Deep learning
Screening Targets and Therapeutic Drugs for Alzheimer's Disease Based on Deep Learning Model and Molecular Docking
J Alzheimers Dis. 2024 Jun 29. doi: 10.3233/JAD-231389. Online ahead of print.
ABSTRACT
BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder caused by a complex interplay of various factors. However, a satisfactory cure for AD remains elusive. Pharmacological interventions based on drug targets are considered the most cost-effective therapeutic strategy. Therefore, it is paramount to search potential drug targets and drugs for AD.
OBJECTIVE: We aimed to provide novel targets and drugs for the treatment of AD employing transcriptomic data of AD and normal control brain tissues from a new perspective.
METHODS: Our study combined the use of a multi-layer perceptron (MLP) with differential expression analysis, variance assessment and molecular docking to screen targets and drugs for AD.
RESULTS: We identified the seven differentially expressed genes (DEGs) with the most significant variation (ANKRD39, CPLX1, FABP3, GABBR2, GNG3, PPM1E, and WDR49) in transcriptomic data from AD brain. A newly built MLP was used to confirm the association between the seven DEGs and AD, establishing these DEGs as potential drug targets. Drug databases and molecular docking results indicated that arbaclofen, baclofen, clozapine, arbaclofen placarbil, BML-259, BRD-K72883421, and YC-1 had high affinity for GABBR2, and FABP3 bound with oleic, palmitic, and stearic acids. Arbaclofen and YC-1 activated GABAB receptor through PI3K/AKT and PKA/CREB pathways, respectively, thereby promoting neuronal anti-apoptotic effect and inhibiting p-tau and Aβ formation.
CONCLUSIONS: This study provided a new strategy for the identification of targets and drugs for the treatment of AD using deep learning. Seven therapeutic targets and ten drugs were selected by using this method, providing new insight for AD treatment.
PMID:38995776 | DOI:10.3233/JAD-231389
Deep learning-based and BI-RADS guided radiomics model for automatic tumor-infiltrating lymphocytes evaluation in breast cancer
Br J Radiol. 2024 Jul 12:tqae129. doi: 10.1093/bjr/tqae129. Online ahead of print.
ABSTRACT
OBJECTIVES: To investigate an interpretable radiomics model consistent with clinical decision-making process and realize automatic prediction of tumor-infiltrating lymphocytes (TILs) levels in breast cancer (BC) from ultrasound (US) images.
METHODS: A total of 378 patients with invasive BC confirmed by pathological results were retrospectively enrolled in this study. Radiomics features were extracted guided by the BI-RADS lexicon from the regions of interest(ROIs) segmented with deep learning models. After features selected using the least absolute shrinkage and selection operator(LASSO) regression, four machine learning classifiers were used to establish the radiomics signature(Rad-score). Then, the integrated model was developed on the basis of the best Rad-score incorporating the independent clinical factors for TILs levels prediction.
RESULTS: Tumors were segmented using the deep learning models with accuracy of 97.2%, sensitivity of 93.4%, specificity of 98.1%, and the posterior areas were also obtained. Eighteen morphology and texture related features were extracted from the ROIs and fourteen features were selected to construct the Rad-score models. Combined with independent clinical characteristics, the integrated model achieved an area under the curve (AUC) of 0.889(95% CI,0.739,0.990) in the validation cohort and outperformed the traditional radiomics model with AUC of 0.756(0.649-0862) depended on hundreds of feature items.
CONCLUSIONS: This study established a promising model for TILs levels prediction with numerable interpretable features and showed great potential to help decision-making and clinical applications.
ADVANCES IN KNOWLEDGE: Imaging-based biomarkers has provides non-invasive ways for TILs levels evaluation in BC. Our model combining the BI-RADS guided radiomics features and clinical data outperformed the traditional radiomics approaches.
PMID:38995740 | DOI:10.1093/bjr/tqae129
A Computed Tomography-Based Fracture Prediction Model With Images of Vertebral Bones and Muscles by Employing Deep Learning: Development and Validation Study
J Med Internet Res. 2024 Jul 12;26:e48535. doi: 10.2196/48535.
ABSTRACT
BACKGROUND: With the progressive increase in aging populations, the use of opportunistic computed tomography (CT) scanning is increasing, which could be a valuable method for acquiring information on both muscles and bones of aging populations.
OBJECTIVE: The aim of this study was to develop and externally validate opportunistic CT-based fracture prediction models by using images of vertebral bones and paravertebral muscles.
METHODS: The models were developed based on a retrospective longitudinal cohort study of 1214 patients with abdominal CT images between 2010 and 2019. The models were externally validated in 495 patients. The primary outcome of this study was defined as the predictive accuracy for identifying vertebral fracture events within a 5-year follow-up. The image models were developed using an attention convolutional neural network-recurrent neural network model from images of the vertebral bone and paravertebral muscles.
RESULTS: The mean ages of the patients in the development and validation sets were 73 years and 68 years, and 69.1% (839/1214) and 78.8% (390/495) of them were females, respectively. The areas under the receiver operator curve (AUROCs) for predicting vertebral fractures were superior in images of the vertebral bone and paravertebral muscles than those in the bone-only images in the external validation cohort (0.827, 95% CI 0.821-0.833 vs 0.815, 95% CI 0.806-0.824, respectively; P<.001). The AUROCs of these image models were higher than those of the fracture risk assessment models (0.810 for major osteoporotic risk, 0.780 for hip fracture risk). For the clinical model using age, sex, BMI, use of steroids, smoking, possible secondary osteoporosis, type 2 diabetes mellitus, HIV, hepatitis C, and renal failure, the AUROC value in the external validation cohort was 0.749 (95% CI 0.736-0.762), which was lower than that of the image model using vertebral bones and muscles (P<.001).
CONCLUSIONS: The model using the images of the vertebral bone and paravertebral muscle showed better performance than that using the images of the bone-only or clinical variables. Opportunistic CT screening may contribute to identifying patients with a high fracture risk in the future.
PMID:38995678 | DOI:10.2196/48535
AI-Assisted Processing Pipeline to Boost Protein Isoform Detection
Methods Mol Biol. 2024;2836:157-181. doi: 10.1007/978-1-0716-4007-4_10.
ABSTRACT
Proteomics, the study of proteins within biological systems, has seen remarkable advancements in recent years, with protein isoform detection emerging as one of the next major frontiers. One of the primary challenges is achieving the necessary peptide and protein coverage to confidently differentiate isoforms as a result of the protein inference problem and protein false discovery rate estimation challenge in large data. In this chapter, we describe the application of artificial intelligence-assisted peptide property prediction for database search engine rescoring by Oktoberfest, an approach that has proven effective, particularly for complex samples and extensive search spaces, which can greatly increase peptide coverage. Further, it illustrates a method for increasing isoform coverage by the PickedGroupFDR approach that is designed to excel when applied on large data. Real-world examples are provided to illustrate the utility of the tools in the context of rescoring, protein grouping, and false discovery rate estimation. By implementing these cutting-edge techniques, researchers can achieve a substantial increase in both peptide and isoform coverage, thus unlocking the potential of protein isoform detection in their studies and shedding light on their roles and functions in biological processes.
PMID:38995541 | DOI:10.1007/978-1-0716-4007-4_10
Making MS Omics Data ML-Ready: SpeCollate Protocols
Methods Mol Biol. 2024;2836:135-155. doi: 10.1007/978-1-0716-4007-4_9.
ABSTRACT
The increasing complexity and volume of mass spectrometry (MS) data have presented new challenges and opportunities for proteomics data analysis and interpretation. In this chapter, we provide a comprehensive guide to transforming MS data for machine learning (ML) training, inference, and applications. The chapter is organized into three parts. The first part describes the data analysis needed for MS-based experiments and a general introduction to our deep learning model SpeCollate-which we will use throughout the chapter for illustration. The second part of the chapter explores the transformation of MS data for inference, providing a step-by-step guide for users to deduce peptides from their MS data. This section aims to bridge the gap between data acquisition and practical applications by detailing the necessary steps for data preparation and interpretation. In the final part, we present a demonstrative example of SpeCollate, a deep learning-based peptide database search engine that overcomes the problems of simplistic simulation of theoretical spectra and heuristic scoring functions for peptide-spectrum matches by generating joint embeddings for spectra and peptides. SpeCollate is a user-friendly tool with an intuitive command-line interface to perform the search, showcasing the effectiveness of the techniques and methodologies discussed in the earlier sections and highlighting the potential of machine learning in the context of mass spectrometry data analysis. By offering a comprehensive overview of data transformation, inference, and ML model applications for mass spectrometry, this chapter aims to empower researchers and practitioners in leveraging the power of machine learning to unlock novel insights and drive innovation in the field of mass spectrometry-based omics.
PMID:38995540 | DOI:10.1007/978-1-0716-4007-4_9
Surgical step recognition in laparoscopic distal gastrectomy using artificial intelligence: a proof-of-concept study
Langenbecks Arch Surg. 2024 Jul 12;409(1):213. doi: 10.1007/s00423-024-03411-y.
ABSTRACT
PURPOSE: Laparoscopic distal gastrectomy (LDG) is a difficult procedure for early career surgeons. Artificial intelligence (AI)-based surgical step recognition is crucial for establishing context-aware computer-aided surgery systems. In this study, we aimed to develop an automatic recognition model for LDG using AI and evaluate its performance.
METHODS: Patients who underwent LDG at our institution in 2019 were included in this study. Surgical video data were classified into the following nine steps: (1) Port insertion; (2) Lymphadenectomy on the left side of the greater curvature; (3) Lymphadenectomy on the right side of the greater curvature; (4) Division of the duodenum; (5) Lymphadenectomy of the suprapancreatic area; (6) Lymphadenectomy on the lesser curvature; (7) Division of the stomach; (8) Reconstruction; and (9) From reconstruction to completion of surgery. Two gastric surgeons manually assigned all annotation labels. Convolutional neural network (CNN)-based image classification was further employed to identify surgical steps.
RESULTS: The dataset comprised 40 LDG videos. Over 1,000,000 frames with annotated labels of the LDG steps were used to train the deep-learning model, with 30 and 10 surgical videos for training and validation, respectively. The classification accuracies of the developed models were precision, 0.88; recall, 0.87; F1 score, 0.88; and overall accuracy, 0.89. The inference speed of the proposed model was 32 ps.
CONCLUSION: The developed CNN model automatically recognized the LDG surgical process with relatively high accuracy. Adding more data to this model could provide a fundamental technology that could be used in the development of future surgical instruments.
PMID:38995411 | DOI:10.1007/s00423-024-03411-y
Forecasting daily total pollen concentrations on a global scale
Allergy. 2024 Jul 12. doi: 10.1111/all.16227. Online ahead of print.
ABSTRACT
BACKGROUND: There is evidence that global anthropogenic climate change may be impacting floral phenology and the temporal and spatial characteristics of aero-allergenic pollen. Given the extent of current and future climate uncertainty, there is a need to strengthen predictive pollen forecasts.
METHODS: The study aims to use CatBoost (CB) and deep learning (DL) models for predicting the daily total pollen concentration up to 14 days in advance for 23 cities, covering all five continents. The model includes the projected environmental parameters, recent concentrations (1, 2 and 4 weeks), and the past environmental explanatory variables, and their future values.
RESULTS: The best pollen forecasts include Mexico City (R2(DL_7) ≈ .7), and Santiago (R2(DL_7) ≈ .8) for the 7th forecast day, respectively; while the weakest pollen forecasts are made for Brisbane (R2(DL_7) ≈ .4) and Seoul (R2(DL_7) ≈ .1) for the 7th forecast day. The global order of the five most important environmental variables in determining the daily total pollen concentrations is, in decreasing order: the past daily total pollen concentration, future 2 m temperature, past 2 m temperature, past soil temperature in 28-100 cm depth, and past soil temperature in 0-7 cm depth. City-related clusters of the most similar distribution of feature importance values of the environmental variables only slightly change on consecutive forecast days for Caxias do Sul, Cape Town, Brisbane, and Mexico City, while they often change for Sydney, Santiago, and Busan.
CONCLUSIONS: This new knowledge of the ecological relationships of the most remarkable variables importance for pollen forecast models according to clusters, cities and forecast days is important for developing and improving the accuracy of airborne pollen forecasts.
PMID:38995241 | DOI:10.1111/all.16227
AI-enhanced Mammography With Digital Breast Tomosynthesis for Breast Cancer Detection: Clinical Value and Comparison With Human Performance
Radiol Imaging Cancer. 2024 Jul;6(4):e230149. doi: 10.1148/rycan.230149.
ABSTRACT
Purpose To compare two deep learning-based commercially available artificial intelligence (AI) systems for mammography with digital breast tomosynthesis (DBT) and benchmark them against the performance of radiologists. Materials and Methods This retrospective study included consecutive asymptomatic patients who underwent mammography with DBT (2019-2020). Two AI systems (Transpara 1.7.0 and ProFound AI 3.0) were used to evaluate the DBT examinations. The systems were compared using receiver operating characteristic (ROC) analysis to calculate the area under the ROC curve (AUC) for detecting malignancy overall and within subgroups based on mammographic breast density. Breast Imaging Reporting and Data System results obtained from standard-of-care human double-reading were compared against AI results with use of the DeLong test. Results Of 419 female patients (median age, 60 years [IQR, 52-70 years]) included, 58 had histologically proven breast cancer. The AUC was 0.86 (95% CI: 0.85, 0.91), 0.93 (95% CI: 0.90, 0.95), and 0.98 (95% CI: 0.96, 0.99) for Transpara, ProFound AI, and human double-reading, respectively. For Transpara, a rule-out criterion of score 7 or lower yielded 100% (95% CI: 94.2, 100.0) sensitivity and 60.9% (95% CI: 55.7, 66.0) specificity. The rule-in criterion of higher than score 9 yielded 96.6% sensitivity (95% CI: 88.1, 99.6) and 78.1% specificity (95% CI: 73.8, 82.5). For ProFound AI, a rule-out criterion of lower than score 51 yielded 100% sensitivity (95% CI: 93.8, 100) and 67.0% specificity (95% CI: 62.2, 72.1). The rule-in criterion of higher than score 69 yielded 93.1% (95% CI: 83.3, 98.1) sensitivity and 82.0% (95% CI: 77.9, 86.1) specificity. Conclusion Both AI systems showed high performance in breast cancer detection but lower performance compared with human double-reading. Keywords: Mammography, Breast, Oncology, Artificial Intelligence, Deep Learning, Digital Breast Tomosynthesis © RSNA, 2024.
PMID:38995172 | DOI:10.1148/rycan.230149
MuToN Quantifies Binding Affinity Changes upon Protein Mutations by Geometric Deep Learning
Adv Sci (Weinh). 2024 Jul 12:e2402918. doi: 10.1002/advs.202402918. Online ahead of print.
ABSTRACT
Assessing changes in protein-protein binding affinity due to mutations helps understanding a wide range of crucial biological processes within cells. Despite significant efforts to create accurate computational models, predicting how mutations affect affinity remains challenging due to the complexity of the biological mechanisms involved. In the present work, a geometric deep learning framework called MuToN is introduced for quantifying protein binding affinity change upon residue mutations. The method, designed with geometric attention networks, is mechanism-aware. It captures changes in the protein binding interfaces of mutated complexes and assesses the allosteric effects of amino acids. Experimental results highlight MuToN's superiority compared to existing methods. Additionally, MuToN's flexibility and effectiveness are illustrated by its precise predictions of binding affinity changes between SARS-CoV-2 variants and the ACE2 complex.
PMID:38995072 | DOI:10.1002/advs.202402918
Unveiling the stochastic nature of human heteropolymer ferritin self-assembly mechanism
Protein Sci. 2024 Aug;33(8):e5104. doi: 10.1002/pro.5104.
ABSTRACT
Despite ferritin's critical role in regulating cellular and systemic iron levels, our understanding of the structure and assembly mechanism of isoferritins, discovered over eight decades ago, remains limited. Unveiling how the composition and molecular architecture of hetero-oligomeric ferritins confer distinct functionality to isoferritins is essential to understanding how the structural intricacies of H and L subunits influence their interactions with cellular machinery. In this study, ferritin heteropolymers with specific H to L subunit ratios were synthesized using a uniquely engineered plasmid design, followed by high-resolution cryo-electron microscopy analysis and deep learning-based amino acid modeling. Our structural examination revealed unique architectural features during the self-assembly mechanism of heteropolymer ferritins and demonstrated a significant preference for H-L heterodimer formation over H-H or L-L homodimers. Unexpectedly, while dimers seem essential building blocks in the protein self-assembly process, the overall mechanism of ferritin self-assembly is observed to proceed randomly through diverse pathways. The physiological significance of these findings is discussed including how ferritin microheterogeneity could represent a tissue-specific adaptation process that imparts distinctive tissue-specific functions to isoferritins.
PMID:38995055 | DOI:10.1002/pro.5104
Hierarchical multi-task deep learning-assisted construction of human gut microbiota reactive oxygen species-scavenging enzymes database
mSphere. 2024 Jul 12:e0034624. doi: 10.1128/msphere.00346-24. Online ahead of print.
ABSTRACT
In the process of oxygen reduction, reactive oxygen species (ROS) are generated as intermediates, including superoxide anion (O2-), hydrogen peroxide (H2O2), and hydroxyl radicals (OH-). ROS can be destructive, and an imbalance between oxidants and antioxidants in the body can lead to pathological inflammation. Inappropriate ROS production can cause oxidative damage, disrupting the balance in the body and potentially leading to DNA damage in intestinal epithelial cells and beneficial bacteria. Microorganisms have evolved various enzymes to mitigate the harmful effects of ROS. Accurately predicting the types of ROS-scavenging enzymes (ROSes) is crucial for understanding the oxidative stress mechanisms and formulating strategies to combat diseases related to the "gut-organ axis." Currently, there are no available ROSes databases (DBs). In this study, we propose a systematic workflow comprising three modules and employ a hierarchical multi-task deep learning approach to collect, expand, and explore ROSes-related entries. Based on this, we have developed the human gut microbiota ROSes DB (http://39.101.72.186/), which includes 7,689 entries. This DB provides user-friendly browsing and search features to support various applications. With the assistance of ROSes DB, various communication-based microbial interactions can be explored, further enabling the construction and analysis of the evolutionary and complex networks of ROSes DB in human gut microbiota species.IMPORTANCEReactive oxygen species (ROS) is generated during the process of oxygen reduction, including superoxide anion, hydrogen peroxide, and hydroxyl radicals. ROS can potentially cause damage to cells and DNA, leading to pathological inflammation within the body. Microorganisms have evolved various enzymes to mitigate the harmful effects of ROS, thereby maintaining a balance of microorganisms within the host. The study highlights the current absence of a ROSes DB, emphasizing the crucial importance of accurately predicting the types of ROSes for understanding oxidative stress mechanisms and developing strategies for diseases related to the "gut-organ axis." This research proposes a systematic workflow and employs a multi-task deep learning approach to establish the human gut microbiota ROSes DB. This DB comprises 7,689 entries and serves as a valuable tool for researchers to delve into the role of ROSes in the human gut microbiota.
PMID:38995053 | DOI:10.1128/msphere.00346-24
Development and clinical validation of a deep learning-based knee CT image segmentation method for robotic-assisted total knee arthroplasty
Int J Med Robot. 2024 Aug;20(4):e2664. doi: 10.1002/rcs.2664.
ABSTRACT
BACKGROUND: This study aimed to develop a novel deep convolutional neural network called Dual-path Double Attention Transformer (DDA-Transformer) designed to achieve precise and fast knee joint CT image segmentation and to validate it in robotic-assisted total knee arthroplasty (TKA).
METHODS: The femoral, tibial, patellar, and fibular segmentation performance and speed were evaluated and the accuracy of component sizing, bone resection and alignment of the robotic-assisted TKA system constructed using this deep learning network was clinically validated.
RESULTS: Overall, DDA-Transformer outperformed six other networks in terms of the Dice coefficient, intersection over union, average surface distance, and Hausdorff distance. DDA-Transformer exhibited significantly faster segmentation speeds than nnUnet, TransUnet and 3D-Unet (p < 0.01). Furthermore, the robotic-assisted TKA system outperforms the manual group in surgical accuracy.
CONCLUSIONS: DDA-Transformer exhibited significantly improved accuracy and robustness in knee joint segmentation, and this convenient and stable knee joint CT image segmentation network significantly improved the accuracy of the TKA procedure.
PMID:38994900 | DOI:10.1002/rcs.2664
Unveiling the secrets of gastrointestinal mucous adenocarcinoma survival after surgery with artificial intelligence: A population-based study
World J Gastrointest Oncol. 2024 Jun 15;16(6):2404-2418. doi: 10.4251/wjgo.v16.i6.2404.
ABSTRACT
BACKGROUND: Research on gastrointestinal mucosal adenocarcinoma (GMA) is limited and controversial, and there is no reference tool for predicting postoperative survival.
AIM: To investigate the prognosis of GMA and develop predictive model.
METHODS: From the Surveillance, Epidemiology, and End Results database, we collected clinical information on patients with GMA. After random sampling, the patients were divided into the discovery (70% of the total, for model training), validation (20%, for model evaluation), and completely blind test cohorts (10%, for further model evaluation). The main assessment metric was the area under the receiver operating characteristic curve (AUC). All collected clinical features were used for Cox proportional hazard regression analysis to determine factors influencing GMA's prognosis.
RESULTS: This model had an AUC of 0.7433 [95% confidence intervals (95%CI): 0.7424-0.7442] in the discovery cohort, 0.7244 (GMA: 0.7234-0.7254) in the validation cohort, and 0.7388 (95%CI: 0.7378-0.7398) in the test cohort. We packaged it into Windows software for doctors' use and uploaded it. Mucinous gastric adenocarcinoma had the worst prognosis, and these were protective factors of GMA: Regional nodes examined [hazard ratio (HR): 0.98, 95%CI: 0.97-0.98, P < 0.001)] and chemotherapy (HR: 0.62, 95%CI: 0.58-0.66, P < 0.001).
CONCLUSION: The deep learning-based tool developed can accurately predict the overall survival of patients with GMA postoperatively. Combining surgery, chemotherapy, and adequate lymph node dissection during surgery can improve patient outcomes.
PMID:38994138 | PMC:PMC11236227 | DOI:10.4251/wjgo.v16.i6.2404
Natural language processing in the classification of radiology reports in benign gallbladder diseases
Radiol Bras. 2024 Jun 26;57:e20230096en. doi: 10.1590/0100-3984.2023.0096-en. eCollection 2024 Jan-Dec.
ABSTRACT
OBJECTIVE: To develop a natural language processing application capable of automatically identifying benign gallbladder diseases that require surgery, from radiology reports.
MATERIALS AND METHODS: We developed a text classifier to classify reports as describing benign diseases of the gallbladder that do or do not require surgery. We randomly selected 1,200 reports describing the gallbladder from our database, including different modalities. Four radiologists classified the reports as describing benign disease that should or should not be treated surgically. Two deep learning architectures were trained for classification: a convolutional neural network (CNN) and a bidirectional long short-term memory (BiLSTM) network. In order to represent words in vector form, the models included a Word2Vec representation, with dimensions of 300 or 1,000. The models were trained and evaluated by dividing the dataset into training, validation, and subsets (80/10/10).
RESULTS: The CNN and BiLSTM performed well in both dimensional spaces. For the 300- and 1,000-dimensional spaces, respectively, the F1-scores were 0.95945 and 0.95302 for the CNN model, compared with 0.96732 and 0.96732 for the BiLSTM model.
CONCLUSION: Our models achieved high performance, regardless of the architecture and dimensional space employed.
PMID:38993952 | PMC:PMC11235066 | DOI:10.1590/0100-3984.2023.0096-en
Counting nematodes made easy: leveraging AI-powered automation for enhanced efficiency and precision
Front Plant Sci. 2024 Jun 26;15:1349209. doi: 10.3389/fpls.2024.1349209. eCollection 2024.
ABSTRACT
Counting nematodes is a labor-intensive and time-consuming task, yet it is a pivotal step in various quantitative nematological studies; preparation of initial population densities and final population densities in pot, micro-plot and field trials for different objectives related to management including sampling and location of nematode infestation foci. Nematologists have long battled with the complexities of nematode counting, leading to several research initiatives aimed at automating this process. However, these research endeavors have primarily focused on identifying single-class objects within individual images. To enhance the practicality of this technology, there's a pressing need for an algorithm that cannot only detect but also classify multiple classes of objects concurrently. This study endeavors to tackle this challenge by developing a user-friendly Graphical User Interface (GUI) that comprises multiple deep learning algorithms, allowing simultaneous recognition and categorization of nematode eggs and second stage juveniles of Meloidogyne spp. In total of 650 images for eggs and 1339 images for juveniles were generated using two distinct imaging systems, resulting in 8655 eggs and 4742 Meloidogyne juveniles annotated using bounding box and segmentation, respectively. The deep-learning models were developed by leveraging the Convolutional Neural Networks (CNNs) machine learning architecture known as YOLOv8x. Our results showed that the models correctly identified eggs as eggs and Meloidogyne juveniles as Meloidogyne juveniles in 94% and 93% of instances, respectively. The model demonstrated higher than 0.70 coefficient correlation between model predictions and observations on unseen images. Our study has showcased the potential utility of these models in practical applications for the future. The GUI is made freely available to the public through the author's GitHub repository (https://github.com/bresilla/nematode_counting). While this study currently focuses on one genus, there are plans to expand the GUI's capabilities to include other economically significant genera of plant parasitic nematodes. Achieving these objectives, including enhancing the models' accuracy on different imaging systems, may necessitate collaboration among multiple nematology teams and laboratories, rather than being the work of a single entity. With the increasing interest among nematologists in harnessing machine learning, the authors are confident in the potential development of a universal automated nematode counting system accessible to all. This paper aims to serve as a framework and catalyst for initiating global collaboration toward this important goal.
PMID:38993936 | PMC:PMC11238600 | DOI:10.3389/fpls.2024.1349209
Development of a portable device to quantify hepatic steatosis in potential donor livers
Front Transplant. 2023 Jun 23;2:1206085. doi: 10.3389/frtra.2023.1206085. eCollection 2023.
ABSTRACT
An accurate estimation of liver fat content is necessary to predict how a donated liver will function after transplantation. Currently, a pathologist needs to be available at all hours of the day, even at remote hospitals, when an organ donor is procured. Even among expert pathologists, the estimation of liver fat content is operator-dependent. Here we describe the development of a low-cost, end-to-end artificial intelligence platform to evaluate liver fat content on a donor liver biopsy slide in real-time. The hardware includes a high-resolution camera, display, and GPU to acquire and process donor liver biopsy slides. A deep learning model was trained to label and quantify fat globules in liver tissue. The algorithm was deployed on the device to enable real-time quantification and characterization of fat content for transplant decision-making. This information is displayed on the device and can also be sent to a cloud platform for further analysis.
PMID:38993883 | PMC:PMC11235317 | DOI:10.3389/frtra.2023.1206085
Radiographic Findings Associated With Mild Hip Dysplasia in 3869 Patients Using a Deep Learning Measurement Tool
Arthroplast Today. 2024 Jun 18;28:101398. doi: 10.1016/j.artd.2024.101398. eCollection 2024 Aug.
ABSTRACT
BACKGROUND: Hip dysplasia is considered one of the leading etiologies contributing to hip degeneration and the eventual need for total hip arthroplasty (THA). We validated a deep learning (DL) algorithm to measure angles relevant to hip dysplasia and applied this algorithm to determine the prevalence of dysplasia in a large population based on incremental radiographic cutoffs.
METHODS: Patients from the Osteoarthritis Initiative with anteroposterior pelvis radiographs and without previous THAs were included. A DL algorithm automated 3 angles associated with hip dysplasia: modified lateral center-edge angle (LCEA), Tönnis angle, and modified Sharp angle. The algorithm was validated against manual measurements, and all angles were measured in a cohort of 3869 patients (61.2 ± 9.2 years, 57.1% female). The percentile distributions and prevalence of dysplastic hips were analyzed using each angle.
RESULTS: The algorithm had no significant difference (P > .05) in measurements (paired difference: 0.3°-0.7°) against readers and had excellent agreement for dysplasia classification (kappa = 0.78-0.88). In 140 minutes, 23,214 measurements were automated for 3869 patients. LCEA and Sharp angles were higher and the Tönnis angle was lower (P < .01) in females. The dysplastic hip prevalence varied from 2.5% to 20% utilizing the following cutoffs: 17.3°-25.5° (LCEA), 9.4°-15.6° (Tönnis), and 41.3°-45.9° (Sharp).
CONCLUSIONS: A DL algorithm was developed to measure and classify hips with mild hip dysplasia. The reported prevalence of dysplasia in a large patient cohort was dependent on both the measurement and threshold, with 12.4% of patients having dysplasia radiographic indices indicative of higher THA risk.
PMID:38993836 | PMC:PMC11237356 | DOI:10.1016/j.artd.2024.101398
Deep learning-based recommendation system for metal-organic frameworks (MOFs)
Digit Discov. 2024 Jun 10;3(7):1410-1420. doi: 10.1039/d4dd00116h. eCollection 2024 Jul 10.
ABSTRACT
This work presents a recommendation system for metal-organic frameworks (MOFs) inspired by online content platforms. By leveraging the unsupervised Doc2Vec model trained on document-structured intrinsic MOF characteristics, the model embeds MOFs into a high-dimensional chemical space and suggests a pool of promising materials for specific applications based on user-endorsed MOFs with similarity analysis. This proposed approach significantly reduces the need for exhaustive labeling of every material in the database, focusing instead on a select fraction for in-depth investigation. Ranging from methane storage and carbon capture to quantum properties, this study illustrates the system's adaptability to various applications.
PMID:38993728 | PMC:PMC11235176 | DOI:10.1039/d4dd00116h
Examining feature extraction and classification modules in machine learning for diagnosis of low-dose computed tomographic screening-detected <em>in vivo</em> lesions
J Med Imaging (Bellingham). 2024 Jul;11(4):044501. doi: 10.1117/1.JMI.11.4.044501. Epub 2024 Jul 9.
ABSTRACT
PURPOSE: Medical imaging-based machine learning (ML) for computer-aided diagnosis of in vivo lesions consists of two basic components or modules of (i) feature extraction from non-invasively acquired medical images and (ii) feature classification for prediction of malignancy of lesions detected or localized in the medical images. This study investigates their individual performances for diagnosis of low-dose computed tomography (CT) screening-detected lesions of pulmonary nodules and colorectal polyps.
APPROACH: Three feature extraction methods were investigated. One uses the mathematical descriptor of gray-level co-occurrence image texture measure to extract the Haralick image texture features (HFs). One uses the convolutional neural network (CNN) architecture to extract deep learning (DL) image abstractive features (DFs). The third one uses the interactions between lesion tissues and X-ray energy of CT to extract tissue-energy specific characteristic features (TFs). All the above three categories of extracted features were classified by the random forest (RF) classifier with comparison to the DL-CNN method, which reads the images, extracts the DFs, and classifies the DFs in an end-to-end manner. The ML diagnosis of lesions or prediction of lesion malignancy was measured by the area under the receiver operating characteristic curve (AUC). Three lesion image datasets were used. The lesions' tissue pathological reports were used as the learning labels.
RESULTS: Experiments on the three datasets produced AUC values of 0.724 to 0.878 for the HFs, 0.652 to 0.965 for the DFs, and 0.985 to 0.996 for the TFs, compared to the DL-CNN of 0.694 to 0.964. These experimental outcomes indicate that the RF classifier performed comparably to the DL-CNN classification module and the extraction of tissue-energy specific characteristic features dramatically improved AUC value.
CONCLUSIONS: The feature extraction module is more important than the feature classification module. Extraction of tissue-energy specific characteristic features is more important than extraction of image abstractive and characteristic features.
PMID:38993628 | PMC:PMC11234229 | DOI:10.1117/1.JMI.11.4.044501
Alleviating tiling effect by random walk sliding window in high-resolution histological whole slide image synthesis
Proc Mach Learn Res. 2024;227:1406-1422.
ABSTRACT
Multiplex immunofluorescence (MxIF) is an advanced molecular imaging technique that can simultaneously provide biologists with multiple (i.e., more than 20) molecular markers on a single histological tissue section. Unfortunately, due to imaging restrictions, the more routinely used hematoxylin and eosin (H&E) stain is typically unavailable with MxIF on the same tissue section. As biological H&E staining is not feasible, previous efforts have been made to obtain H&E whole slide image (WSI) from MxIF via deep learning empowered virtual staining. However, the tiling effect is a long-lasting problem in high-resolution WSI-wise synthesis. The MxIF to H&E synthesis is no exception. Limited by computational resources, the cross-stain image synthesis is typically performed at the patch-level. Thus, discontinuous intensities might be visually identified along with the patch boundaries assembling all individual patches back to a WSI. In this work, we propose a deep learning based unpaired high-resolution image synthesis method to obtain virtual H&E WSIs from MxIF WSIs (each with 27 markers/stains) with reduced tiling effects. Briefly, we first extend the CycleGAN framework by adding simultaneous nuclei and mucin segmentation supervision as spatial constraints. Then, we introduce a random walk sliding window shifting strategy during the optimized inference stage, to alleviate the tiling effects. The validation results show that our spatially constrained synthesis method achieves a 56% performance gain for the downstream cell segmentation task. The proposed inference method reduces the tiling effects by using 50% fewer computation resources without compromising performance. The proposed random sliding window inference method is a plug-and-play module, which can be generalized for other high-resolution WSI image synthesis applications. The source code with our proposed model are available at https://github.com/MASILab/RandomWalkSlidingWindow.git.
PMID:38993526 | PMC:PMC11238901