes/molecules causally from observed data is crucial for elucidating the molecular mechanisms underlying biological processes at the network level. Presently, most methods for inferring gene regulatory and biological networks rely on association studies or observational causal-analysis approaches. This study introduces a novel approach that combines intervention operations and diffusion models within a do-calculus framework by deep learning, i.e., Causal Diffusion Do-calculus (CDD) analysis, to infer causal networks between molecules. CDD can extract causal relations from observed data owing to its intervention operations, thereby significantly enhancing the accuracy and generalizability of causal network inference. Computationally, CDD has been applied to both simulated data and real omics data, which demonstrates that CDD outperforms existing methods in accurately inferring gene regulatory networks and identifying causal links from genes to disease phenotypes. Especially, compared with the Mendelian randomization algorithm and other existing methods, the CDD can reliably identify the disease genes or molecules for complex diseases with better performances. In addition, the causal analysis between various diseases and the potential factors in different populations from the UK Biobank database is also conducted, which further validated the effectiveness of CDD.

PMID:39440482 | DOI:10.1002/advs.202409170

Categories: Literature Watch

Text-image multimodal fusion model for enhanced fake news detection

Wed, 2024-10-23 06:00

Sci Prog. 2024 Oct-Dec;107(4):368504241292685. doi: 10.1177/00368504241292685.

ABSTRACT

In the era of rapid internet expansion and technological progress, discerning real from fake news poses a growing challenge, exposing users to potential misinformation. The existing literature primarily focuses on analyzing individual features in fake news, overlooking multimodal feature fusion recognition. Compared to single-modal approaches, multimodal fusion allows for a more comprehensive and enriched capture of information from different data modalities (such as text and images), thereby improving the performance and effectiveness of the model. This study proposes a model using multimodal fusion to identify fake news, aiming to curb misinformation. The framework integrates textual and visual information, using early fusion, joint fusion and late fusion strategies to combine them. The proposed framework processes textual and visual information through data cleaning and feature extraction before classification. Fake news classification is accomplished through a model, achieving accuracy of 85% and 90% in the Gossipcop and Fakeddit datasets, with F1-scores of 90% and 88%, showcasing its performance. The study presents outcomes across different training periods, demonstrating the effectiveness of multimodal fusion in combining text and image recognition for combating fake news. This research contributes significantly to addressing the critical issue of misinformation, emphasizing a comprehensive approach for detection accuracy enhancement.

PMID:39440371 | DOI:10.1177/00368504241292685

Categories: Literature Watch

Development of AI-assisted microscopy frameworks through realistic simulation with pySTED

Wed, 2024-10-23 06:00

Nat Mach Intell. 2024;6(10):1197-1215. doi: 10.1038/s42256-024-00903-w. Epub 2024 Sep 26.

ABSTRACT

The integration of artificial intelligence into microscopy systems significantly enhances performance, optimizing both image acquisition and analysis phases. Development of artificial intelligence-assisted super-resolution microscopy is often limited by access to large biological datasets, as well as by difficulties to benchmark and compare approaches on heterogeneous samples. We demonstrate the benefits of a realistic stimulated emission depletion microscopy simulation platform, pySTED, for the development and deployment of artificial intelligence strategies for super-resolution microscopy. pySTED integrates theoretically and empirically validated models for photobleaching and point spread function generation in stimulated emission depletion microscopy, as well as simulating realistic point-scanning dynamics and using a deep learning model to replicate the underlying structures of real images. This simulation environment can be used for data augmentation to train deep neural networks, for the development of online optimization strategies and to train reinforcement learning models. Using pySTED as a training environment allows the reinforcement learning models to bridge the gap between simulation and reality, as showcased by its successful deployment on a real microscope system without fine tuning.

PMID:39440349 | PMC:PMC11491398 | DOI:10.1038/s42256-024-00903-w

Categories: Literature Watch

Deep neural network-based robotic visual servoing for satellite target tracking

Wed, 2024-10-23 06:00

Front Robot AI. 2024 Oct 8;11:1469315. doi: 10.3389/frobt.2024.1469315. eCollection 2024.

ABSTRACT

In response to the costly and error-prone manual satellite tracking on the International Space Station (ISS), this paper presents a deep neural network (DNN)-based robotic visual servoing solution to the automated tracking operation. This innovative approach directly addresses the critical issue of motion decoupling, which poses a significant challenge in current image moment-based visual servoing. The proposed method uses DNNs to estimate the manipulator's pose, resulting in a significant reduction of coupling effects, which enhances control performance and increases tracking precision. Real-time experimental tests are carried out using a 6-DOF Denso manipulator equipped with an RGB camera and an object, mimicking the targeting pin. The test results demonstrate a 32.04% reduction in pose error and a 21.67% improvement in velocity precision compared to conventional methods. These findings demonstrate that the method has the potential to improve efficiency and accuracy significantly in satellite target tracking and capturing.

PMID:39440297 | PMC:PMC11494149 | DOI:10.3389/frobt.2024.1469315

Categories: Literature Watch

Developing predictive precision medicine models by exploiting real-world data using machine learning methods

Wed, 2024-10-23 06:00

J Appl Stat. 2024 Feb 13;51(14):2980-3003. doi: 10.1080/02664763.2024.2315451. eCollection 2024.

ABSTRACT

Computational Medicine encompasses the application of Statistical Machine Learning and Artificial Intelligence methods on several traditional medical approaches, including biochemical testing which is extremely valuable both for early disease prognosis and long-term individual monitoring, as it can provide important information about a person's health status. However, using Statistical Machine Learning and Artificial Intelligence algorithms to analyze biochemical test data from Electronic Health Records requires several preparatory steps, such as data manipulation and standardization. This study presents a novel approach for utilizing Electronic Health Records from large, real-world databases to develop predictive precision medicine models by exploiting Artificial Intelligence. Furthermore, to demonstrate the effectiveness of this approach, we compare the performance of various traditional Statistical Machine Learning and Deep Learning algorithms in predicting individuals' future biochemical test outcomes. Specifically, using data from a large real-world database, we exploit a longitudinal format of the data in order to predict the future values of 15 biochemical tests and identify individuals at high risk. The proposed approach and the extensive model comparison contribute to the personalized approach that modern medicine aims to achieve.

PMID:39440239 | PMC:PMC11492405 | DOI:10.1080/02664763.2024.2315451

Categories: Literature Watch

Deep learning-driven ultrasound-assisted diagnosis: optimizing GallScopeNet for precise identification of biliary atresia

Wed, 2024-10-23 06:00

Front Med (Lausanne). 2024 Oct 8;11:1445069. doi: 10.3389/fmed.2024.1445069. eCollection 2024.

ABSTRACT

BACKGROUND: Biliary atresia (BA) is a severe congenital biliary developmental abnormality threatening neonatal health. Traditional diagnostic methods rely heavily on experienced radiologists, making the process time-consuming and prone to variability. The application of deep learning for the automated diagnosis of BA remains underexplored.

METHODS: This study introduces GallScopeNet, a deep learning model designed to improve diagnostic efficiency and accuracy through innovative architecture and advanced feature extraction techniques. The model utilizes data from a carefully constructed dataset of gallbladder ultrasound images. A dataset comprising thousands of ultrasound images was employed, with the majority used for training and validation and a subset reserved for external testing. The model's performance was evaluated using five-fold cross-validation and external assessment, employing metrics such as accuracy and the area under the receiver operating characteristic curve (AUC), compared against clinical diagnostic standards.

RESULTS: GallScopeNet demonstrated exceptional performance in distinguishing BA from non-BA cases. In the external test dataset, GallScopeNet achieved an accuracy of 81.21% and an AUC of 0.85, indicating strong diagnostic capabilities. The results highlighted the model's ability to maintain high classification performance, reducing misdiagnosis and missed diagnosis.

CONCLUSION: GallScopeNet effectively differentiates between BA and non-BA images, demonstrating significant potential and reliability for early diagnosis. The system's high efficiency and accuracy suggest it could serve as a valuable diagnostic tool in clinical settings, providing substantial technical support for improving diagnostic workflows.

PMID:39440041 | PMC:PMC11493747 | DOI:10.3389/fmed.2024.1445069

Categories: Literature Watch

A new artificial intelligent approach to buoy detection for mussel farming

Wed, 2024-10-23 06:00

J R Soc N Z. 2022 Jun 26;53(1):27-51. doi: 10.1080/03036758.2022.2090966. eCollection 2023.

ABSTRACT

Aquaculture is an important industry in New Zealand (NZ). Mussel farmers often manually check the state of the buoys that are required to support the crop, which is labour-intensive. Artificial intelligence (AI) can provide automatic and intelligent solutions to many problems but has seldom been applied to mussel farming. In this paper, a new AI-based approach is developed to automatically detect buoys from mussel farm images taken from a farm in the South Island of NZ. The overall approach consists of four steps, i.e. data collection and preprocessing, image segmentation, keypoint detection and feature extraction, and classification. A convolutional neural network (CNN) method is applied to perform image segmentation. A new genetic programming (GP) method with a new representation, a new function set and a new terminal set is developed to automatically evolve descriptors for extracting features from keypoints. The new approach is applied to seven subsets and one full dataset containing images of buoys over different backgrounds and compared to three baseline methods. The new approach achieves better performance than the compared methods. Further analysis of the parameters and the evolved solutions provides more insights into the performance of the new approach to buoy detection.

PMID:39439995 | PMC:PMC11459752 | DOI:10.1080/03036758.2022.2090966

Categories: Literature Watch

Win Your Race Goal: A Generalized Approach to Prediction of Running Performance

Wed, 2024-10-23 06:00

Sports Med Int Open. 2024 Oct 9;8:a24016234. doi: 10.1055/a-2401-6234. eCollection 2024.

ABSTRACT

We introduce a novel approach for predicting running performance, designed to apply across a wide range of race distances (from marathons to ultras), elevation gains, and runner types (front-pack to back of the pack). To achieve this, the entire running logs of 15 runners, encompassing a total of 15,686 runs, were analyzed using two approaches: (1) regression and (2) time series regression (TSR). First, the prediction accuracy of a long short-term memory (LSTM) network was compared using both approaches. The regression approach demonstrated superior performance, achieving an accuracy of 89.13% in contrast, the TSR approach reached an accuracy of 85.21%. Both methods were evaluated using a test dataset that included the last 15 runs from each running log. Secondly, the performance of the LSTM model was compared against two benchmark models: Riegel formula and UltraSignup formula for a total of 60 races. The Riegel formula achieves an accuracy of 80%, UltraSignup 87.5%, and the LSTM model exhibits 90.4% accuracy. This work holds potential for integration into popular running apps and wearables, offering runners data-driven insights during their race preparations.

PMID:39439845 | PMC:PMC11495242 | DOI:10.1055/a-2401-6234

Categories: Literature Watch

Feature diffusion reconstruction mechanism network for crop spike head detection

Wed, 2024-10-23 06:00

Front Plant Sci. 2024 Oct 1;15:1459515. doi: 10.3389/fpls.2024.1459515. eCollection 2024.

ABSTRACT

INTRODUCTION: Monitoring crop spike growth using low-altitude remote sensing images is essential for precision agriculture, as it enables accurate crop health assessment and yield estimation. Despite the advancements in deep learning-based visual recognition, existing crop spike detection methods struggle to balance computational efficiency with accuracy in complex multi-scale environments, particularly on resource-constrained low-altitude remote sensing platforms.

METHODS: To address this gap, we propose FDRMNet, a novel feature diffusion reconstruction mechanism network designed to accurately detect crop spikes in challenging scenarios. The core innovation of FDRMNet lies in its multi-scale feature focus reconstruction and lightweight parameter-sharing detection head, which can effectively improve the computational efficiency of the model while enhancing the model's ability to perceive spike shape and texture.FDRMNet introduces a Multi-Scale Feature Focus Reconstruction module that integrates feature information across different scales and employs various convolutional kernels to capture global context effectively. Additionally, an Attention-Enhanced Feature Fusion Module is developed to improve the interaction between different feature map positions, leveraging adaptive average pooling and convolution operations to enhance the model's focus on critical features. To ensure suitability for low-altitude platforms with limited computational resources, we incorporate a Lightweight Parameter Sharing Detection Head, which reduces the model's parameter count by sharing weights across convolutional layers.

RESULTS: According to the evaluation experiments on the global wheat head detection dataset and diverse rice panicle detection dataset, FDRMNet outperforms other state-of-the-art methods with mAP@.5 of 94.23%, 75.13% and R 2 value of 0.969, 0.963 between predicted values and ground truth values. In addition, the model's frames per second and parameters in the two datasets are 227.27,288 and 6.8M, respectively, which maintains the top three position among all the compared algorithms.

DISCUSSION: Extensive qualitative and quantitative experiments demonstrate that FDRMNet significantly outperforms existing methods in spike detection and counting tasks, achieving higher detection accuracy with lower computational complexity.The results underscore the model's superior practicality and generalization capability in real-world applications. This research contributes a highly efficient and computationally effective solution for crop spike detection, offering substantial benefits to precision agriculture practices.

PMID:39439510 | PMC:PMC11494633 | DOI:10.3389/fpls.2024.1459515

Categories: Literature Watch

Spatial attention-based CSR-Unet framework for subdural and epidural hemorrhage segmentation and classification using CT images

Tue, 2024-10-22 06:00

BMC Med Imaging. 2024 Oct 22;24(1):285. doi: 10.1186/s12880-024-01455-6.

ABSTRACT

BACKGROUND: Automatic diagnosis and brain hemorrhage segmentation in Computed Tomography (CT) may be helpful in assisting the neurosurgeon in developing treatment plans that improve the patient's chances of survival. Because medical segmentation of images is important and performing operations manually is challenging, many automated algorithms have been developed for this purpose, primarily focusing on certain image modalities. Whenever a blood vessel bursts, a dangerous medical condition known as intracranial hemorrhage (ICH) occurs. For best results, quick action is required. That being said, identifying subdural (SDH) and epidural haemorrhages (EDH) is a difficult task in this field and calls for a new, more precise detection method.

METHODS: This work uses a head CT scan to detect cerebral bleeding and distinguish between two types of dural hemorrhages using deep learning techniques. This paper proposes a rich segmentation approach to segment both SDH and EDH by enhancing segmentation efficiency with a better feature extraction procedure. This method incorporates Spatial attention- based CSR (convolution-SE-residual) Unet, for rich segmentation and precise feature extraction.

RESULTS: According to the study's findings, the CSR based Spatial network performs better than the other models, exhibiting impressive metrics for all assessed parameters with a mean dice coefficient of 0.970 and mean IoU of 0.718, while EDH and SDH dice scores are 0.983 and 0.969 respectively.

CONCLUSIONS: The CSR Spatial network experiment results show that it can perform well regarding dice coefficient. Furthermore, Spatial Unet based on CSR may effectively model the complicated in segmentations and rich feature extraction and improve the representation learning compared to alternative deep learning techniques, of illness and medical treatment, to enhance the meticulousness in predicting the fatality.

PMID:39438833 | DOI:10.1186/s12880-024-01455-6

Categories: Literature Watch

Detecting clinical medication errors with AI enabled wearable cameras

Tue, 2024-10-22 06:00

NPJ Digit Med. 2024 Oct 22;7(1):287. doi: 10.1038/s41746-024-01295-2.

ABSTRACT

Drug-related errors are a leading cause of preventable patient harm in the clinical setting. We present the first wearable camera system to automatically detect potential errors, prior to medication delivery. We demonstrate that using deep learning algorithms, our system can detect and classify drug labels on syringes and vials in drug preparation events recorded in real-world operating rooms. We created a first-of-its-kind large-scale video dataset from head-mounted cameras comprising 4K footage across 13 anesthesiology providers, 2 hospitals and 17 operating rooms over 55 days. The system was evaluated on 418 drug draw events in routine patient care and a controlled environment and achieved 99.6% sensitivity and 98.8% specificity at detecting vial swap errors. These results suggest that our wearable camera system has the potential to provide a secondary check when a medication is selected for a patient, and a chance to intervene before a potential medical error.

PMID:39438764 | DOI:10.1038/s41746-024-01295-2

Categories: Literature Watch

A hybrid transformer and attention based recurrent neural network for robust and interpretable sentiment analysis of tweets

Tue, 2024-10-22 06:00

Sci Rep. 2024 Oct 22;14(1):24882. doi: 10.1038/s41598-024-76079-5.

ABSTRACT

Sentiment analysis is a pivotal tool in understanding public opinion, consumer behavior, and social trends, underpinning applications ranging from market research to political analysis. However, existing sentiment analysis models frequently encounter challenges related to linguistic diversity, model generalizability, explainability, and limited availability of labeled datasets. To address these shortcomings, we propose the Transformer and Attention-based Bidirectional LSTM for Sentiment Analysis (TRABSA) model, a novel hybrid sentiment analysis framework that integrates transformer-based architecture, attention mechanism, and recurrent neural networks like BiLSTM. The TRABSA model leverages the powerful RoBERTa-based transformer model for initial feature extraction, capturing complex linguistic nuances from a vast corpus of tweets. This is followed by an attention mechanism that highlights the most informative parts of the text, enhancing the model's focus on critical sentiment-bearing elements. Finally, the BiLSTM networks process these refined features, capturing temporal dependencies and improving the overall sentiment classification into positive, neutral, and negative classes. Leveraging the latest RoBERTa-based transformer model trained on a vast corpus of 124M tweets, our research bridges existing gaps in sentiment analysis benchmarks, ensuring state-of-the-art accuracy and relevance. Furthermore, we contribute to data diversity by augmenting existing datasets with 411,885 tweets from 32 English-speaking countries and 7,500 tweets from various US states. This study also compares six word-embedding techniques, identifying the most robust preprocessing and embedding methodologies crucial for accurate sentiment analysis and model performance. We meticulously label tweets into positive, neutral, and negative classes using three distinct lexicon-based approaches and select the best one, ensuring optimal sentiment analysis outcomes and model efficacy. Here, we demonstrate that the TRABSA model outperforms the current seven traditional machine learning models, four stacking models, and four hybrid deep learning models, yielding notable gain in accuracy (94%) and effectiveness with a macro average precision of 94%, recall of 93%, and F1-score of 94%. Our further evaluation involves two extended and four external datasets, demonstrating the model's consistent superiority, robustness, and generalizability across diverse contexts and datasets. Finally, by conducting a thorough study with SHAP and LIME explainable visualization approaches, we offer insights into the interpretability of the TRABSA model, improving comprehension and confidence in the model's predictions. Our study results make it easier to analyze how citizens respond to resources and events during pandemics since they are integrated into a decision-support system. Applications of this system provide essential assistance for efficient pandemic management, such as resource planning, crowd control, policy formation, vaccination tactics, and quick reaction programs.

PMID:39438715 | DOI:10.1038/s41598-024-76079-5

Categories: Literature Watch

An efficient enhanced stacked auto encoder assisted optimized deep neural network for forecasting Dry Eye Disease

Tue, 2024-10-22 06:00

Sci Rep. 2024 Oct 22;14(1):24945. doi: 10.1038/s41598-024-75518-7.

ABSTRACT

Meibomian Gland Dysfunction (MGD) and Dry Eye Disease (DED) comprise two of the most significant eye diseases, impacting millions of sufferers worldwide. Several etiological factors influence the early symptoms of DED. Early diagnosis and treatment of erectile dysfunction may significantly improve the Quality of Life (QoL) for people. The current study introduces the ESAE-ODNN, an improved stacked autoencoder-aided optimised deep neural network, as a new way to predict DED using feature selection (FS), feature extraction (FE), and classification. The approach described here is novel because it merges chaotic maps into FS, employs SLSTM-STSA for improved classification accuracy (CA), and optimizes with the adaptive quantum rotation of the Enhanced Quantum Bacterial Foraging Optimisation Algorithm (EQBFOA). The present study enhances prediction functions by extracting MGD-related features and complicated relationships from the DED dataset. To ensure essential feature identification, the ESAE minimizes irrelevant and redundant features. To predict the DED, the ESAE first applies FE and then implements an ODNN classifier. This method fine-tunes the ODNN framework to enhance the effectiveness of the classification. The proposed ESAE-ODNN classification system efficiently assists in the early diagnosis of DED. Combining advanced Deep Learning (DL) methods with optimization can help us understand MGD features better and sort the data with the best accuracy (96.34%). The experimental evaluation with relevant performance metrics indicates that the proposed method is efficient in diverse aspects: accurate identification, reduced complexity, and fine-tuned performance. The ESAE-ODNN's robustness in handling intricate feature indications and high-dimensional data outperforms the existing state-of-the-art techniques.

PMID:39438634 | DOI:10.1038/s41598-024-75518-7

Categories: Literature Watch

Efficient labeling of french mammogram reports with MammoBERT

Tue, 2024-10-22 06:00

Sci Rep. 2024 Oct 22;14(1):24842. doi: 10.1038/s41598-024-76369-y.

ABSTRACT

Recent advances in deep learning and natural language processing (NLP) have broadened opportunities for automatic text processing in the medical field. However, the development of models for low-resource languages like French is challenged by limited datasets, often due to legal restrictions. Large-scale training of medical imaging models often requires extracting labels from radiology text reports. Current methods for report labeling primarily rely on sophisticated feature engineering based on medical domain knowledge or manual annotations by radiologists. These methods can be labor-intensive. In this work, we introduce a BERT-based approach for the efficient labeling of French mammogram image reports. Our method leverages both the expansive scale of existing rule-based systems and the precision of radiologist annotations. Our experimental results showcase the superiority of the proposed approach. It was initially fine-tuned on a limited dataset of radiologist annotations. Then, it underwent training on annotations generated by a rule-based labeler. Our findings reveal that our final model, MammoBERT, significantly outperforms the rule-based labeler while simultaneously reducing the necessity for radiologist annotations during training. This research not only advances the state of the art in medical image report labeling but also offers an efficient and effective solution for large-scale medical imaging model development.

PMID:39438627 | DOI:10.1038/s41598-024-76369-y

Categories: Literature Watch

Hybrid deep models for parallel feature extraction and enhanced emotion state classification

Tue, 2024-10-22 06:00

Sci Rep. 2024 Oct 23;14(1):24957. doi: 10.1038/s41598-024-75850-y.

ABSTRACT

Emotions play a vital role in recognizing a person's thoughts and vary significantly with stress levels. Emotion and stress classification have gained considerable attention in robotics and artificial intelligence applications. While numerous methods based on machine learning techniques provide average classification performance, recent deep learning approaches offer enhanced results. This research presents a hybrid deep learning model that extracts features using AlexNet and DenseNet models, followed by feature fusion and dimensionality reduction via Principal Component Analysis (PCA). The reduced features are then classified using a multi-class Support Vector Machine (SVM) to categorize different types of emotions. The proposed model was evaluated using the DEAP and EEG Brainwave datasets, both well-suited for emotion analysis due to their comprehensive EEG signal recordings and diverse emotional stimuli. The DEAP dataset includes EEG signals from 32 participants who watched 40 one-minute music videos, while the EEG Brainwave dataset categorizes emotions into positive, negative, and neutral based on EEG recordings from participants exposed to six different film clips. The proposed model achieved an accuracy of 95.54% and 97.26% for valence and arousal categories in the DEAP dataset, respectively, and 98.42% for the EEG Brainwave dataset. These results significantly outperform existing methods, demonstrating the model's superior performance in terms of precision, recall, F1-score, specificity, and Mathew correlation coefficient. The integration of AlexNet and DenseNet, combined with PCA and multi-class SVM, makes this approach particularly effective for capturing the intricate patterns in EEG data, highlighting its potential for applications in human-computer interaction and mental health monitoring, marking a significant advancement over traditional methods.

PMID:39438562 | DOI:10.1038/s41598-024-75850-y

Categories: Literature Watch

Pages