Deep learning
RevGraphVAMP: A protein molecular simulation analysis model combining graph convolutional neural networks and physical constraints
Methods. 2024 Jul 5:S1046-2023(24)00161-0. doi: 10.1016/j.ymeth.2024.06.011. Online ahead of print.
ABSTRACT
Molecular simulation (MD) is a crucial research domain within the life sciences, focusing on comprehending the mechanisms of biomolecular interactions at atomic scales. Protein simulation, as a critical subfield, often utilizes MD for implementation, with trajectory data play a pivotal role in drug discovery. The advancement of high-performance computing and deep learning technology becomes popular and critical to predict protein properties from vast trajectory data, posing challenges regarding data features extraction from the complicated simulation data and dimensionality reduction. Simultaneously, it is essential to provide a meaningful explanation of the biological mechanism behind dimensionality. To tackle this challenge, we propose a new unsupervised model named RevGraphVAMP to intelligently analyze the simulation trajectory. This model is based on the variational approach for Markov processes (VAMP) and integrates graph convolutional neural networks and physical constraint optimization to enhance the learning performance. Additionally, we introduce attention mechanism to assess the importance of key interaction region, facilitating the interpretation of molecular mechanism. In comparison to other VAMPNets models, our model showcases competitive performance, improved accuracy in state transition prediction, as demonstrated through its application to two public datasets and the Shank3-Rap1 complex, which is associated with autism spectrum disorder. Moreover, it enhanced dimensionality reduction discrimination across different substates and provides interpretable results for protein structural characterization.
PMID:38972499 | DOI:10.1016/j.ymeth.2024.06.011
Machine learning for high-precision simulation of dissolved organic matter in sewer: Overcoming data restrictions with generative adversarial networks
Sci Total Environ. 2024 Jul 5:174469. doi: 10.1016/j.scitotenv.2024.174469. Online ahead of print.
ABSTRACT
Understanding the transformation process of dissolved organic matter (DOM) in the sewer is imperative for comprehending material circulation and energy flow within the sewer. The machine learning (ML) model provides a feasible way to comprehend and simulate the DOM transformation process in the sewer. In contrast, the model accuracy is limited by data restriction. In this study, a novel framework by integrating generative adversarial network algorithm-machine learning models (GAN-ML) was established to overcome the drawbacks caused by the data restriction in the simulation of the DOM transformation process, and humification index (HIX) was selected as the output variable to evaluate the model performance. Results indicate that the GAN algorithm's virtual dataset could generally enhance the simulation performance of regression models, deep learning models, and ensemble models for the DOM transformation process The highest prediction accuracy on HIX (R2 of 0.5389 and RMSE of 0.0273) was achieved by the adaptive boosting model which belongs to ensemble models trained by the virtual dataset of 1000 samples. Interpretability analysis revealed that dissolved oxygen (DO) and pH emerge as critical factors warranting attention for the future development of management strategies to regulate the DOM transformation process in sewers. The integrated framework proposed a potential approach for the comprehensive understanding and high-precision simulation of the DOM transformation process, paving the way for advancing sewer management strategy under data restriction.
PMID:38972419 | DOI:10.1016/j.scitotenv.2024.174469
Towards transferable metamodels for water distribution systems with edge-based graph neural networks
Water Res. 2024 Jun 20;261:121933. doi: 10.1016/j.watres.2024.121933. Online ahead of print.
ABSTRACT
Data-driven metamodels reproduce the input-output mapping of physics-based models while significantly reducing simulation times. Such techniques are widely used in the design, control, and optimization of water distribution systems. Recent research highlights the potential of metamodels based on Graph Neural Networks as they efficiently leverage graph-structured characteristics of water distribution systems. Furthermore, these metamodels possess inductive biases that facilitate generalization to unseen topologies. Transferable metamodels are particularly advantageous for problems that require an efficient evaluation of many alternative layouts or when training data is scarce. However, the transferability of metamodels based on GNNs remains limited, due to the lack of representation of physical processes that occur on edge level, i.e. pipes. To address this limitation, our work introduces Edge-Based Graph Neural Networks, which extend the set of inductive biases and represent link-level processes in more detail than traditional Graph Neural Networks. Such an architecture is theoretically related to the constraints of mass conservation at the junctions. To verify our approach, we test the suitability of the edge-based network to estimate pipe flowrates and nodal pressures emulating steady-state EPANET simulations. We first compare the effectiveness of the metamodels on several benchmark water distribution systems against Graph Neural Networks. Then, we explore transferability by evaluating the performance on unseen systems. For each configuration, we calculate model performance metrics, such as coefficient of determination and speed-up with respect to the original numerical model. Our results show that the proposed method captures the pipe-level physical processes more accurately than node-based models. When tested on unseen water networks with a similar distribution of demands, our model retains a good generalization performance with a coefficient of determination of up to 0.98 for flowrates and up to 0.95 for predicted heads. Further developments could include simultaneous derivation of pressures and flowrates.
PMID:38972234 | DOI:10.1016/j.watres.2024.121933
CoTCoNet: An optimized coupled transformer-convolutional network with an adaptive graph reconstruction for leukemia detection
Comput Biol Med. 2024 Jul 6;179:108821. doi: 10.1016/j.compbiomed.2024.108821. Online ahead of print.
ABSTRACT
BACKGROUND: Swift and accurate blood smear analyses are crucial for diagnosing leukemia and other hematological malignancies. However, manual leukocyte count and morphological evaluation remain time-consuming and prone to errors. Additionally, conventional image processing methods struggle to differentiate cells due to visual similarities between malignant and benign cell morphology.
METHOD: In response to above challenges, we propose Coupled Transformer Convolutional Network (CoTCoNet) framework for leukemia classification. CoTCoNet integrates dual-feature extraction to capture long-range global features and fine-grained spatial patterns, facilitating the identification of complex hematological characteristics. Additionally, the framework employs a graph-based module to uncover hidden, biologically relevant features of leukocyte cells, along with a Population-based Meta-Heuristic Algorithm for feature selection and optimization. Furthermore, we introduce a novel combination of leukocyte segmentation and synthesis, which isolates relevant regions while augmenting the training dataset with realistic leukocyte samples. This strategy isolates relevant regions while augmenting the training data with realistic leukocyte samples, enhancing feature extraction, and addressing data scarcity without compromising data integrity.
RESULTS: We evaluated CoTCoNet on a dataset of 16,982 annotated cells, achieving an accuracy of 0.9894 and an F1-Score of 0.9893. We tested CoTCoNet on four diverse, publicly available datasets (including those above) to assess generalizability. Results demonstrate a significant performance improvement over existing state-of-the-art approaches.
CONCLUSIONS: CoTCoNet represents a significant advancement in leukemia classification, offering enhanced accuracy and efficiency compared to traditional methods. By incorporating explainable visualizations that closely align with cell annotations, the framework provides deeper insights into its decision-making process, further solidifying its potential in clinical settings.
PMID:38972153 | DOI:10.1016/j.compbiomed.2024.108821
LVPocket: integrated 3D global-local information to protein binding pockets prediction with transfer learning of protein structure classification
J Cheminform. 2024 Jul 7;16(1):79. doi: 10.1186/s13321-024-00871-8.
ABSTRACT
BACKGROUND: Previous deep learning methods for predicting protein binding pockets mainly employed 3D convolution, yet an abundance of convolution operations may lead the model to excessively prioritize local information, thus overlooking global information. Moreover, it is essential for us to account for the influence of diverse protein folding structural classes. Because proteins classified differently structurally exhibit varying biological functions, whereas those within the same structural class share similar functional attributes.
RESULTS: We proposed LVPocket, a novel method that synergistically captures both local and global information of protein structure through the integration of Transformer encoders, which help the model achieve better performance in binding pockets prediction. And then we tailored prediction models for data of four distinct structural classes of proteins using the transfer learning. The four fine-tuned models were trained on the baseline LVPocket model which was trained on the sc-PDB dataset. LVPocket exhibits superior performance on three independent datasets compared to current state-of-the-art methods. Additionally, the fine-tuned model outperforms the baseline model in terms of performance.
SCIENTIFIC CONTRIBUTION: We present a novel model structure for predicting protein binding pockets that provides a solution for relying on extensive convolutional computation while neglecting global information about protein structures. Furthermore, we tackle the impact of different protein folding structures on binding pocket prediction tasks through the application of transfer learning methods.
PMID:38972994 | DOI:10.1186/s13321-024-00871-8
Mining the interpretable prognostic features from pathological image of intrahepatic cholangiocarcinoma using multi-modal deep learning
BMC Med. 2024 Jul 8;22(1):282. doi: 10.1186/s12916-024-03482-0.
ABSTRACT
BACKGROUND: The advances in deep learning-based pathological image analysis have invoked tremendous insights into cancer prognostication. Still, lack of interpretability remains a significant barrier to clinical application.
METHODS: We established an integrative prognostic neural network for intrahepatic cholangiocarcinoma (iCCA), towards a comprehensive evaluation of both architectural and fine-grained information from whole-slide images. Then, leveraging on multi-modal data, we conducted extensive interrogative approaches to the models, to extract and visualize the morphological features that most correlated with clinical outcome and underlying molecular alterations.
RESULTS: The models were developed and optimized on 373 iCCA patients from our center and demonstrated consistent accuracy and robustness on both internal (n = 213) and external (n = 168) cohorts. The occlusion sensitivity map revealed that the distribution of tertiary lymphoid structures, the geometric traits of the invasive margin, the relative composition of tumor parenchyma and stroma, the extent of necrosis, the presence of the disseminated foci, and the tumor-adjacent micro-vessels were the determining architectural features that impacted on prognosis. Quantifiable morphological vector extracted by CellProfiler demonstrated that tumor nuclei from high-risk patients exhibited significant larger size, more distorted shape, with less prominent nuclear envelope and textural contrast. The multi-omics data (n = 187) further revealed key molecular alterations left morphological imprints that could be attended by the network, including glycolysis, hypoxia, apical junction, mTORC1 signaling, and immune infiltration.
CONCLUSIONS: We proposed an interpretable deep-learning framework to gain insights into the biological behavior of iCCA. Most of the significant morphological prognosticators perceived by the network are comprehensible to human minds.
PMID:38972973 | DOI:10.1186/s12916-024-03482-0
Applications of machine learning to MR imaging of pediatric low-grade gliomas
Childs Nerv Syst. 2024 Jul 8. doi: 10.1007/s00381-024-06522-5. Online ahead of print.
ABSTRACT
INTRODUCTION: Machine learning (ML) shows promise for the automation of routine tasks related to the treatment of pediatric low-grade gliomas (pLGG) such as tumor grading, typing, and segmentation. Moreover, it has been shown that ML can identify crucial information from medical images that is otherwise currently unattainable. For example, ML appears to be capable of preoperatively identifying the underlying genetic status of pLGG.
METHODS: In this chapter, we reviewed, to the best of our knowledge, all published works that have used ML techniques for the imaging-based evaluation of pLGGs. Additionally, we aimed to provide some context on what it will take to go from the exploratory studies we reviewed to clinically deployed models.
RESULTS: Multiple studies have demonstrated that ML can accurately grade, type, and segment and detect the genetic status of pLGGs. We compared the approaches used between the different studies and observed a high degree of variability throughout the methodologies. Standardization and cooperation between the numerous groups working on these approaches will be key to accelerating the clinical deployment of these models.
CONCLUSION: The studies reviewed in this chapter detail the potential for ML techniques to transform the treatment of pLGG. However, there are still challenges that need to be overcome prior to clinical deployment.
PMID:38972953 | DOI:10.1007/s00381-024-06522-5
A deep learning-driven discovery of berberine derivatives as novel antibacterial against multidrug-resistant Helicobacter pylori
Signal Transduct Target Ther. 2024 Jul 8;9(1):183. doi: 10.1038/s41392-024-01895-0.
ABSTRACT
Helicobacter pylori (H. pylori) is currently recognized as the primary carcinogenic pathogen associated with gastric tumorigenesis, and its high prevalence and resistance make it difficult to tackle. A graph neural network-based deep learning model, employing different training sets of 13,638 molecules for pre-training and fine-tuning, was aided in predicting and exploring novel molecules against H. pylori. A positively predicted novel berberine derivative 8 with 3,13-disubstituted alkene exhibited a potency against all tested drug-susceptible and resistant H. pylori strains with minimum inhibitory concentrations (MICs) of 0.25-0.5 μg/mL. Pharmacokinetic studies demonstrated an ideal gastric retention of 8, with the stomach concentration significantly higher than its MIC at 24 h post dose. Oral administration of 8 and omeprazole (OPZ) showed a comparable gastric bacterial reduction (2.2-log reduction) to the triple-therapy, namely OPZ + amoxicillin (AMX) + clarithromycin (CLA) without obvious disturbance on the intestinal flora. A combination of OPZ, AMX, CLA, and 8 could further decrease the bacteria load (2.8-log reduction). More importantly, the mono-therapy of 8 exhibited comparable eradication to both triple-therapy (OPZ + AMX + CLA) and quadruple-therapy (OPZ + AMX + CLA + bismuth citrate) groups. SecA and BamD, playing a major role in outer membrane protein (OMP) transport and assembling, were identified and verified as the direct targets of 8 by employing the chemoproteomics technique. In summary, by targeting the relatively conserved OMPs transport and assembling system, 8 has the potential to be developed as a novel anti-H. pylori candidate, especially for the eradication of drug-resistant strains.
PMID:38972904 | DOI:10.1038/s41392-024-01895-0
Ensemble Machine Learning and Predicted Properties Promote Antimicrobial Peptide Identification
Interdiscip Sci. 2024 Jul 7. doi: 10.1007/s12539-024-00640-z. Online ahead of print.
ABSTRACT
The emergence of antibiotic-resistant microbes raises a pressing demand for novel alternative treatments. One promising alternative is the antimicrobial peptides (AMPs), a class of innate immunity mediators within the therapeutic peptide realm. AMPs offer salient advantages such as high specificity, cost-effective synthesis, and reduced toxicity. Although some computational methodologies have been proposed to identify potential AMPs with the rapid development of artificial intelligence techniques, there is still ample room to improve their performance. This study proposes a predictive framework which ensembles deep learning and statistical learning methods to screen peptides with antimicrobial activity. We integrate multiple LightGBM classifiers and convolution neural networks which leverages various predicted sequential, structural and physicochemical properties from their residue sequences extracted by diverse machine learning paradigms. Comparative experiments exhibit that our method outperforms other state-of-the-art approaches on an independent test dataset, in terms of representative capability measures. Besides, we analyse the discrimination quality under different varieties of attribute information and it reveals that combination of multiple features could improve prediction. In addition, a case study is carried out to illustrate the exemplary favorable identification effect. We establish a web application at http://amp.denglab.org to provide convenient usage of our proposal and make the predictive framework, source code, and datasets publicly accessible at https://github.com/researchprotein/amp .
PMID:38972032 | DOI:10.1007/s12539-024-00640-z
Leveraging advances in data-driven deep learning methods for hybrid epidemic modeling
Epidemics. 2024 Jun 24;48:100782. doi: 10.1016/j.epidem.2024.100782. Online ahead of print.
ABSTRACT
Mathematical modeling of epidemic dynamics is crucial to understand its underlying mechanisms, quantify important parameters, and make predictions that facilitate more informed decision-making. There are three major types of models: mechanistic models including the SEIR-type paradigm, alternative data-driven (DD) approaches, and hybrid models that combine mechanistic models with DD approaches. In this paper, we summarize our work in the COVID-19 Scenario Modeling Hub (SMH) for more than 12 rounds since early 2021 for informed decision support. We emphasize the importance of deep learning techniques for epidemic modeling via a flexible DD framework that substantially complements the mechanistic paradigm to evaluate various future epidemic scenarios. We start with a traditional curve-fitting approach to model cumulative COVID-19 based on the underlying SEIR-type mechanisms. Hospitalizations and deaths are modeled as binomial processes of cases and hospitalization, respectively. We further formulate two types of deep learning models based on multivariate long short term memory (LSTM) to address the challenges of more traditional DD models. The first LSTM is structurally similar to the curve fitting approach and assumes that hospitalizations and deaths are binomial processes of cases. Instead of using a predefined exponential curve, LSTM relies on the underlying data to identify the most appropriate functions, and is capable of capturing both long-term and short-term epidemic behaviors. We then relax the assumption of dependent inputs among cases, hospitalizations, and death. Another type of LSTM that handles all input time series as parallel signals, the independent multivariate LSTM, is developed. Independent multivariate LSTM can incorporate a wide range of data sources beyond traditional case-based epidemiological surveillance. The DD framework unleashes its potential in big data era with previously neglected heterogeneous surveillance data sources, such as syndromic, environment, genomic, serologic, infoveillance, and mobility data. DD approaches, especially LSTM, complement and integrate with the mechanistic modeling paradigm, provide a feasible alternative approach to model today's complex socio-epidemiological systems, and further leverage our ability to explore different scenarios for more informed decision-making during health emergencies.
PMID:38971085 | DOI:10.1016/j.epidem.2024.100782
A geometric approach to robust medical image segmentation
Med Image Anal. 2024 Jun 29;97:103260. doi: 10.1016/j.media.2024.103260. Online ahead of print.
ABSTRACT
Robustness of deep learning segmentation models is crucial for their safe incorporation into clinical practice. However, these models can falter when faced with distributional changes. This challenge is evident in magnetic resonance imaging (MRI) scans due to the diverse acquisition protocols across various domains, leading to differences in image characteristics such as textural appearances. We posit that the restricted anatomical differences between subjects could be harnessed to refine the latent space into a set of shape components. The learned set then aims to encompass the relevant anatomical shape variation found within the patient population. We explore this by utilising multiple MRI sequences to learn texture invariant and shape equivariant features which are used to construct a shape dictionary using vector quantisation. We investigate shape equivariance to a number of different types of groups. We hypothesise and prove that the greater the group order, i.e., the denser the constraint, the better becomes the model robustness. We achieve shape equivariance either with a contrastive based approach or by imposing equivariant constraints on the convolutional kernels. The resulting shape equivariant dictionary is then sampled to compose the segmentation output. Our method achieves state-of-the-art performance for the task of single domain generalisation for prostate and cardiac MRI segmentation. Code is available at https://github.com/AinkaranSanthi/A_Geometric_Perspective_For_Robust_Segmentation.
PMID:38970862 | DOI:10.1016/j.media.2024.103260
Advancing common bean (Phaseolus vulgaris L.) disease detection with YOLO driven deep learning to enhance agricultural AI
Sci Rep. 2024 Jul 6;14(1):15596. doi: 10.1038/s41598-024-66281-w.
ABSTRACT
Common beans (CB), a vital source for high protein content, plays a crucial role in ensuring both nutrition and economic stability in diverse communities, particularly in Africa and Latin America. However, CB cultivation poses a significant threat to diseases that can drastically reduce yield and quality. Detecting these diseases solely based on visual symptoms is challenging, due to the variability across different pathogens and similar symptoms caused by distinct pathogens, further complicating the detection process. Traditional methods relying solely on farmers' ability to detect diseases is inadequate, and while engaging expert pathologists and advanced laboratories is necessary, it can also be resource intensive. To address this challenge, we present a AI-driven system for rapid and cost-effective CB disease detection, leveraging state-of-the-art deep learning and object detection technologies. We utilized an extensive image dataset collected from disease hotspots in Africa and Colombia, focusing on five major diseases: Angular Leaf Spot (ALS), Common Bacterial Blight (CBB), Common Bean Mosaic Virus (CBMV), Bean Rust, and Anthracnose, covering both leaf and pod samples in real-field settings. However, pod images are only available for Angular Leaf Spot disease. The study employed data augmentation techniques and annotation at both whole and micro levels for comprehensive analysis. To train the model, we utilized three advanced YOLO architectures: YOLOv7, YOLOv8, and YOLO-NAS. Particularly for whole leaf annotations, the YOLO-NAS model achieves the highest mAP value of up to 97.9% and a recall of 98.8%, indicating superior detection accuracy. In contrast, for whole pod disease detection, YOLOv7 and YOLOv8 outperformed YOLO-NAS, with mAP values exceeding 95% and 93% recall. However, micro annotation consistently yields lower performance than whole annotation across all disease classes and plant parts, as examined by all YOLO models, highlighting an unexpected discrepancy in detection accuracy. Furthermore, we successfully deployed YOLO-NAS annotation models into an Android app, validating their effectiveness on unseen data from disease hotspots with high classification accuracy (90%). This accomplishment showcases the integration of deep learning into our production pipeline, a process known as DLOps. This innovative approach significantly reduces diagnosis time, enabling farmers to take prompt management interventions. The potential benefits extend beyond rapid diagnosis serving as an early warning system to enhance common bean productivity and quality.
PMID:38971939 | DOI:10.1038/s41598-024-66281-w
Deep learning CT reconstruction improves liver metastases detection
Insights Imaging. 2024 Jul 6;15(1):167. doi: 10.1186/s13244-024-01753-1.
ABSTRACT
OBJECTIVES: Detection of liver metastases is crucial for guiding oncological management. Computed tomography through iterative reconstructions is widely used in this indication but has certain limitations. Deep learning image reconstructions (DLIR) use deep neural networks to achieve a significant noise reduction compared to iterative reconstructions. While reports have demonstrated improvements in image quality, their impact on liver metastases detection remains unclear. Our main objective was to determine whether DLIR affects the number of detected liver metastasis. Our secondary objective was to compare metastases conspicuity between the two reconstruction methods.
METHODS: CT images of 121 patients with liver metastases were reconstructed using a 50% adaptive statistical iterative reconstruction (50%-ASiR-V), and three levels of DLIR (DLIR-low, DLIR-medium, and DLIR-high). For each reconstruction, two double-blinded radiologists counted up to a maximum of ten metastases. Visibility and contour definitions were also assessed. Comparisons between methods for continuous parameters were performed using mixed models.
RESULTS: A higher number of metastases was detected by one reader with DLIR-high: 7 (2-10) (median (Q₁-Q₃); total 733) versus 5 (2-10), respectively for DLIR-medium, DLIR-low, and ASiR-V (p < 0.001). Ten patents were detected with more metastases with DLIR-high simultaneously by both readers and a third reader for confirmation. Metastases visibility and contour definition were better with DLIR than ASiR-V.
CONCLUSION: DLIR-high enhanced the detection and visibility of liver metastases compared to ASiR-V, and also increased the number of liver metastases detected.
CRITICAL RELEVANCE STATEMENT: Deep learning-based reconstruction at high strength allowed an increase in liver metastases detection compared to hybrid iterative reconstruction and can be used in clinical oncology imaging to help overcome the limitations of CT.
KEY POINTS: Detection of liver metastases is crucial but limited with standard CT reconstructions. More liver metastases were detected with deep-learning CT reconstruction compared to iterative reconstruction. Deep learning reconstructions are suitable for hepatic metastases staging and follow-up.
PMID:38971933 | DOI:10.1186/s13244-024-01753-1
Deep learning for multi-type infectious keratitis diagnosis: A nationwide, cross-sectional, multicenter study
NPJ Digit Med. 2024 Jul 6;7(1):181. doi: 10.1038/s41746-024-01174-w.
ABSTRACT
The main cause of corneal blindness worldwide is keratitis, especially the infectious form caused by bacteria, fungi, viruses, and Acanthamoeba. The key to effective management of infectious keratitis hinges on prompt and precise diagnosis. Nevertheless, the current gold standard, such as cultures of corneal scrapings, remains time-consuming and frequently yields false-negative results. Here, using 23,055 slit-lamp images collected from 12 clinical centers nationwide, this study constructed a clinically feasible deep learning system, DeepIK, that could emulate the diagnostic process of a human expert to identify and differentiate bacterial, fungal, viral, amebic, and noninfectious keratitis. DeepIK exhibited remarkable performance in internal, external, and prospective datasets (all areas under the receiver operating characteristic curves > 0.96) and outperformed three other state-of-the-art algorithms (DenseNet121, InceptionResNetV2, and Swin-Transformer). Our study indicates that DeepIK possesses the capability to assist ophthalmologists in accurately and swiftly identifying various infectious keratitis types from slit-lamp images, thereby facilitating timely and targeted treatment.
PMID:38971902 | DOI:10.1038/s41746-024-01174-w
Efficient deep learning-based automated diagnosis from echocardiography with contrastive self-supervised learning
Commun Med (Lond). 2024 Jul 6;4(1):133. doi: 10.1038/s43856-024-00538-3.
ABSTRACT
BACKGROUND: Advances in self-supervised learning (SSL) have enabled state-of-the-art automated medical image diagnosis from small, labeled datasets. This label efficiency is often desirable, given the difficulty of obtaining expert labels for medical image recognition tasks. However, most efforts toward SSL in medical imaging are not adapted to video-based modalities, such as echocardiography.
METHODS: We developed a self-supervised contrastive learning approach, EchoCLR, for echocardiogram videos with the goal of learning strong representations for efficient fine-tuning on downstream cardiac disease diagnosis. EchoCLR pretraining involves (i) contrastive learning, where the model is trained to identify distinct videos of the same patient, and (ii) frame reordering, where the model is trained to predict the correct of video frames after being randomly shuffled.
RESULTS: When fine-tuned on small portions of labeled data, EchoCLR pretraining significantly improves classification performance for left ventricular hypertrophy (LVH) and aortic stenosis (AS) over other transfer learning and SSL approaches across internal and external test sets. When fine-tuning on 10% of available training data (519 studies), an EchoCLR-pretrained model achieves 0.72 AUROC (95% CI: [0.69, 0.75]) on LVH classification, compared to 0.61 AUROC (95% CI: [0.57, 0.64]) with a standard transfer learning approach. Similarly, using 1% of available training data (53 studies), EchoCLR pretraining achieves 0.82 AUROC (95% CI: [0.79, 0.84]) on severe AS classification, compared to 0.61 AUROC (95% CI: [0.58, 0.65]) with transfer learning.
CONCLUSIONS: EchoCLR is unique in its ability to learn representations of echocardiogram videos and demonstrates that SSL can enable label-efficient disease classification from small amounts of labeled data.
PMID:38971887 | DOI:10.1038/s43856-024-00538-3
Artificial intelligence detects awareness of functional relation with the environment in 3 month old babies
Sci Rep. 2024 Jul 6;14(1):15580. doi: 10.1038/s41598-024-66312-6.
ABSTRACT
A recent experiment probed how purposeful action emerges in early life by manipulating infants' functional connection to an object in the environment (i.e., tethering an infant's foot to a colorful mobile). Vicon motion capture data from multiple infant joints were used here to create Histograms of Joint Displacements (HJDs) to generate pose-based descriptors for 3D infant spatial trajectories. Using HJDs as inputs, machine and deep learning systems were tasked with classifying the experimental state from which snippets of movement data were sampled. The architectures tested included k-Nearest Neighbour (kNN), Linear Discriminant Analysis (LDA), Fully connected network (FCNet), 1D-Convolutional Neural Network (1D-Conv), 1D-Capsule Network (1D-CapsNet), 2D-Conv and 2D-CapsNet. Sliding window scenarios were used for temporal analysis to search for topological changes in infant movement related to functional context. kNN and LDA achieved higher classification accuracy with single joint features, while deep learning approaches, particularly 2D-CapsNet, achieved higher accuracy on full-body features. For each AI architecture tested, measures of foot activity displayed the most distinct and coherent pattern alterations across different experimental stages (reflected in the highest classification accuracy rate), indicating that interaction with the world impacts the infant behaviour most at the site of organism~world connection.
PMID:38971875 | DOI:10.1038/s41598-024-66312-6
Pixel-wise segmentation of cells in digitized Pap smear images
Sci Data. 2024 Jul 6;11(1):733. doi: 10.1038/s41597-024-03566-9.
ABSTRACT
A simple and cheap way to recognize cervical cancer is using light microscopic analysis of Pap smear images. Training artificial intelligence-based systems becomes possible in this domain, e.g., to follow the European recommendation to screen negative smears to reduce false negative cases. The first step for such a process is segmenting the cells. A large and manually segmented dataset is required for this task, which can be used to train deep learning-based solutions. We describe a corresponding dataset with accurate manual segmentations for the enclosed cells. Altogether, the APACS23 (Annotated PAp smear images for Cell Segmentation 2023) dataset contains about 37 000 manually segmented cells and is separated into dedicated training and test parts, which could be used for an official benchmark of scientific investigations or a grand challenge.
PMID:38971865 | DOI:10.1038/s41597-024-03566-9
Exploring the efficacy of GRU model in classifying the signal to noise ratio of microgrid model
Sci Rep. 2024 Jul 6;14(1):15591. doi: 10.1038/s41598-024-66387-1.
ABSTRACT
Microgrids are small-scale energy system that supplies power to homes, businesses, and industries. Microgrids can be considered as a trending technology in energy fields due to their power to supply reliable and sustainable energy. Microgrids have a mode called the island, in this mode, microgrids are disconnected from the major grid and keep providing energy in the situation of an energy outage. Therefore, they help the main grid during peak energy demand times. The microgrids can be connected to the network, which is called networked microgrids. It is possible to have flexible energy resources by using their enhanced energy management systems. However, connection microgrid systems to the communication network introduces various challenges, including increased in systems complicity and noise interference. Integrating network communication into a microgrid system causes the system to be susceptible to noise, potentially disrupting the critical control signals that ensure smooth operation. Therefore, there is a need for predicting noise caused by communication network to ensure the operation stability of microgrids. In addition, there is a need for a simulation model that includes communication network and can generate noise to simulate real scenarios. This paper proposes a classifying model named Noise Classification Simulation Model (NCSM) that exploits the potential of deep learning to predict noise levels by classifying the values of signal-to-noise ratio (SNR) in real-time network traffic of microgrid system. This is accomplished by initially applying Gaussian white noise into the data that is generated by microgrid model. Then, the data has noise and data without noise is transmitted through serial communication to simulate real world scenario. At the end, a Gated Recurrent Unit (GRU) model is implemented to predict SNR values for the network traffic data. Our findings show that the proposed model produced promising results in predicting noise. In addition, the classification performance of the proposed model is compared with well-known machine learning models and according to the experimental results, our proposed model has noticeable performance, which achieved 99.96% classification accuracy.
PMID:38971840 | DOI:10.1038/s41598-024-66387-1
Artificial Intelligence in Facial Plastics and Reconstructive Surgery
Otolaryngol Clin North Am. 2024 Jul 5:S0030-6665(24)00071-9. doi: 10.1016/j.otc.2024.05.002. Online ahead of print.
ABSTRACT
Artificial intelligence (AI), particularly computer vision and large language models, will impact facial plastic and reconstructive surgery (FPRS) by enhancing diagnostic accuracy, refining surgical planning, and improving post-operative evaluations. These advancements can address subjective limitations of aesthetic surgery by providing objective tools for patient evaluation. Despite these advancements, AI in FPRS has yet to be fully integrated in the clinic setting and faces numerous challenges including algorithmic bias, ethical considerations, and need for validation. This article discusses current and emerging AI technologies in FPRS for the clinic setting, providing a glimpse of its future potential.
PMID:38971626 | DOI:10.1016/j.otc.2024.05.002
Accurate prediction of all-cause mortality in patients with metabolic dysfunction-associated steatotic liver disease using electronic health records
Ann Hepatol. 2024 Jul 4:101528. doi: 10.1016/j.aohep.2024.101528. Online ahead of print.
ABSTRACT
INTRODUCTION AND OBJECTIVES: Despite the huge clinical burden of MASLD, validated tools for early risk stratification are lacking, and heterogeneous disease expression and a highly variable rate of progression to clinical outcomes result in prognostic uncertainty. We aimed to investigate longitudinal electronic health record-based outcome prediction in MASLD using a state-of-the-art machine learning model.
PATIENTS AND METHODS: n=940 patients with histologically-defined MASLD were used to develop a deep-learning model for all-cause mortality prediction. Patient timelines, spanning 12 years, were fully-annotated with demographic/clinical characteristics, ICD-9 and -10 codes, blood test results, prescribing data, and secondary care activity. A Transformer neural network (TNN) was trained to output concomitant probabilities of 12-, 24-, and 36-month all-cause mortality. In-sample performance was assessed using 5-fold cross-validation. Out-of-sample performance was assessed in an independent set of n=528 MASLD patients.
RESULTS: In-sample model performance achieved AUROC curve 0.74-0.90 (95% CI: 0.72-0.94), sensitivity 64%-82%, specificity 75%-92% and Positive Predictive Value (PPV) 94%-98%. Out-of-sample model validation had AUROC 0.70-0.86 (95% CI: 0.67-0.90), sensitivity 69%-70%, specificity 96%-97% and PPV 75%-77%. Key predictive factors, identified using coefficients of determination, were age, presence of type 2 diabetes, and history of hospital admissions with length of stay >14 days.
CONCLUSIONS: A TNN, applied to routinely-collected longitudinal electronic health records, achieved good performance in prediction of 12-, 24-, and 36-month all-cause mortality in patients with MASLD. Extrapolation of our technique to population-level data will enable scalable and accurate risk stratification to identify people most likely to benefit from anticipatory health care and personalized interventions.
PMID:38971372 | DOI:10.1016/j.aohep.2024.101528