Deep learning

Investigation of Unsafe Construction Site Conditions Using Deep Learning Algorithms Using Unmanned Aerial Vehicles

Sat, 2024-10-26 06:00

Sensors (Basel). 2024 Oct 20;24(20):6737. doi: 10.3390/s24206737.

ABSTRACT

The rapid adoption of Unmanned Aerial Vehicles (UAVs) in the construction industry has revolutionized safety, surveying, quality monitoring, and maintenance assessment. UAVs are increasingly used to prevent accidents caused by falls from heights or being struck by falling objects by ensuring workers comply with safety protocols. This study focuses on leveraging UAV technology to enhance labor safety by monitoring the use of personal protective equipment, particularly helmets, among construction workers. The developed UAV system utilizes the tensorflow technique and an alert system to detect and identify workers not wearing helmets. Employing the high-precision, high-speed, and widely applicable Faster R-CNN method, the UAV can accurately detect construction workers with and without helmets in real-time across various site conditions. This proactive approach ensures immediate feedback and intervention, significantly reducing the risk of injuries and fatalities. Additionally, the implementation of UAVs minimizes the workload of site supervisors by automating safety inspections and monitoring, allowing for more efficient and continuous oversight. The experimental results indicate that the UAV system's high precision, recall, and processing capabilities make it a reliable and cost-effective solution for improving construction site safety. The precision, mAP, and FPS of the developed system with the R-CNN are 93.1%, 58.45%, and 27 FPS. This study demonstrates the potential of UAV technology to enhance safety compliance, protect workers, and improve the overall quality of safety management in the construction industry.

PMID:39460217 | DOI:10.3390/s24206737

Categories: Literature Watch

Studies of Artificial Intelligence/Machine Learning Registered on ClinicalTrials.gov: Cross-Sectional Study With Temporal Trends, 2010-2023

Fri, 2024-10-25 06:00

J Med Internet Res. 2024 Oct 25;26:e57750. doi: 10.2196/57750.

ABSTRACT

BACKGROUND: The rapid growth of research in artificial intelligence (AI) and machine learning (ML) continues. However, it is unclear whether this growth reflects an increase in desirable study attributes or merely perpetuates the same issues previously raised in the literature.

OBJECTIVE: This study aims to evaluate temporal trends in AI/ML studies over time and identify variations that are not apparent from aggregated totals at a single point in time.

METHODS: We identified AI/ML studies registered on ClinicalTrials.gov with start dates between January 1, 2010, and December 31, 2023. Studies were included if AI/ML-specific terms appeared in the official title, detailed description, brief summary, intervention, primary outcome, or sponsors' keywords. Studies registered as systematic reviews and meta-analyses were excluded. We reported trends in AI/ML studies over time, along with study characteristics that were fast-growing and those that remained unchanged during 2010-2023.

RESULTS: Of 3106 AI/ML studies, only 7.6% (n=235) were regulated by the US Food and Drug Administration. The most common study characteristics were randomized (56.2%; 670/1193; interventional) and prospective (58.9%; 1126/1913; observational) designs; a focus on diagnosis (28.2%; 335/1190) and treatment (24.4%; 290/1190); hospital/clinic (44.2%; 1373/3106) or academic (28%; 869/3106) sponsorship; and neoplasm (12.9%; 420/3245), nervous system (12.2%; 395/3245), cardiovascular (11.1%; 356/3245) or pathological conditions (10%; 325/3245; multiple counts per study possible). Enrollment data were skewed to the right: maximum 13,977,257; mean 16,962 (SD 288,155); median 255 (IQR 80-1000). The most common size category was 101-1000 (44.8%; 1372/3061; excluding withdrawn or missing), but large studies (n>1000) represented 24.1% (738/3061) of all studies: 29% (551/1898) of observational studies and 16.1% (187/1163) of trials. Study locations were predominantly in high-income countries (75.3%; 2340/3106), followed by upper-middle-income (21.7%; 675/3106), lower-middle-income (2.8%; 88/3106), and low-income countries (0.1%; 3/3106). The fastest-growing characteristics over time were high-income countries (location); Europe, Asia, and North America (location); diagnosis and treatment (primary purpose); hospital/clinic and academia (lead sponsor); randomized and prospective designs; and the 1-100 and 101-1000 size categories. Only 5.6% (47/842) of completed studies had results available on ClinicalTrials.gov, and this pattern persisted. Over time, there was an increase in not only the number of newly initiated studies, but also the number of completed studies without posted results.

CONCLUSIONS: Much of the rapid growth in AI/ML studies comes from high-income countries in high-resource settings, albeit with a modest increase in upper-middle-income countries (mostly China). Lower-middle-income or low-income countries remain poorly represented. The increase in randomized or prospective designs, along with 738 large studies (n>1000), mostly ongoing, may indicate that enough studies are shifting from an in silico evaluation stage toward a prospective comparative evaluation stage. However, the ongoing limited availability of basic results on ClinicalTrials.gov contrasts with this field's rapid advancements and the public registry's role in reducing publication and outcome reporting biases.

PMID:39454187 | DOI:10.2196/57750

Categories: Literature Watch

Navigating urban congestion: A Comprehensive strategy based on an efficient smart IoT wireless communication for PV powered smart traffic management system

Fri, 2024-10-25 06:00

PLoS One. 2024 Oct 25;19(10):e0310002. doi: 10.1371/journal.pone.0310002. eCollection 2024.

ABSTRACT

Egypt faces extreme traffic congestion in its cities, which results in long travel times, large lines of parked cars, and increased safety hazards. Our study suggests a multi-modal approach that combines critical infrastructure improvements with cutting-edge technologies to address the ubiquitous problem of traffic congestion. Assuring vehicles owners of their timely arrival, cutting down on fuel usage, and improving communication using deep learning approach and optimization algorithm within the potential of IoT enabled 5G framework are the main goals. The traffic management system incorporates detection cameras, Raspberry Pi 3 microcontroller, an Android application, cloud connectivity, and traditional traffic lights that are powered using PV modules and batteries to secure the traffic controllers operation in case of grid outage and assure service continuity. The model examines the difficulties associated with Internet of Things (IoT) communication, highlighting possible interference from device-to-device (D2D) devices and cellular user equipment. This all-encompassing strategy aims to reduce fuel consumption, increase road safety and improve traffic efficiency. The model predicts a significant increase in Egypt's urban mobility by utilizing the possibilities of IoT and 5G technologies, which would improve Egypt's towns' livability and efficiency. The goal of this paper is to modernize Egypt's traffic management system and bring it into compliance with global guidelines for intelligent transportation networks.

PMID:39453902 | DOI:10.1371/journal.pone.0310002

Categories: Literature Watch

Image Copy-Move Forgery Detection via Deep PatchMatch and Pairwise Ranking Learning

Fri, 2024-10-25 06:00

IEEE Trans Image Process. 2024 Oct 25;PP. doi: 10.1109/TIP.2024.3482191. Online ahead of print.

ABSTRACT

Recent advances in deep learning algorithms have shown impressive progress in image copy-move forgery detection (CMFD). However, these algorithms lack generalizability in practical scenarios where the copied regions are not present in the training images, or the cloned regions are part of the background. Additionally, these algorithms utilize convolution operations to distinguish source and target regions, leading to unsatisfactory results when the target regions blend well with the background. To address these limitations, this study proposes a novel end-to-end CMFD framework that integrates the strengths of conventional and deep learning methods. Specifically, the study develops a deep cross-scale PatchMatch (PM) method that is customized for CMFD to locate copy-move regions. Unlike existing deep models, our approach utilizes features extracted from high-resolution scales to seek explicit and reliable point-to-point matching between source and target regions. Furthermore, we propose a novel pairwise rank learning framework to separate source and target regions. By leveraging the strong prior of point-to-point matches, the framework can identify subtle differences and effectively discriminate between source and target regions, even when the target regions blend well with the background. Our framework is fully differentiable and can be trained end-to-end. Comprehensive experimental results highlight the remarkable generalizability of our scheme across various copy-move scenarios, significantly outperforming existing methods.

PMID:39453802 | DOI:10.1109/TIP.2024.3482191

Categories: Literature Watch

λ-Domain Rate Control via Wavelet-Based Residual Neural Network for VVC HDR Intra Coding

Fri, 2024-10-25 06:00

IEEE Trans Image Process. 2024 Oct 25;PP. doi: 10.1109/TIP.2024.3484173. Online ahead of print.

ABSTRACT

High dynamic range (HDR) video offers a more realistic visual experience than standard dynamic range (SDR) video, while introducing new challenges to both compression and transmission. Rate control is an effective technology to overcome these challenges, and ensure optimal HDR video delivery. However, the rate control algorithm in the latest video coding standard, versatile video coding (VVC), is tailored to SDR videos, and does not produce well coding results when encoding HDR videos. To address this problem, a data-driven λ-domain rate control algorithm is proposed for VVC HDR intra frames in this paper. First, the coding characteristics of HDR intra coding are analyzed, and a piecewise R-λ model is proposed to accurately determine the correlation between the rate (R) and the Lagrange parameter λ for HDR intra frames. Then, to optimize bit allocation at the coding tree unit (CTU)-level, a wavelet-based residual neural network (WRNN) is developed to accurately predict the parameters of the piecewise R-λ model for each CTU. Third, a large-scale HDR dataset is established for training WRNN, which facilitates the applications of deep learning in HDR intra coding. Extensive experimental results show that our proposed HDR intra frame rate control algorithm achieves superior coding results than the state-of-the-art algorithms. The source code of this work will be released at https://github.com/TJU-Videocoding/WRNN.git.

PMID:39453801 | DOI:10.1109/TIP.2024.3484173

Categories: Literature Watch

Improved transfer learning for detecting upper-limb movement intention using mechanical sensors in an exoskeletal rehabilitation system

Fri, 2024-10-25 06:00

IEEE Trans Neural Syst Rehabil Eng. 2024 Oct 25;PP. doi: 10.1109/TNSRE.2024.3486444. Online ahead of print.

ABSTRACT

The objective of this study was to propose a novel strategy for detecting upper-limb motion intentions from mechanical sensor signals using deep and heterogeneous transfer learning techniques. Three sensor types, surface electromyography (sEMG), force-sensitive resistors (FSRs), and inertial measurement units (IMUs), were combined to capture biometric signals during arm-up, hold, and arm-down movements. To distinguish motion intentions, deep learning models were constructed using the CIFAR-ResNet18 and CIFAR-MobileNetV2 architectures. The input features of the source models were sEMG, FSR, and IMU signals. The target model was trained using only FSR and IMU sensor signals. Optimization techniques determined appropriate layer structures and learning rates of each layer for effective transfer learning. The source model on CIFAR-ResNet18 exhibited the highest performance, achieving an accuracy of 95% and an F-1 score of 0.95. The target model with optimization strategies performed comparably to the source model, achieving an accuracy of 93% and an F-1 score of 0.93. The results show that mechanical sensors alone can achieve performance comparable to models including sEMG. The proposed approach can serve as a convenient and precise algorithm for human-robot collaboration in rehabilitation assistant robots.

PMID:39453796 | DOI:10.1109/TNSRE.2024.3486444

Categories: Literature Watch

Solving the Inverse Problem of Electrocardiography for Cardiac Digital Twins: A Survey

Fri, 2024-10-25 06:00

IEEE Rev Biomed Eng. 2024 Oct 25;PP. doi: 10.1109/RBME.2024.3486439. Online ahead of print.

ABSTRACT

Cardiac digital twins (CDTs) are personalized virtual representations used to understand complex cardiac mechanisms. A critical component of CDT development is solving the ECG inverse problem, which enables the reconstruction of cardiac sources and the estimation of patient-specific electrophysiology (EP) parameters from surface ECG data. Despite challenges from complex cardiac anatomy, noisy ECG data, and the ill-posed nature of the inverse problem, recent advances in computational methods have greatly improved the accuracy and efficiency of ECG inverse inference, strengthening the fidelity of CDTs. This paper aims to provide a comprehensive review of the methods of solving ECG inverse problem, the validation strategies, the clinical applications, and future perspectives. For the methodologies, we broadly classify state-of-the-art approaches into two categories: deterministic and probabilistic methods, including both conventional and deep learning-based techniques. Integrating physics laws with deep learning models holds promise, but challenges such as capturing dynamic electrophysiology accurately, accessing accurate domain knowledge, and quantifying prediction uncertainty persist. Integrating models into clinical workflows while ensuring interpretability and usability for healthcare professionals is essential. Overcoming these challenges will drive further research in CDTs.

PMID:39453795 | DOI:10.1109/RBME.2024.3486439

Categories: Literature Watch

Diagnosing Necrotizing Enterocolitis via Fine-Grained Visual Classification

Fri, 2024-10-25 06:00

IEEE Trans Biomed Eng. 2024 Nov;71(11):3160-3169. doi: 10.1109/TBME.2024.3409642.

ABSTRACT

Necrotizing Enterocolitis (NEC) is a devastating condition affecting prematurely born neonates. Reviewing Abdominal X-rays (AXRs) is a key step in NEC diagnosis, staging and treatment decision-making, but poses significant challenges due to the subtle, difficult-to-identify radiological signs of the disease. In this paper, we propose AIDNEC - AI Diagnosis of NECrotizing enterocolitis, a deep learning method to automatically detect and stratify the severity (surgical or medical) of NEC from no pathology in AXRs. The model is trainable end-to-end and integrates a Detection Transformer and Graph Convolution modules for localizing discriminative areas in AXRs, used to formulate subtle local embeddings. These are then combined with global image features to perform Fine-Grained Visual Classification (FGVC). We evaluate AIDNEC on our GOSH NEC dataset of 1153 images from 334 patients, achieving 79.7% accuracy in classifying NEC against No Pathology. AIDNEC outperforms the backbone by 2.6%, FGVC models by 2.5% and CheXNet by 4.2%, with statistically significant (two-tailed p 0.05) improvements, while providing meaningful discriminative regions to support the classification decision. Additional validation in the publicly available Chest X-ray14 dataset yields comparable performance to state-of-the-art methods, illustrating AIDNEC's robustness in a different X-ray classification task.

PMID:39453790 | DOI:10.1109/TBME.2024.3409642

Categories: Literature Watch

Enhancing Superconductor Critical Temperature Prediction: A Novel Machine Learning Approach Integrating Dopant Recognition

Fri, 2024-10-25 06:00

ACS Appl Mater Interfaces. 2024 Oct 25. doi: 10.1021/acsami.4c11997. Online ahead of print.

ABSTRACT

Doping plays a crucial role in determining the critical temperature (Tc) of superconductors, yet accurately predicting its effects remains a significant challenge. Here, we introduce a novel doping descriptor that captures the complex influence of dopants on superconductivity. By integrating the doping descriptor with elemental and physical features within a Mixture of Experts (MoE) model, we achieve a remarkable R2 of 0.962 for Tc prediction, surpassing all published prediction models. Our approach successfully identifies optimal doping levels in the Bi2-xPbxSr2Ca2-yCuyOz system, with predictions closely aligning with experimental results. Leveraging this model, we screen compounds from the Inorganic Crystal Structure Database and employ a generative approach to explore new doped superconductors. This process reveals 40 promising candidates for high Tc superconductivity among existing and hypothetical doped materials. By explicitly accounting for doping effects, our method offers a powerful tool for guiding the experimental discovery of new superconductors, potentially accelerating progress in high-temperature superconductivity research and opening new avenues for material design.

PMID:39453724 | DOI:10.1021/acsami.4c11997

Categories: Literature Watch

VCU-Net: a vascular convolutional network with feature splicing for cerebrovascular image segmentation

Fri, 2024-10-25 06:00

Med Biol Eng Comput. 2024 Oct 25. doi: 10.1007/s11517-024-03219-4. Online ahead of print.

ABSTRACT

Cerebrovascular image segmentation is one of the crucial tasks in the field of biomedical image processing. Due to the variable morphology of cerebral blood vessels, the traditional convolutional kernel is weak in perceiving the structure of elongated blood vessels in the brain, and it is easy to lose the feature information of the elongated blood vessels during the network training process. In this paper, a vascular convolutional U-network (VCU-Net) is proposed to address these problems. This network utilizes a new convolution (vascular convolution) instead of the traditional convolution kernel, to extract features of elongated blood vessels in the brain with different morphologies and orientations by adaptive convolution. In the network encoding stage, a new feature splicing method is used to combine the feature tensor obtained through vascular convolution with the original tensor to provide richer feature information. Experiments show that the DSC and IOU of the proposed method are 53.57% and 69.74%, which are improved by 2.11% and 2.01% over the best performance of the GVC-Net among several typical models. In image visualization, the proposed network has better segmentation performance for complex cerebrovascular structures, especially in dealing with elongated blood vessels in the brain, which shows better integrity and continuity.

PMID:39453556 | DOI:10.1007/s11517-024-03219-4

Categories: Literature Watch

Automated Identification of Heart Failure With Reduced Ejection Fraction Using Deep Learning-Based Natural Language Processing

Fri, 2024-10-25 06:00

JACC Heart Fail. 2024 Oct 9:S2213-1779(24)00618-8. doi: 10.1016/j.jchf.2024.08.012. Online ahead of print.

ABSTRACT

BACKGROUND: The lack of automated tools for measuring care quality limits the implementation of a national program to assess guideline-directed care in heart failure with reduced ejection fraction (HFrEF).

OBJECTIVES: The authors aimed to automate the identification of patients with HFrEF at hospital discharge, an opportunity to evaluate and improve the quality of care.

METHODS: The authors developed a novel deep-learning language model for identifying patients with HFrEF from discharge summaries of hospitalizations with heart failure at Yale New Haven Hospital during 2015 to 2019. HFrEF was defined by left ventricular ejection fraction <40% on antecedent echocardiography. The authors externally validated the model at Northwestern Medicine, community hospitals of Yale, and the MIMIC-III (Medical Information Mart for Intensive Care III) database.

RESULTS: A total of 13,251 notes from 5,392 unique individuals (age 73 ± 14 years, 48% women), including 2,487 patients with HFrEF (46.1%), were used for model development (train/held-out: 70%/30%). The model achieved an area under receiver-operating characteristic curve (AUROC) of 0.97 and area under precision recall curve (AUPRC) of 0.97 in detecting HFrEF on the held-out set. The model had high performance in identifying HFrEF with AUROC = 0.94 and AUPRC = 0.91 on 19,242 notes from Northwestern Medicine, AUROC = 0.95 and AUPRC = 0.96 on 139 manually abstracted notes from Yale community hospitals, and AUROC = 0.91 and AUPRC = 0.92 on 146 manually reviewed notes from MIMIC-III. Model-based predictions of HFrEF corresponded to a net reclassification improvement of 60.2 ± 1.9% compared with diagnosis codes (P < 0.001).

CONCLUSIONS: The authors developed a language model that identifies HFrEF from clinical notes with high precision and accuracy, representing a key element in automating quality assessment for individuals with HFrEF.

PMID:39453355 | DOI:10.1016/j.jchf.2024.08.012

Categories: Literature Watch

Artificial Intelligence in Infectious Disease Clinical Practice: An Overview of Gaps, Opportunities, and Limitations

Fri, 2024-10-25 06:00

Trop Med Infect Dis. 2024 Sep 30;9(10):228. doi: 10.3390/tropicalmed9100228.

ABSTRACT

The integration of artificial intelligence (AI) in clinical medicine marks a revolutionary shift, enhancing diagnostic accuracy, therapeutic efficacy, and overall healthcare delivery. This review explores the current uses, benefits, limitations, and future applications of AI in infectious diseases, highlighting its specific applications in diagnostics, clinical decision making, and personalized medicine. The transformative potential of AI in infectious diseases is emphasized, addressing gaps in rapid and accurate disease diagnosis, surveillance, outbreak detection and management, and treatment optimization. Despite these advancements, significant limitations and challenges exist, including data privacy concerns, potential biases, and ethical dilemmas. The article underscores the need for stringent regulatory frameworks and inclusive databases to ensure equitable, ethical, and effective AI utilization in the field of clinical and laboratory infectious diseases.

PMID:39453255 | DOI:10.3390/tropicalmed9100228

Categories: Literature Watch

Early Detection of Lumpy Skin Disease in Cattle Using Deep Learning-A Comparative Analysis of Pretrained Models

Fri, 2024-10-25 06:00

Vet Sci. 2024 Oct 17;11(10):510. doi: 10.3390/vetsci11100510.

ABSTRACT

Lumpy Skin Disease (LSD) poses a significant threat to agricultural economies, particularly in livestock-dependent countries like India, due to its high transmission rate leading to severe morbidity and mortality among cattle. This underscores the urgent need for early and accurate detection to effectively manage and mitigate outbreaks. Leveraging advancements in computer vision and artificial intelligence, our research develops an automated system for LSD detection in cattle using deep learning techniques. We utilized two publicly available datasets comprising images of healthy cattle and those with LSD, including additional images of cattle affected by other diseases to enhance specificity and ensure the model detects LSD specifically rather than general illness signs. Our methodology involved preprocessing the images, applying data augmentation, and balancing the datasets to improve model generalizability. We evaluated over ten pretrained deep learning models-Xception, VGG16, VGG19, ResNet152V2, InceptionV3, MobileNetV2, DenseNet201, NASNetMobile, NASNetLarge, and EfficientNetV2S-using transfer learning. The models were rigorously trained and tested under diverse conditions, with performance assessed using metrics such as accuracy, sensitivity, specificity, precision, F1-score, and AUC-ROC. Notably, VGG16 and MobileNetV2 emerged as the most effective, achieving accuracies of 96.07% and 96.39%, sensitivities of 93.75% and 98.57%, and specificities of 97.14% and 94.59%, respectively. Our study critically highlights the strengths and limitations of each model, demonstrating that while high accuracy is achievable, sensitivity and specificity are crucial for clinical applicability. By meticulously detailing the performance characteristics and including images of cattle with other diseases, we ensured the robustness and reliability of the models. This comprehensive comparative analysis enriches our understanding of deep learning applications in veterinary diagnostics and makes a substantial contribution to the field of automated disease recognition in livestock farming. Our findings suggest that adopting such AI-driven diagnostic tools can enhance the early detection and control of LSD, ultimately benefiting animal health and the agricultural economy.

PMID:39453102 | DOI:10.3390/vetsci11100510

Categories: Literature Watch

Artificial Intelligence and Advanced Technology in Glaucoma: A Review

Fri, 2024-10-25 06:00

J Pers Med. 2024 Oct 16;14(10):1062. doi: 10.3390/jpm14101062.

ABSTRACT

BACKGROUND: Glaucoma is a leading cause of irreversible blindness worldwide, necessitating precise management strategies tailored to individual patient characteristics. Artificial intelligence (AI) holds promise in revolutionizing the approach to glaucoma care by providing personalized interventions.

AIM: This review explores the current landscape of AI applications in the personalized management of glaucoma patients, highlighting advancements, challenges, and future directions.

METHODS: A systematic search of electronic databases, including PubMed, Scopus, and Web of Science, was conducted to identify relevant studies published up to 2024. Studies exploring the use of AI techniques in personalized management strategies for glaucoma patients were included.

RESULTS: The review identified diverse AI applications in glaucoma management, ranging from early detection and diagnosis to treatment optimization and prognosis prediction. Machine learning algorithms, particularly deep learning models, demonstrated high accuracy in diagnosing glaucoma from various imaging modalities such as optical coherence tomography (OCT) and visual field tests. AI-driven risk stratification tools facilitated personalized treatment decisions by integrating patient-specific data with predictive analytics, enhancing therapeutic outcomes while minimizing adverse effects. Moreover, AI-based teleophthalmology platforms enabled remote monitoring and timely intervention, improving patient access to specialized care.

CONCLUSIONS: Integrating AI technologies in the personalized management of glaucoma patients holds immense potential for optimizing clinical decision-making, enhancing treatment efficacy, and mitigating disease progression. However, challenges such as data heterogeneity, model interpretability, and regulatory concerns warrant further investigation. Future research should focus on refining AI algorithms, validating their clinical utility through large-scale prospective studies, and ensuring seamless integration into routine clinical practice to realize the full benefits of personalized glaucoma care.

PMID:39452568 | DOI:10.3390/jpm14101062

Categories: Literature Watch

AI-ADC: Channel and Spatial Attention-Based Contrastive Learning to Generate ADC Maps from T2W MRI for Prostate Cancer Detection

Fri, 2024-10-25 06:00

J Pers Med. 2024 Oct 9;14(10):1047. doi: 10.3390/jpm14101047.

ABSTRACT

BACKGROUND/OBJECTIVES: Apparent Diffusion Coefficient (ADC) maps in prostate MRI can reveal tumor characteristics, but their accuracy can be compromised by artifacts related with patient motion or rectal gas associated distortions. To address these challenges, we propose a novel approach that utilizes a Generative Adversarial Network to synthesize ADC maps from T2-weighted magnetic resonance images (T2W MRI).

METHODS: By leveraging contrastive learning, our model accurately maps axial T2W MRI to ADC maps within the cropped region of the prostate organ boundary, capturing subtle variations and intricate structural details by learning similar and dissimilar pairs from two imaging modalities. We trained our model on a comprehensive dataset of unpaired T2-weighted images and ADC maps from 506 patients. In evaluating our model, named AI-ADC, we compared it against three state-of-the-art methods: CycleGAN, CUT, and StyTr2.

RESULTS: Our model demonstrated a higher mean Structural Similarity Index (SSIM) of 0.863 on a test dataset of 3240 2D MRI slices from 195 patients, compared to values of 0.855, 0.797, and 0.824 for CycleGAN, CUT, and StyTr2, respectively. Similarly, our model achieved a significantly lower Fréchet Inception Distance (FID) value of 31.992, compared to values of 43.458, 179.983, and 58.784 for the other three models, indicating its superior performance in generating ADC maps. Furthermore, we evaluated our model on 147 patients from the publicly available ProstateX dataset, where it demonstrated a higher SSIM of 0.647 and a lower FID of 113.876 compared to the other three models.

CONCLUSIONS: These results highlight the efficacy of our proposed model in generating ADC maps from T2W MRI, showcasing its potential for enhancing clinical diagnostics and radiological workflows.

PMID:39452554 | DOI:10.3390/jpm14101047

Categories: Literature Watch

Statistical Analysis of nnU-Net Models for Lung Nodule Segmentation

Fri, 2024-10-25 06:00

J Pers Med. 2024 Sep 24;14(10):1016. doi: 10.3390/jpm14101016.

ABSTRACT

This paper aims to conduct a statistical analysis of different components of nnU-Net models to build an optimal pipeline for lung nodule segmentation in computed tomography images (CT scan). This study focuses on semantic segmentation of lung nodules, using the UniToChest dataset. Our approach is based on the nnU-Net framework and is designed to configure a whole segmentation pipeline, thereby avoiding many complex design choices, such as data properties and architecture configuration. Although these framework results provide a good starting point, many configurations in this problem can be optimized. In this study, we tested two U-Net-based architectures, using different preprocessing techniques, and we modified the existing hyperparameters provided by nnU-Net. To study the impact of different settings on model segmentation accuracy, we conducted an analysis of variance (ANOVA) statistical analysis. The factors studied included the datasets according to nodule diameter size, model, preprocessing, polynomial learning rate scheduler, and number of epochs. The results of the ANOVA analysis revealed significant differences in the datasets, models, and preprocessing.

PMID:39452524 | DOI:10.3390/jpm14101016

Categories: Literature Watch

A Specialized Pipeline for Efficient and Reliable 3D Semantic Model Reconstruction of Buildings from Indoor Point Clouds

Fri, 2024-10-25 06:00

J Imaging. 2024 Oct 19;10(10):261. doi: 10.3390/jimaging10100261.

ABSTRACT

Recent advances in laser scanning systems have enabled the acquisition of 3D point cloud representations of scenes, revolutionizing the fields of Architecture, Engineering, and Construction (AEC). This paper presents a novel pipeline for the automatic generation of 3D semantic models of multi-level buildings from indoor point clouds. The architectural components are extracted hierarchically. After segmenting the point clouds into potential building floors, a wall detection process is performed on each floor segment. Then, room, ground, and ceiling extraction are conducted using the walls 2D constellation obtained from the projection of the walls onto the ground plan. The identification of the openings in the walls is performed using a deep learning-based classifier that separates doors and windows from non-consistent holes. Based on the geometric and semantic information from previously detected elements, the final model is generated in IFC format. The effectiveness and reliability of the proposed pipeline are demonstrated through extensive experiments and visual inspections. The results reveal high precision and recall values in the extraction of architectural elements, ensuring the fidelity of the generated models. In addition, the pipeline's efficiency and accuracy offer valuable contributions to future advancements in point cloud processing.

PMID:39452424 | DOI:10.3390/jimaging10100261

Categories: Literature Watch

Investigating the Sim-to-Real Generalizability of Deep Learning Object Detection Models

Fri, 2024-10-25 06:00

J Imaging. 2024 Oct 18;10(10):259. doi: 10.3390/jimaging10100259.

ABSTRACT

State-of-the-art object detection models need large and diverse datasets for training. As these are hard to acquire for many practical applications, training images from simulation environments gain more and more attention. A problem arises as deep learning models trained on simulation images usually have problems generalizing to real-world images shown by a sharp performance drop. Definite reasons and influences for this performance drop are not yet found. While previous work mostly investigated the influence of the data as well as the use of domain adaptation, this work provides a novel perspective by investigating the influence of the object detection model itself. Against this background, first, a corresponding measure called sim-to-real generalizability is defined, comprising the capability of an object detection model to generalize from simulation training images to real-world evaluation images. Second, 12 different deep learning-based object detection models are trained and their sim-to-real generalizability is evaluated. The models are trained with a variation of hyperparameters resulting in a total of 144 trained and evaluated versions. The results show a clear influence of the feature extractor and offer further insights and correlations. They open up future research on investigating influences on the sim-to-real generalizability of deep learning-based object detection models as well as on developing feature extractors that have better sim-to-real generalizability capabilities.

PMID:39452422 | DOI:10.3390/jimaging10100259

Categories: Literature Watch

CSA-Net: Channel and Spatial Attention-Based Network for Mammogram and Ultrasound Image Classification

Fri, 2024-10-25 06:00

J Imaging. 2024 Oct 16;10(10):256. doi: 10.3390/jimaging10100256.

ABSTRACT

Breast cancer persists as a critical global health concern, emphasizing the advancement of reliable diagnostic strategies to improve patient survival rates. To address this challenge, a computer-aided diagnostic methodology for breast cancer classification is proposed. An architecture that incorporates a pre-trained EfficientNet-B0 model along with channel and spatial attention mechanisms is employed. The efficiency of leveraging attention mechanisms for breast cancer classification is investigated here. The proposed model demonstrates commendable performance in classification tasks, particularly showing significant improvements upon integrating attention mechanisms. Furthermore, this model demonstrates versatility across various imaging modalities, as demonstrated by its robust performance in classifying breast lesions, not only in mammograms but also in ultrasound images during cross-modality evaluation. It has achieved accuracy of 99.9% for binary classification using the mammogram dataset and 92.3% accuracy on the cross-modality multi-class dataset. The experimental results emphasize the superiority of our proposed method over the current state-of-the-art approaches for breast cancer classification.

PMID:39452419 | DOI:10.3390/jimaging10100256

Categories: Literature Watch

Artificial intelligence in forensic medicine and related sciences - selected issues

Fri, 2024-10-25 06:00

Arch Med Sadowej Kryminol. 2024;74(1):64-76. doi: 10.4467/16891716AMSIK.24.005.19650.

ABSTRACT

AIM: The aim of the work is to provide an overview of the potential application of artificial intelligence in forensic medicine and related sciences, and to identify concerns related to providing medico-legal opinions and legal liability in cases in which possible harm in terms of diagnosis and/or treatment is likely to occur when using an advanced system of computer-based information processing and analysis.

MATERIAL AND METHODS: The material for the study comprised scientific literature related to the issue of artificial intelligence in forensic medicine and related sciences. For this purpose, Google Scholar, PubMed and ScienceDirect databases were searched. To identify useful articles, such terms as "artificial intelligence," "deep learning," "machine learning," "forensic medicine," "legal medicine," "forensic pathology" and "medicine" were used. In some cases, articles were identified based on the semantic proximity of the introduced terms.

CONCLUSIONS: Dynamic development of the computing power and the ability of artificial intelligence to analyze vast data volumes made it possible to transfer artificial intelligence methods to forensic medicine and related sciences. Artificial intelligence has numerous applications in forensic medicine and related sciences and can be helpful in thanatology, forensic traumatology, post-mortem identification examinations, as well as post-mortem microscopic and toxicological diagnostics. Analyzing the legal and medico-legal aspects, artificial intelligence in medicine should be treated as an auxiliary tool, whereas the final diagnostic and therapeutic decisions and the extent to which they are implemented should be the responsibility of humans.

PMID:39450596 | DOI:10.4467/16891716AMSIK.24.005.19650

Categories: Literature Watch

Pages