Deep learning
Deep Learning-Based Image Classification and Segmentation on Digital Histopathology for Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis
J Oral Pathol Med. 2024 Sep 10. doi: 10.1111/jop.13578. Online ahead of print.
ABSTRACT
BACKGROUND: Artificial intelligence (AI)-based tools have shown promise in histopathology image analysis in improving the accuracy of oral squamous cell carcinoma (OSCC) detection with intent to reduce human error.
OBJECTIVES: This systematic review and meta-analysis evaluated deep learning (DL) models for OSCC detection on histopathology images by assessing common diagnostic performance evaluation metrics for AI-based medical image analysis studies.
METHODS: Diagnostic accuracy studies that used DL models for the analysis of histopathological images of OSCC compared to the reference standard were analyzed. Six databases (PubMed, Google Scholar, Scopus, Embase, ArXiv, and IEEE) were screened for publications without any time limitation. The QUADAS-2 tool was utilized to assess quality. The meta-analyses included only studies that reported true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) in their test sets.
RESULTS: Of 1267 screened studies, 17 studies met the final inclusion criteria. DL methods such as image classification (n = 11) and segmentation (n = 3) were used, and some studies used combined methods (n = 3). On QUADAS-2 assessment, only three studies had a low risk of bias across all applicability domains. For segmentation studies, 0.97 was reported for accuracy, 0.97 for sensitivity, 0.98 for specificity, and 0.92 for Dice. For classification studies, accuracy was reported as 0.99, sensitivity 0.99, specificity 1.0, Dice 0.95, F1 score 0.98, and AUC 0.99. Meta-analysis showed pooled estimates of 0.98 sensitivity and 0.93 specificity.
CONCLUSION: Application of AI-based classification and segmentation methods on image analysis represents a fundamental shift in digital pathology. DL approaches demonstrated significantly high accuracy for OSCC detection on histopathology, comparable to that of human experts in some studies. Although AI-based models cannot replace a well-trained pathologist, they can assist through improving the objectivity and repeatability of the diagnosis while reducing variability and human error as a consequence of pathologist burnout.
PMID:39256895 | DOI:10.1111/jop.13578
Composite activity type and stride-specific energy expenditure estimation model for thigh-worn accelerometry
Int J Behav Nutr Phys Act. 2024 Sep 10;21(1):99. doi: 10.1186/s12966-024-01646-y.
ABSTRACT
BACKGROUND: Accurately measuring energy expenditure during physical activity outside of the laboratory is challenging, especially on a large scale. Thigh-worn accelerometers have gained popularity due to the possibility to accurately detect physical activity types. The use of machine learning techniques for activity classification and energy expenditure prediction may improve accuracy over current methods. Here, we developed a novel composite energy expenditure estimation model by combining an activity classification model with a stride specific energy expenditure model for walking, running, and cycling.
METHODS: We first trained a supervised deep learning activity classification model using pooled data from available adult accelerometer datasets. The composite energy expenditure model was then developed and validated using additional data based on a sample of 69 healthy adult participants (49% female; age = 25.2 ± 5.8 years) who completed a standardised activity protocol with indirect calorimetry as the reference measure.
RESULTS: The activity classification model showed an overall accuracy of 99.7% across all five activity types during validation. The composite model for estimating energy expenditure achieved a mean absolute percentage error of 10.9%. For running, walking, and cycling, the composite model achieved a mean absolute percentage error of 6.6%, 7.9% and 16.1%, respectively.
CONCLUSIONS: The integration of thigh-worn accelerometers with machine learning models provides a highly accurate method for classifying physical activity types and estimating energy expenditure. Our novel composite model approach improves the accuracy of energy expenditure measurements and supports better monitoring and assessment methods in non-laboratory settings.
PMID:39256837 | DOI:10.1186/s12966-024-01646-y
A deep learning model for differentiating paediatric intracranial germ cell tumour subtypes and predicting survival with MRI: a multicentre prospective study
BMC Med. 2024 Sep 11;22(1):375. doi: 10.1186/s12916-024-03575-w.
ABSTRACT
BACKGROUND: The pretherapeutic differentiation of subtypes of primary intracranial germ cell tumours (iGCTs), including germinomas (GEs) and nongerminomatous germ cell tumours (NGGCTs), is essential for clinical practice because of distinct treatment strategies and prognostic profiles of these diseases. This study aimed to develop a deep learning model, iGNet, to assist in the differentiation and prognostication of iGCT subtypes by employing pretherapeutic MR T2-weighted imaging.
METHODS: The iGNet model, which is based on the nnUNet architecture, was developed using a retrospective dataset of 280 pathologically confirmed iGCT patients. The training dataset included 83 GEs and 117 NGGCTs, while the retrospective internal test dataset included 31 GEs and 49 NGGCTs. The model's diagnostic performance was then assessed with the area under the receiver operating characteristic curve (AUC) in a prospective internal dataset (n = 22) and two external datasets (n = 22 and 20). Next, we compared the diagnostic performance of six neuroradiologists with or without the assistance of iGNet. Finally, the predictive ability of the output of iGNet for progression-free and overall survival was assessed and compared to that of the pathological diagnosis.
RESULTS: iGNet achieved high diagnostic performance, with AUCs between 0.869 and 0.950 across the four test datasets. With the assistance of iGNet, the six neuroradiologists' diagnostic AUCs (averages of the four test datasets) increased by 9.22% to 17.90%. There was no significant difference between the output of iGNet and the results of pathological diagnosis in predicting progression-free and overall survival (P = .889).
CONCLUSIONS: By leveraging pretherapeutic MR imaging data, iGNet accurately differentiates iGCT subtypes, facilitating prognostic evaluation and increasing the potential for tailored treatment.
PMID:39256746 | DOI:10.1186/s12916-024-03575-w
Nanophotonic structure inverse design for switching application using deep learning
Sci Rep. 2024 Sep 10;14(1):21094. doi: 10.1038/s41598-024-72125-4.
ABSTRACT
Switching functionality is pivotal in advancing communication systems, serving as a paramount mechanism. Despite numerous innovations in this field, optical switch design, fabrication, and characterization have traditionally followed an iterative approach. Within this paradigm, the designer formulates an informed conjecture regarding the switch's structural configuration and subsequently resolves Maxwell's equations to ascertain its performance. Conversely, the inverse problem, which entails deriving a switch geometry to achieve a targeted electromagnetic response, continues to pose formidable challenges and necessitates substantial time and effort, particularly under the constraints of specific assumptions. In this work, we propose a deep neural network-based method to approximate the spectral transmittance of all-optical switches. The findings substantiate the efficacy of deep learning in the design of all-optical plasmonic switches, which are renowned as the fastest switches at the nanoscale. The nonlinear Kerr effect in square resonators is leveraged to demonstrate the switching performance. Juxtaposed with conventional simulations, the proposed model showcases a remarkable improvement in computational efficiency. Furthermore, deep learning can resolve nanophotonic inverse design problems without reliance on trial-and-error or empirical strategies. Compared to simulations, the mean squared error for both forward and inverse models is meager, with values of around 0.03 and 0.02, respectively. The deep learning-proposed switches exhibit excellent suitability for integration into photonic integrated circuits, substantially influencing the progression of all-optical signal processing.
PMID:39256501 | DOI:10.1038/s41598-024-72125-4
Comorbidity-based framework for Alzheimer's disease classification using graph neural networks
Sci Rep. 2024 Sep 10;14(1):21061. doi: 10.1038/s41598-024-72321-2.
ABSTRACT
Alzheimer's disease (AD), the most prevalent form of dementia, requires early prediction for timely intervention. Current deep learning approaches, particularly those using traditional neural networks, face challenges such as handling high-dimensional data, interpreting complex relationships, and managing data bias. To address these limitations, we propose a framework utilizing graph neural networks (GNNs), which excel in modeling relationships within graph-structured data. Our study employs GNNs on data from the Alzheimer's Disease Neuroimaging Initiative for binary and multi-class classification across the three stages of AD: cognitively normal (CN), mild cognitive impairment (MCI), and Alzheimer's disease (AD). By incorporating comorbidity data derived from electronic health records, we achieved the most effective multi-classification results. Notably, the GNN model (Chebyshev Convolutional Neural Networks) demonstrated superior performance with a 0.98 accuracy in multi-class classification and 0.99, 0.93, and 0.94 in the AD/CN, AD/MCI, and CN/MCI binary tasks, respectively. The model's robustness was further validated using the Australian Imaging, Biomarker & Lifestyle dataset as an external validation set. This work contributes to the field by offering a robust, accurate, and cost-effective method for early AD prediction (CN vs. MCI), addressing key challenges in existing deep learning approaches.
PMID:39256497 | DOI:10.1038/s41598-024-72321-2
Long-term trend prediction of pandemic combining the compartmental and deep learning models
Sci Rep. 2024 Sep 9;14(1):21068. doi: 10.1038/s41598-024-72005-x.
ABSTRACT
Predicting the spread trends of a pandemic is crucial, but long-term prediction remains challenging due to complex relationships among disease spread stages and preventive policies. To address this issue, we propose a novel approach that utilizes data augmentation techniques, compartmental model features, and disease preventive policies. We also use a breakpoint detection method to divide the disease spread into distinct stages and weight these stages using a self-attention mechanism to account for variations in virus transmission capabilities. Finally, we introduce a long-term spread trend prediction model for infectious diseases based on a bi-directional gated recurrent unit network. To evaluate the effectiveness of our model, we conducted experiments using public datasets, focusing on the prediction of COVID-19 cases in four countries over a period of 210 days. Experiments shown that the Adjust-R2 index of our model exceeds 0.9914, outperforming existing models. Furthermore, our model reduces the mean absolute error by 0.85-4.52% compared to other models. Our combined approach of using both the compartmental and deep learning models provides valuable insights into the dynamics of disease spread.
PMID:39256475 | DOI:10.1038/s41598-024-72005-x
The analysis of art design under improved convolutional neural network based on the Internet of Things technology
Sci Rep. 2024 Sep 10;14(1):21113. doi: 10.1038/s41598-024-72343-w.
ABSTRACT
This work aims to explore the application of an improved convolutional neural network (CNN) combined with Internet of Things (IoT) technology in art design education and teaching. The development of IoT technology has created new opportunities for art design education, while deep learning and improved CNN models can provide more accurate and effective tools for image processing and analysis. In order to enhance the effectiveness of art design teaching and students' creative expression, this work proposes an improved CNN model. In model construction, it increases the number of convolutional layers and neurons, and incorporates the batch normalization layer and dropout layer to enhance feature extraction capabilities and reduce overfitting. Besides, this work creates an experimental environment using IoT technology, capturing art image samples and environmental data using cameras, sensors, and other devices. In the model application phase, image samples undergo preprocessing and are input into the CNN for feature extraction. Sensor data are concatenated with image feature vectors and input into the fully connected layers to comprehensively understand the artwork. Finally, this work trains the model using techniques such as cross-entropy loss functions and L2 regularization and adjusts hyperparameters to optimize model performance. The results indicate that the improved CNN model can effectively acquire art sample data and student creative expression data, providing accurate and timely feedback and guidance for art design education and teaching, with promising applications. This work offers new insights and methods for the development of art design education.
PMID:39256455 | DOI:10.1038/s41598-024-72343-w
Weld seam object detection system based on the fusion of 2D images and 3D point clouds using interpretable neural networks
Sci Rep. 2024 Sep 10;14(1):21137. doi: 10.1038/s41598-024-71989-w.
ABSTRACT
This study introduces a novel approach that addresses the limitations of existing methods by integrating 2D image processing with 3D point cloud analysis, enhanced by interpretable neural networks. Unlike traditional methods that rely on either 2D or 3D data alone, our approach leverages the complementary strengths of both data types to improve detection accuracy in environments adversely affected by welding spatter and smoke. Our system employs an improved Faster R-CNN model with a ResNet50 backbone for 2D image analysis, coupled with an innovative orthogonal plane intersection line extraction algorithm for 3D point cloud processing. By incorporating explainable components such as visualizable feature maps and a transparent region proposal network, we address the "black box" issue common in deep learning models.This architecture enables a more transparent decision-making process, providing technicians with necessary insights to understand and trust the system's outputs. The Faster-RCNN structure is designed to break down the object detection process into distinct, understandable steps, from initial feature extraction to final bounding box refinement. This fusion of 2D-3D data analysis and interpretability not only improves detection performance but also sets a new standard for transparency and reliability in automated welding systems, facilitating wider adoption in industrial applications.
PMID:39256451 | DOI:10.1038/s41598-024-71989-w
Computer vision and statistical insights into cycling near miss dynamics
Sci Rep. 2024 Sep 10;14(1):21151. doi: 10.1038/s41598-024-70733-8.
ABSTRACT
Across the globe, many transport bodies are advocating for increased cycling due to its health and environmental benefits. Yet, the real and perceived dangers of urban cycling remain obstacles. While serious injuries and fatalities in cycling are infrequent, "near misses"-events where a person on a bike is forced to avoid a potential crash or is unsettled by a close vehicle-are more prevalent. To understand these occurrences, researchers have turned to naturalistic studies, attaching various sensors like video cameras to bikes or cyclists. This sensor data holds the potential to unravel the risks cyclists face. Still, the sheer amount of video data often demands manual processing, limiting the scope of such studies. In this paper, we unveil a cutting-edge computer vision framework tailored for automated near-miss video analysis and for detecting various associated risk factors. Additionally, the framework can understand the statistical significance of various risk factors, providing a comprehensive understanding of the issues faced by cyclists. We shed light on the pronounced effects of factors like glare, vehicle and pedestrian presence, examining their roles in near misses through Granger causality with varied time lags. This framework enables the automated detection of multiple factors and understanding their significant weight, thus enhancing the efficiency and scope of naturalistic cycling studies. As future work, this research opens the possibility of integrating this AI framework into edge sensors through embedded AI, enabling real-time analysis.
PMID:39256444 | DOI:10.1038/s41598-024-70733-8
Deep learning as a highly efficient tool for digital signal processing design
Light Sci Appl. 2024 Sep 11;13(1):248. doi: 10.1038/s41377-024-01599-8.
ABSTRACT
The backpropagation algorithm, the most widely used algorithm for training artificial neural networks, can be effectively applied to the development of digital signal processing schemes in the optical fiber transmission systems. Digital signal processing as a deep learning framework can lead to a new highly efficient paradigm for cost-effective digital signal processing designes with low complexity.
PMID:39256354 | DOI:10.1038/s41377-024-01599-8
A 25-Year Retrospective of the Use of AI for Diagnosing Acute Stroke: Systematic Review
J Med Internet Res. 2024 Sep 10;26:e59711. doi: 10.2196/59711.
ABSTRACT
BACKGROUND: Stroke is a leading cause of death and disability worldwide. Rapid and accurate diagnosis is crucial for minimizing brain damage and optimizing treatment plans.
OBJECTIVE: This review aims to summarize the methods of artificial intelligence (AI)-assisted stroke diagnosis over the past 25 years, providing an overview of performance metrics and algorithm development trends. It also delves into existing issues and future prospects, intending to offer a comprehensive reference for clinical practice.
METHODS: A total of 50 representative articles published between 1999 and 2024 on using AI technology for stroke prevention and diagnosis were systematically selected and analyzed in detail.
RESULTS: AI-assisted stroke diagnosis has made significant advances in stroke lesion segmentation and classification, stroke risk prediction, and stroke prognosis. Before 2012, research mainly focused on segmentation using traditional thresholding and heuristic techniques. From 2012 to 2016, the focus shifted to machine learning (ML)-based approaches. After 2016, the emphasis moved to deep learning (DL), which brought significant improvements in accuracy. In stroke lesion segmentation and classification as well as stroke risk prediction, DL has shown superiority over ML. In stroke prognosis, both DL and ML have shown good performance.
CONCLUSIONS: Over the past 25 years, AI technology has shown promising performance in stroke diagnosis.
PMID:39255472 | DOI:10.2196/59711
Dual-stage semantic segmentation of endoscopic surgical instruments
Med Phys. 2024 Sep 10. doi: 10.1002/mp.17397. Online ahead of print.
ABSTRACT
BACKGROUND: Endoscopic instrument segmentation is essential for ensuring the safety of robotic-assisted spinal endoscopic surgeries. However, due to the narrow operative region, intricate surrounding tissues, and limited visibility, achieving instrument segmentation within the endoscopic view remains challenging.
PURPOSE: This work aims to devise a method to segment surgical instruments in endoscopic video. By designing an endoscopic image classification model, features of frames before and after the video are extracted to achieve continuous and precise segmentation of instruments in endoscopic videos.
METHODS: Deep learning techniques serve as the algorithmic core for constructing the convolutional neural network proposed in this study. The method comprises dual stages: image classification and instrument segmentation. MobileViT is employed for image classification, enabling the extraction of key features of different instruments and generating classification results. DeepLabv3+ is utilized for instrument segmentation. By training on distinct instruments separately, corresponding model parameters are obtained. Lastly, a flag caching mechanism along with a blur detection module is designed to effectively utilize the image features in consecutive frames. By incorporating specific parameters into the segmentation model, better segmentation of surgical instruments can be achieved in endoscopic videos.
RESULTS: The classification and segmentation models are evaluated on an endoscopic image dataset. In the dataset used for instrument segmentation, the training set consists of 7456 images, the validation set consists of 829 images, and the test set consists of 921 images. In the dataset used for image classification, the training set consists of 2400 images and the validation set consists of 600 images. The image classification model achieves an accuracy of 70% on the validation set. For the segmentation model, experiments are conducted on two common surgical instruments, and the mean Intersection over Union (mIoU) exceeds 98%. Furthermore, the proposed video segmentation method is tested using videos collected during surgeries, validating the effectiveness of the flag caching mechanism and blur detection module.
CONCLUSIONS: Experimental results on the dataset demonstrate that the dual-stage video processing method excels in performing instrument segmentation tasks under endoscopic conditions. This advancement is significant for enhancing the intelligence level of robotic-assisted spinal endoscopic surgeries.
PMID:39255375 | DOI:10.1002/mp.17397
Deep autoencoder-based behavioral pattern recognition outperforms standard statistical methods in high-dimensional zebrafish studies
PLoS Comput Biol. 2024 Sep 10;20(9):e1012423. doi: 10.1371/journal.pcbi.1012423. Online ahead of print.
ABSTRACT
Zebrafish have become an essential model organism in screening for developmental neurotoxic chemicals and their molecular targets. The success of zebrafish as a screening model is partially due to their physical characteristics including their relatively simple nervous system, rapid development, experimental tractability, and genetic diversity combined with technical advantages that allow for the generation of large amounts of high-dimensional behavioral data. These data are complex and require advanced machine learning and statistical techniques to comprehensively analyze and capture spatiotemporal responses. To accomplish this goal, we have trained semi-supervised deep autoencoders using behavior data from unexposed larval zebrafish to extract quintessential "normal" behavior. Following training, our network was evaluated using data from larvae shown to have significant changes in behavior (using a traditional statistical framework) following exposure to toxicants that include nanomaterials, aromatics, per- and polyfluoroalkyl substances (PFAS), and other environmental contaminants. Further, our model identified new chemicals (Perfluoro-n-octadecanoic acid, 8-Chloroperfluorooctylphosphonic acid, and Nonafluoropentanamide) as capable of inducing abnormal behavior at multiple chemical-concentrations pairs not captured using distance moved alone. Leveraging this deep learning model will allow for better characterization of the different exposure-induced behavioral phenotypes, facilitate improved genetic and neurobehavioral analysis in mechanistic determination studies and provide a robust framework for analyzing complex behaviors found in higher-order model systems.
PMID:39255309 | DOI:10.1371/journal.pcbi.1012423
Exploring the interplay between colorectal cancer subtypes genomic variants and cellular morphology: A deep-learning approach
PLoS One. 2024 Sep 10;19(9):e0309380. doi: 10.1371/journal.pone.0309380. eCollection 2024.
ABSTRACT
Molecular subtypes of colorectal cancer (CRC) significantly influence treatment decisions. While convolutional neural networks (CNNs) have recently been introduced for automated CRC subtype identification using H&E stained histopathological images, the correlation between CRC subtype genomic variants and their corresponding cellular morphology expressed by their imaging phenotypes is yet to be fully explored. The goal of this study was to determine such correlations by incorporating genomic variants in CNN models for CRC subtype classification from H&E images. We utilized the publicly available TCGA-CRC-DX dataset, which comprises whole slide images from 360 CRC-diagnosed patients (260 for training and 100 for testing). This dataset also provides information on CRC subtype classifications and genomic variations. We trained CNN models for CRC subtype classification that account for potential correlation between genomic variations within CRC subtypes and their corresponding cellular morphology patterns. We assessed the interplay between CRC subtypes' genomic variations and cellular morphology patterns by evaluating the CRC subtype classification accuracy of the different models in a stratified 5-fold cross-validation experimental setup using the area under the ROC curve (AUROC) and average precision (AP) as the performance metrics. The CNN models that account for potential correlation between genomic variations within CRC subtypes and their cellular morphology pattern achieved superior accuracy compared to the baseline CNN classification model that does not account for genomic variations when using either single-nucleotide-polymorphism (SNP) molecular features (AUROC: 0.824±0.02 vs. 0.761±0.04, p<0.05, AP: 0.652±0.06 vs. 0.58±0.08) or CpG-Island methylation phenotype (CIMP) molecular features (AUROC: 0.834±0.01 vs. 0.787±0.03, p<0.05, AP: 0.687±0.02 vs. 0.64±0.05). Combining the CNN models account for variations in CIMP and SNP further improved classification accuracy (AUROC: 0.847±0.01 vs. 0.787±0.03, p = 0.01, AP: 0.68±0.02 vs. 0.64±0.05). The improved accuracy of CNN models for CRC subtype classification that account for potential correlation between genomic variations within CRC subtypes and their corresponding cellular morphology as expressed by H&E imaging phenotypes may elucidate the biological cues impacting cancer histopathological imaging phenotypes. Moreover, considering CRC subtypes genomic variations has the potential to improve the accuracy of deep-learning models in discerning cancer subtype from histopathological imaging data.
PMID:39255280 | DOI:10.1371/journal.pone.0309380
Federated Motor Imagery Classification for Privacy-Preserving Brain-Computer Interfaces
IEEE Trans Neural Syst Rehabil Eng. 2024 Sep 10;PP. doi: 10.1109/TNSRE.2024.3457504. Online ahead of print.
ABSTRACT
Training an accurate classifier for EEG-based brain-computer interface (BCI) requires EEG data from a large number of users, whereas protecting their data privacy is a critical consideration. Federated learning (FL) is a promising solution to this challenge. This paper proposes Federated classification with local Batch-specific batch normalization and Sharpness-aware minimization (FedBS) for privacy protection in EEG-based motor imagery (MI) classification. FedBS utilizes local batch-specific batch normalization to reduce data discrepancies among different clients, and sharpness-aware minimization optimizer in local training to improve model generalization. Experiments on three public MI datasets using three popular deep learning models demonstrated that FedBS outperformed six state-of-the-art FL approaches. Remarkably, it also outperformed centralized training, which does not consider privacy protection at all. In summary, FedBS protects user EEG data privacy, enabling multiple BCI users to participate in large-scale machine learning model training, which in turn improves the BCI decoding accuracy.
PMID:39255189 | DOI:10.1109/TNSRE.2024.3457504
Deep Single Image Defocus Deblurring via Gaussian Kernel Mixture Learning
IEEE Trans Pattern Anal Mach Intell. 2024 Sep 10;PP. doi: 10.1109/TPAMI.2024.3457856. Online ahead of print.
ABSTRACT
This paper proposes an end-to-end deep learning approach for removing defocus blur from a single defocused image. Defocus blur is a common issue in digital photography that poses a challenge due to its spatially-varying and large blurring effect. The proposed approach addresses this challenge by employing a pixel-wise Gaussian kernel mixture (GKM) model to accurately yet compactly parameterize spatially-varying defocus point spread functions (PSFs), which is motivated by the isotropy in defocus PSFs. We further propose a grouped GKM (GGKM) model that decouples the coefficients in GKM, so as to improve the modeling accuracy with an economic manner. Afterward, a deep neural network called GGKMNet is then developed by unrolling a fixed-point iteration process of GGKM-based image deblurring, which avoids the efficiency issues in existing unrolling DNNs. Using a lightweight scale-recurrent architecture with a coarse-to-fine estimation scheme to predict the coefficients in GGKM, the GGKMNet can efficiently recover an all-in-focus image from a defocused one. Such advantages are demonstrated with extensive experiments on five benchmark datasets, where the GGKMNet outperforms existing defocus deblurring methods in restoration quality, as well as showing advantages in terms of model complexity and computational efficiency.
PMID:39255177 | DOI:10.1109/TPAMI.2024.3457856
Enhancing Domain Diversity of Transfer Learning-Based SSVEP-BCIs by the Reconstruction of Channel Correlation
IEEE Trans Biomed Eng. 2024 Sep 10;PP. doi: 10.1109/TBME.2024.3458389. Online ahead of print.
ABSTRACT
OBJECTIVE: The application of transfer learning, specifically pre-training and fine-tuning, in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) has been demonstrated to effectively improve the classification performance of deep learning methods with limited calibration data. However, effectively learning task-related knowledge from source domains during the pre-training phase remains challenging. To address this issue, this study proposes an effective data augmentation method called Reconstruction of Channel Correlation (RCC) to optimize the utilization of the source domain data.
METHODS: Concretely, RCC reconstructs training samples using probabilistically mixed eigenvector matrices derived from covariance matrices across source domains. This process manipulates the channel correlation of training samples, implicitly creating novel synthesized domains. By increasing the diversity of source domains, RCC aims to enhance the domain generalizability of the pre-trained model. The effectiveness of RCC is validated through subject-independent and subject-adaptive classification experiments.
RESULTS: The results of subject-independent classification demonstrate that RCC significantly improves the classification performance of the pre-trained model on unseen target subjects. Moreover, when compared to the fine-tuning process using the RCC-absent pre-trained model, the fine-tuning process using the RCC-enhanced pre-trained model yields significantly improved performance in the subject-adaptive classification.
CONCLUSION: RCC proves to enhance the performance of transfer learning by optimizing the utilization of the source domain data.
SIGNIFICANCE: The RCC-enhanced transfer learning has the potential to facilitate the practical implementation of SSVEP-BCIs in real-world scenarios.
PMID:39255081 | DOI:10.1109/TBME.2024.3458389
Deep Clustering for Epileptic Seizure Detection
IEEE Trans Biomed Eng. 2024 Sep 10;PP. doi: 10.1109/TBME.2024.3458177. Online ahead of print.
ABSTRACT
Epilepsy is a neurological disorder characterized by recurrent epileptic seizures, which are often unpredictable and increase mortality and morbidity risks.
OBJECTIVE: The objective of this study is to address the challenges of EEG-based epileptic seizure detection by introducing a novel methodology, Deep Embedded Gaussian Mixture (DEGM).
METHODS: The DEGM method begins with a deep autoencoder (DAE) for embedding the input EEG data, followed by Singular Value Decomposition (SVD) to enhance the representational quality of the embedding while achieving dimensionality reduction. A Gaussian Mixture Model (GMM) is then employed for clustering purposes. Unlike conventional supervised machine learning and deep learning techniques, DEGM leverages deep clustering (DC) algorithms for more effective seizure detection.
RESULTS: Empirical results from two real-world epileptic datasets demonstrate the notable performance of DEGM. The method's effectiveness is particularly remarkable given the substantial size of the datasets, showcasing its ability to handle large-scale EEG data efficiently.
CONCLUSION: In conclusion, the DEGM methodology provides a novel and effective approach for EEG-based epileptic seizure detection, addressing key challenges such as data variability and artifact contamination.
SIGNIFICANCE: By combining deep autoencoders, SVD, and GMM, DEGM achieves superior clustering performance compared to existing methods, representing a significant advancement in biomedical research and clinical applications for epilepsy. Its robust performance on large datasets underscores its potential for improving seizure detection accuracy, ultimately contributing to better patient outcomes.
PMID:39255079 | DOI:10.1109/TBME.2024.3458177
Integrative Graph-Based Framework for Predicting circRNA Drug Resistance Using Disease Contextualization and Deep Learning
IEEE J Biomed Health Inform. 2024 Sep 10;PP. doi: 10.1109/JBHI.2024.3457271. Online ahead of print.
ABSTRACT
Circular RNAs (circRNAs) play a crucial role in gene regulation and have been implicated in the development of drug resistance in cancer, representing a significant challenge in oncological therapeutics. Despite advancements in computational models predicting RNA-drug interactions, existing frameworks often overlook the complex interplay between circRNAs, drug mechanisms, and disease contexts. This study aims to bridge this gap by introducing a novel computational model, circRDRP, that enhances prediction accuracy by integrating disease-specific contexts into the analysis of circRNA-drug interactions. It employs a hybrid graph neural network that combines features from Graph Attention Networks (GAT) and Graph Convolutional Networks (GCN) in a two-layer structure, with further enhancement through convolutional neural networks. This approach allows for sophisticated feature extraction from integrated networks of circRNAs, drugs, and diseases. Our results demonstrate that the circRDRP model outperforms existing models in predicting drug resistance, showing significant improvements in accuracy, precision, and recall. Specifically, the model shows robust predictive capability in case studies involving major anticancer drugs such as Cisplatin and Methotrexate, indicating its potential utility in precision medicine. In conclusion, circRDRP offers a powerful tool for understanding and predicting drug resistance mediated by circRNAs, with implications for designing more effective cancer therapies.
PMID:39255076 | DOI:10.1109/JBHI.2024.3457271
Label-Aware Dual Graph Neural Networks for Multi-Label Fundus Image Classification
IEEE J Biomed Health Inform. 2024 Sep 10;PP. doi: 10.1109/JBHI.2024.3457232. Online ahead of print.
ABSTRACT
Fundus disease is a complex and universal disease involving a variety of pathologies. Its early diagnosis using fundus images can effectively prevent further diseases and provide targeted treatment plans for patients. Recent deep learning models for classification of this disease are gradually emerging as a critical research field, which is attracting widespread attention. However, in practice, most of the existing methods only focus on local visual cues of a single image, and ignore the underlying explicit interaction similarity between subjects and correlation information among pathologies in fundus diseases. In this paper, we propose a novel label-aware dual graph neural networks for multi-label fundus image classification that consists of population-based graph representation learning and pathology-based graph representation learning modules. Specifically, we first construct a population-based graph by integrating image features and non-image information to learn patient's representations by incorporating associations between subjects. Then, we represent pathologies as a sparse graph where its nodes are associated with pathology-based feature vectors and the edges correspond to probability of the co-occurrence of labels to generate a set of classifier scores by the propagation of multi-layer graph information. Finally, our model can adaptively recalibrate multi-label outputs. Detailed experiments and analysis of our results show the effectiveness of our method compared with state-of-the-art multi-label fundus image classification methods.
PMID:39255075 | DOI:10.1109/JBHI.2024.3457232