Deep learning
Addressing label noise for electronic health records: insights from computer vision for tabular data
BMC Med Inform Decis Mak. 2024 Jun 27;24(1):183. doi: 10.1186/s12911-024-02581-5.
ABSTRACT
The analysis of extensive electronic health records (EHR) datasets often calls for automated solutions, with machine learning (ML) techniques, including deep learning (DL), taking a lead role. One common task involves categorizing EHR data into predefined groups. However, the vulnerability of EHRs to noise and errors stemming from data collection processes, as well as potential human labeling errors, poses a significant risk. This risk is particularly prominent during the training of DL models, where the possibility of overfitting to noisy labels can have serious repercussions in healthcare. Despite the well-documented existence of label noise in EHR data, few studies have tackled this challenge within the EHR domain. Our work addresses this gap by adapting computer vision (CV) algorithms to mitigate the impact of label noise in DL models trained on EHR data. Notably, it remains uncertain whether CV methods, when applied to the EHR domain, will prove effective, given the substantial divergence between the two domains. We present empirical evidence demonstrating that these methods, whether used individually or in combination, can substantially enhance model performance when applied to EHR data, especially in the presence of noisy/incorrect labels. We validate our methods and underscore their practical utility in real-world EHR data, specifically in the context of COVID-19 diagnosis. Our study highlights the effectiveness of CV methods in the EHR domain, making a valuable contribution to the advancement of healthcare analytics and research.
PMID:38937744 | DOI:10.1186/s12911-024-02581-5
Deep learning to quantify care manipulation activities in neonatal intensive care units
NPJ Digit Med. 2024 Jun 27;7(1):172. doi: 10.1038/s41746-024-01164-y.
ABSTRACT
Early-life exposure to stress results in significantly increased risk of neurodevelopmental impairments with potential long-term effects into childhood and even adulthood. As a crucial step towards monitoring neonatal stress in neonatal intensive care units (NICUs), our study aims to quantify the duration, frequency, and physiological responses of care manipulation activities, based on bedside videos and physiological signals. Leveraging 289 h of video recordings and physiological data within 330 sessions collected from 27 neonates in 2 NICUs, we develop and evaluate a deep learning method to detect manipulation activities from the video, to estimate their duration and frequency, and to further integrate physiological signals for assessing their responses. With a 13.8% relative error tolerance for activity duration and frequency, our results were statistically equivalent to human annotations. Further, our method proved effective for estimating short-term physiological responses, for detecting activities with marked physiological deviations, and for quantifying the neonatal infant stressor scale scores.
PMID:38937643 | DOI:10.1038/s41746-024-01164-y
Application of improved and efficient image repair algorithm in rock damage experimental research
Sci Rep. 2024 Jun 27;14(1):14849. doi: 10.1038/s41598-024-65790-y.
ABSTRACT
In the petroleum and coal industries, digital image technology and acoustic emission technology are employed to study rock properties, but both exhibit flaws during data processing. Digital image technology is vulnerable to interference from fractures and scaling, leading to potential loss of image data; while acoustic emission technology is not hindered by these issues, noise from rock destruction can interfere with the electrical signals, causing errors. The monitoring errors of these techniques can undermine the effectiveness of rock damage analysis. To address this issue, this paper focuses on the restoration of image data acquired through digital image technology, leveraging deep learning techniques, and using soft and hard rocks made of similar materials as research subjects, an improved Incremental Transformer image algorithm is employed to repair distorted or missing strain nephograms during uniaxial compression experiments. The concrete implementation entails using a comprehensive training set of strain nephograms derived from digital image technology, fabricating masks for absent image segments, and predicting strain nephograms with full strain detail. Additionally, we adopt deep separable convolutional networks to optimize the algorithm's operational efficiency. Based on this, the analysis of rock damage is conducted using the repaired strain nephograms, achieving a closer correlation with the actual physical processes of rock damage compared to conventional digital image technology and acoustic emission techniques. The improved incremental Transformer algorithm presented in this paper will contribute to enhancing the efficiency of digital image technology in the realm of rock damage, saving time and money, and offering an innovative approach to traditional rock damage analysis.
PMID:38937588 | DOI:10.1038/s41598-024-65790-y
Multimodal explainable artificial intelligence identifies patients with non-ischaemic cardiomyopathy at risk of lethal ventricular arrhythmias
Sci Rep. 2024 Jun 27;14(1):14889. doi: 10.1038/s41598-024-65357-x.
ABSTRACT
The efficacy of an implantable cardioverter-defibrillator (ICD) in patients with a non-ischaemic cardiomyopathy for primary prevention of sudden cardiac death is increasingly debated. We developed a multimodal deep learning model for arrhythmic risk prediction that integrated late gadolinium enhanced (LGE) cardiac magnetic resonance imaging (MRI), electrocardiography (ECG) and clinical data. Short-axis LGE-MRI scans and 12-lead ECGs were retrospectively collected from a cohort of 289 patients prior to ICD implantation, across two tertiary hospitals. A residual variational autoencoder was developed to extract physiological features from LGE-MRI and ECG, and used as inputs for a machine learning model (DEEP RISK) to predict malignant ventricular arrhythmia onset. In the validation cohort, the multimodal DEEP RISK model predicted malignant ventricular arrhythmias with an area under the receiver operating characteristic curve (AUROC) of 0.84 (95% confidence interval (CI) 0.71-0.96), a sensitivity of 0.98 (95% CI 0.75-1.00) and a specificity of 0.73 (95% CI 0.58-0.97). The models trained on individual modalities exhibited lower AUROC values compared to DEEP RISK [MRI branch: 0.80 (95% CI 0.65-0.94), ECG branch: 0.54 (95% CI 0.26-0.82), Clinical branch: 0.64 (95% CI 0.39-0.87)]. These results suggest that a multimodal model achieves high prognostic accuracy in predicting ventricular arrhythmias in a cohort of patients with non-ischaemic systolic heart failure, using data collected prior to ICD implantation.
PMID:38937555 | DOI:10.1038/s41598-024-65357-x
Simulation-driven design of smart gloves for gesture recognition
Sci Rep. 2024 Jun 27;14(1):14873. doi: 10.1038/s41598-024-65069-2.
ABSTRACT
Smart gloves are in high demand for entertainment, manufacturing, and rehabilitation. However, designing smart gloves has been complex and costly due to trial and error. We propose an open simulation platform for designing smart gloves, including optimal sensor placement and deep learning models for gesture recognition, with reduced costs and manual effort. Our pipeline starts with 3D hand pose extraction from videos and extends to the refinement and conversion of the poses into hand joint angles based on inverse kinematics, the sensor placement optimization based on hand joint analysis, and the training of deep learning models using simulated sensor data. In comparison to the existing platforms that always require precise motion data as input, our platform takes monocular videos, which can be captured with widely available smartphones or web cameras, as input and integrates novel approaches to minimize the impact of the errors induced by imprecise motion extraction from videos. Moreover, our platform enables more efficient sensor placement selection. We demonstrate how the pipeline works and how it delivers a sensible design for smart gloves in a real-life case study. We also evaluate the performance of each building block and its impact on the reliability of the generated design.
PMID:38937537 | DOI:10.1038/s41598-024-65069-2
Applications of Artificial Intelligence in Prostate Cancer Care: A Path to Enhanced Efficiency and Outcomes
Am Soc Clin Oncol Educ Book. 2024 Jun;44(3):e438516. doi: 10.1200/EDBK_438516.
ABSTRACT
The landscape of prostate cancer care has rapidly evolved. We have transitioned from the use of conventional imaging, radical surgeries, and single-agent androgen deprivation therapy to an era of advanced imaging, precision diagnostics, genomics, and targeted treatment options. Concurrently, the emergence of large language models (LLMs) has dramatically transformed the paradigm for artificial intelligence (AI). This convergence of advancements in prostate cancer management and AI provides a compelling rationale to comprehensively review the current state of AI applications in prostate cancer care. Here, we review the advancements in AI-driven applications across the continuum of the journey of a patient with prostate cancer from early interception to survivorship care. We subsequently discuss the role of AI in prostate cancer drug discovery, clinical trials, and clinical practice guidelines. In the localized disease setting, deep learning models demonstrated impressive performance in detecting and grading prostate cancer using imaging and pathology data. For biochemically recurrent diseases, machine learning approaches are being tested for improved risk stratification and treatment decisions. In advanced prostate cancer, deep learning can potentially improve prognostication and assist in clinical decision making. Furthermore, LLMs are poised to revolutionize information summarization and extraction, clinical trial design and operations, drug development, evidence synthesis, and clinical practice guidelines. Synergistic integration of multimodal data integration and human-AI integration are emerging as a key strategy to unlock the full potential of AI in prostate cancer care.
PMID:38935882 | DOI:10.1200/EDBK_438516
Attribution classification method of APT malware based on multi-feature fusion
PLoS One. 2024 Jun 27;19(6):e0304066. doi: 10.1371/journal.pone.0304066. eCollection 2024.
ABSTRACT
In recent years, with the development of the Internet, the attribution classification of APT malware remains an important issue in society. Existing methods have yet to consider the DLL link library and hidden file address during the execution process, and there are shortcomings in capturing the local and global correlation of event behaviors. Compared to the structural features of binary code, opcode features reflect the runtime instructions and do not consider the issue of multiple reuse of local operation behaviors within the same APT organization. Obfuscation techniques more easily influence attribution classification based on single features. To address the above issues, (1) an event behavior graph based on API instructions and related operations is constructed to capture the execution traces on the host using the GNNs model. (2) ImageCNTM captures the local spatial correlation and continuous long-term dependency of opcode images. (3) The word frequency and behavior features are concatenated and fused, proposing a multi-feature, multi-input deep learning model. We collected a publicly available dataset of APT malware to evaluate our method. The attribution classification results of the model based on a single feature reached 89.24% and 91.91%. Finally, compared to single-feature classifiers, the multi-feature fusion model achieves better classification performance.
PMID:38935673 | DOI:10.1371/journal.pone.0304066
Explainable deep learning for disease activity prediction in chronic inflammatory joint diseases
PLOS Digit Health. 2024 Jun 27;3(6):e0000422. doi: 10.1371/journal.pdig.0000422. eCollection 2024 Jun.
ABSTRACT
Analysing complex diseases such as chronic inflammatory joint diseases (CIJDs), where many factors influence the disease evolution over time, is a challenging task. CIJDs are rheumatic diseases that cause the immune system to attack healthy organs, mainly the joints. Different environmental, genetic and demographic factors affect disease development and progression. The Swiss Clinical Quality Management in Rheumatic Diseases (SCQM) Foundation maintains a national database of CIJDs documenting the disease management over time for 19'267 patients. We propose the Disease Activity Score Network (DAS-Net), an explainable multi-task learning model trained on patients' data with different arthritis subtypes, transforming longitudinal patient journeys into comparable representations and predicting multiple disease activity scores. First, we built a modular model composed of feed-forward neural networks, long short-term memory networks and attention layers to process the heterogeneous patient histories and predict future disease activity. Second, we investigated the utility of the model's computed patient representations (latent embeddings) to identify patients with similar disease progression. Third, we enhanced the explainability of our model by analysing the impact of different patient characteristics on disease progression and contrasted our model outcomes with medical expert knowledge. To this end, we explored multiple feature attribution methods including SHAP, attention attribution and feature weighting using case-based similarity. Our model outperforms temporal and non-temporal neural network, tree-based, and naive static baselines in predicting future disease activity scores. To identify similar patients, a k-nearest neighbours regression algorithm applied to the model's computed latent representations outperforms baseline strategies that use raw input features representation.
PMID:38935600 | DOI:10.1371/journal.pdig.0000422
STAR-RL: Spatial-temporal Hierarchical Reinforcement Learning for Interpretable Pathology Image Super-Resolution
IEEE Trans Med Imaging. 2024 Jun 27;PP. doi: 10.1109/TMI.2024.3419809. Online ahead of print.
ABSTRACT
Pathology image are essential for accurately interpreting lesion cells in cytopathology screening, but acquiring high-resolution digital slides requires specialized equipment and long scanning times. Though super-resolution (SR) techniques can alleviate this problem, existing deep learning models recover pathology image in a black-box manner, which can lead to untruthful biological details and misdiagnosis. Additionally, current methods allocate the same computational resources to recover each pixel of pathology image, leading to the sub-optimal recovery issue due to the large variation of pathology image. In this paper, we propose the first hierarchical reinforcement learning framework named Spatial-Temporal hierARchical Reinforcement Learning (STAR-RL), mainly for addressing the aforementioned issues in pathology image super-resolution problem. We reformulate the SR problem as a Markov decision process of interpretable operations and adopt the hierarchical recovery mechanism in patch level, to avoid sub-optimal recovery. Specifically, the higher-level spatial manager is proposed to pick out the most corrupted patch for the lower-level patch worker. Moreover, the higher-level temporal manager is advanced to evaluate the selected patch and determine whether the optimization should be stopped earlier, thereby avoiding the over-processed problem. Under the guidance of spatial-temporal managers, the lower-level patch worker processes the selected patch with pixel-wise interpretable actions at each time step. Experimental results on medical images degraded by different kernels show the effectiveness of STAR-RL. Furthermore, STAR-RL validates the promotion in tumor diagnosis with a large margin and shows generalizability under various degradation. The source code is to be released.
PMID:38935476 | DOI:10.1109/TMI.2024.3419809
DeepFusionCDR: Employing Multi-Omics Integration and Molecule-Specific Transformers for Enhanced Prediction of Cancer Drug Responses
IEEE J Biomed Health Inform. 2024 Jun 27;PP. doi: 10.1109/JBHI.2024.3417014. Online ahead of print.
ABSTRACT
Deep learning approaches have demonstrated remarkable potential in predicting cancer drug responses (CDRs), using cell line and drug features. However, existing methods predominantly rely on single-omics data of cell lines, potentially overlooking the complex biological mechanisms governing cell line responses. This paper introduces DeepFusionCDR, a novel approach employing unsupervised contrastive learning to amalgamate multi-omics features, including mutation, transcriptome, methylome, and copy number variation data, from cell lines. Furthermore, we incorporate molecular SMILES-specific transformers to derive drug features from their chemical structures. The unified multi-omics and drug signatures are combined, and a multi-layer perceptron (MLP) is applied to predict IC50 values for cell line-drug pairs. Moreover, this MLP can discern whether a cell line is resistant or sensitive to a particular drug. We assessed DeepFusionCDR's performance on the GDSC dataset and juxtaposed it against cutting-edge methods, demonstrating its superior performance in regression and classification tasks. We also conducted ablation studies and case analyses to exhibit the effectiveness and versatility of our proposed approach. Our results underscore the potential of DeepFusionCDR to enhance CDR predictions by harnessing the power of multi-omics fusion and molecular-specific transformers. The prediction of DeepFusionCDR on TCGA patient data and case study highlight the practical application scenarios of DeepFusionCDR in real-world environments. Source code and datasets can be available on https://github.com/altriavin/DeepFusionCDR.
PMID:38935469 | DOI:10.1109/JBHI.2024.3417014
Deep-learning map segmentation for protein X-ray crystallographic structure determination
Acta Crystallogr D Struct Biol. 2024 Jul 1. doi: 10.1107/S2059798324005217. Online ahead of print.
ABSTRACT
When solving a structure of a protein from single-wavelength anomalous diffraction X-ray data, the initial phases obtained by phasing from an anomalously scattering substructure usually need to be improved by an iterated electron-density modification. In this manuscript, the use of convolutional neural networks (CNNs) for segmentation of the initial experimental phasing electron-density maps is proposed. The results reported demonstrate that a CNN with U-net architecture, trained on several thousands of electron-density maps generated mainly using X-ray data from the Protein Data Bank in a supervised learning, can improve current density-modification methods.
PMID:38935341 | DOI:10.1107/S2059798324005217
Preoperative CT-based radiomics and deep learning model for predicting risk stratification of gastric gastrointestinal stromal tumors
Med Phys. 2024 Jun 27. doi: 10.1002/mp.17276. Online ahead of print.
ABSTRACT
BACKGROUND: Gastrointestinal stromal tumors (GISTs) are clinically heterogeneous with various malignant potential in different individuals. It is crucial to explore a reliable method for preoperative risk stratification of gastric GISTs noninvasively.
PURPOSE: To establish and evaluate a machine learning model using the combination of computed tomography (CT) morphology, radiomics, and deep learning features to predict the risk stratification of primary gastric GISTs preoperatively.
METHODS: The 193 gastric GISTs lesions were randomly divided into training set, validation set, and test set in a ratio of 6:2:2. The qualitative and quantitative CT morphological features were assessed by two radiologists. The tumors were segmented manually, and then radiomic features were extracted using PyRadiomics and the deep learning features were extracted using pre-trained Resnet50 from arterial phase and venous phase CT images, respectively. Pearson correlation analysis and recursive feature elimination were used for feature selection. Support vector machines were employed to build a classifier for predicting the risk stratification of GISTs. This study compared the performance of models using different pre-trained convolutional neural networks (CNNs) to extract deep features for classification, as well as the performance of modeling features from single-phase and dual-phase images. The arterial phase, venous phase and dual-phase machine learning models were built, respectively, and the morphological features were added to the dual-phase machine learning model to construct a combined model. Receiver operating characteristic (ROC) curves were used to evaluate the efficacy of each model. The clinical application value of the combined model was determined through the decision curve analysis (DCA) and the net reclassification index (NRI) was analyzed.
RESULTS: The area under the curve (AUC) of the dual-phase machine learning model was 0.876, which was higher than that of the arterial phase model or venous phase model (0.813, 0.838, respectively). The combined model had best predictive performance than the above models with an AUC of 0.941 (95% CI: 0.887-0.974) (p = 0.012, Delong test). DCA demonstrated that the combined model had good clinical application value with an NRI of 0.575 (95% CI: 0.357-0.891).
CONCLUSION: In this study, we established a combined model that incorporated dual-phase morphology, radiomics, and deep learning characteristics, which can be used to predict the preoperative risk stratification of gastric GISTs.
PMID:38935330 | DOI:10.1002/mp.17276
Fully automated assessment of the future liver remnant in a blood-free setting via CT before major hepatectomy via deep learning
Insights Imaging. 2024 Jun 27;15(1):164. doi: 10.1186/s13244-024-01724-6.
ABSTRACT
OBJECTIVES: To develop and validate a deep learning (DL) model for automated segmentation of hepatic and portal veins, and apply the model in blood-free future liver remnant (FLR) assessments via CT before major hepatectomy.
METHODS: 3-dimensional 3D U-Net models were developed for the automatic segmentation of hepatic veins and portal veins on contrast-enhanced CT images. A total of 170 patients treated from January 2018 to March 2019 were included. 3D U-Net models were trained and tested under various liver conditions. The Dice similarity coefficient (DSC) and volumetric similarity (VS) were used to evaluate the segmentation accuracy. The use of quantitative volumetry for evaluating resection was compared between blood-filled and blood-free settings and between manual and automated segmentation.
RESULTS: The DSC values in the test dataset for hepatic veins and portal veins were 0.66 ± 0.08 (95% CI: (0.65, 0.68)) and 0.67 ± 0.07 (95% CI: (0.66, 0.69)), the VS values were 0.80 ± 0.10 (95% CI: (0.79, 0.84)) and 0.74 ± 0.08 (95% CI: (0.73, 0.76)), respectively No significant differences in FLR, FLR% assessments, or the percentage of major hepatectomy patients were noted between the blood-filled and blood-free settings (p = 0.67, 0.59 and 0.99 for manual methods, p = 0.66, 0.99 and 0.99 for automated methods, respectively) according to the use of manual and automated segmentation methods.
CONCLUSION: Fully automated segmentation of hepatic veins and portal veins and FLR assessment via blood-free CT before major hepatectomy are accurate and applicable in clinical cases involving the use of DL.
CRITICAL RELEVANCE STATEMENT: Our fully automatic models could segment hepatic veins, portal veins, and future liver remnant in blood-free setting on CT images before major hepatectomy with reliable outcomes.
KEY POINTS: Fully automatic segmentation of hepatic veins and portal veins was feasible in clinical practice. Fully automatic volumetry of future liver remnant (FLR)% in a blood-free setting was robust. No significant differences in FLR% assessments were noted between the blood-filled and blood-free settings.
PMID:38935177 | DOI:10.1186/s13244-024-01724-6
Association of retinal image-based, deep learning cardiac BioAge with telomere length and cardiovascular biomarkers
Optom Vis Sci. 2024 Jun 28. doi: 10.1097/OPX.0000000000002158. Online ahead of print.
ABSTRACT
SIGNIFICANCE: Our retinal image-based deep learning (DL) cardiac biological age (BioAge) model could facilitate fast, accurate, noninvasive screening for cardiovascular disease (CVD) in novel community settings and thus improve outcome with those with limited access to health care services.
PURPOSE: This study aimed to determine whether the results issued by our DL cardiac BioAge model are consistent with the known trends of CVD risk and the biomarker leukocyte telomere length (LTL), in a cohort of individuals from the UK Biobank.
METHODS: A cross-sectional cohort study was conducted using those individuals in the UK Biobank who had LTL data. These individuals were divided by sex, ranked by LTL, and then grouped into deciles. The retinal images were then presented to the DL model, and individual's cardiac BioAge was determined. Individuals within each LTL decile were then ranked by cardiac BioAge, and the mean of the CVD risk biomarkers in the top and bottom quartiles was compared. The relationship between an individual's cardiac BioAge, the CVD biomarkers, and LTL was determined using traditional correlation statistics.
RESULTS: The DL cardiac BioAge model was able to accurately stratify individuals by the traditional CVD risk biomarkers, and for both males and females, those issued with a cardiac BioAge in the top quartile of their chronological peer group had a significantly higher mean systolic blood pressure, hemoglobin A1c, and 10-year Pooled Cohort Equation CVD risk scores compared with those individuals in the bottom quartile (p<0.001). Cardiac BioAge was associated with LTL shortening for both males and females (males: -0.22, r2 = 0.04; females: -0.18, r2 = 0.03).
CONCLUSIONS: In this cross-sectional cohort study, increasing CVD risk whether assessed by traditional biomarkers, CVD risk scoring, or our DL cardiac BioAge, CVD risk model, was inversely related to LTL. At a population level, our data support the growing body of evidence that suggests LTL shortening is a surrogate marker for increasing CVD risk and that this risk can be captured by our novel DL cardiac BioAge model.
PMID:38935034 | DOI:10.1097/OPX.0000000000002158
PHACTboost: A Phylogeny-aware Pathogenicity Predictor for the Missense Mutations via Boosting
Mol Biol Evol. 2024 Jun 27:msae136. doi: 10.1093/molbev/msae136. Online ahead of print.
ABSTRACT
Most algorithms that are used to predict the effects of variants rely on evolutionary conservation. However, a majority of such techniques compute evolutionary conservation by solely using the alignment of multiple sequences while overlooking the evolutionary context of substitution events. We had introduced PHACT, a scoring-based pathogenicity predictor for missense mutations that can leverage phylogenetic trees, in our previous study. By building on this foundation, we now propose PHACTboost, a gradient boosting tree-based classifier that combines PHACT scores with information from multiple sequence alignments, phylogenetic trees, and ancestral reconstruction. By learning from data PHACTboost outperforms PHACT. Furthermore, the results of comprehensive experiments on carefully constructed sets of variants demonstrated that PHACTboost can outperform 40 prevalent pathogenicity predictors reported in the dbNSFP, including conventional tools, meta-predictors, and deep learning-based approaches as well as more recent tools such as, AlphaMissense, EVE, and CPT-1. The superiority of PHACTboost over these methods was particularly evident in case of hard variants for which different pathogenicity predictors offered conflicting results. We provide predictions of 215 million amino acid alterations over 20,191 proteins. PHACTboost is available at https://github.com/CompGenomeLab/PHACTboost. PHACTboost can improve our understanding of genetic diseases and facilitate more accurate diagnoses.
PMID:38934805 | DOI:10.1093/molbev/msae136
Fragment-Fusion Transformer: Deep Learning-Based Discretization Method for Continuous Single-Cell Raman Spectral Analysis
ACS Sens. 2024 Jun 27. doi: 10.1021/acssensors.4c00149. Online ahead of print.
ABSTRACT
Raman spectroscopy has become an important single-cell analysis tool for monitoring biochemical changes at the cellular level. However, Raman spectral data, typically presented as continuous data with high-dimensional characteristics, is distinct from discrete sequences, which limits the application of deep learning-based algorithms in data analysis due to the lack of discretization. Herein, a model called fragment-fusion transformer is proposed, which integrates the discrete fragmentation of continuous spectra based on their intrinsic characteristics with the extraction of intrafragment features and the fusion of interfragment features. The model integrates the intrinsic feature-based fragmentation of spectra with transformer, constructing the fragment transformer block for feature extraction within fragments. Interfragment information is combined through the pyramid design structure to improve the model's receptive field and fully exploit the spectral properties. During the pyramidal fusion process, the information gain of the final extracted features in the spectrum has been enhanced by a factor of 9.24 compared to the feature extraction stage within the fragment, and the information entropy has been enhanced by a factor of 13. The fragment-fusion transformer achieved a spectral recognition accuracy of 94.5%, which is 4% higher compared to the method without fragmentation and fusion processes on the test set of cell Raman spectroscopy identification experiments. In comparison to common spectral classification models such as KNN, SVM, logistic regression, and CNN, fragment-fusion transformer has achieved 4.4% higher accuracy than the best-performing CNN model. Fragment-fusion transformer method has the potential to serve as a general framework for discretization in the field of continuous spectral data analysis and as a research tool for analyzing the intrinsic information within spectra.
PMID:38934798 | DOI:10.1021/acssensors.4c00149
Predicting Therapeutic Response to Hypoglossal Nerve Stimulation Using Deep Learning
Laryngoscope. 2024 Jun 27. doi: 10.1002/lary.31609. Online ahead of print.
ABSTRACT
OBJECTIVES: To develop and validate machine learning (ML) and deep learning (DL) models using drug-induced sleep endoscopy (DISE) images to predict the therapeutic efficacy of hypoglossal nerve stimulator (HGNS) implantation.
METHODS: Patients who underwent DISE and subsequent HGNS implantation at a tertiary care referral center were included. Six DL models and five ML algorithms were trained on images from the base of tongue (BOT) and velopharynx (VP) from patients classified as responders or non-responders as defined by Sher's criteria (50% reduction in apnea-hypopnea index (AHI) and AHI < 15 events/h). Precision, recall, F1 score, and overall accuracy were evaluated as measures of performance.
RESULTS: In total, 25,040 images from 127 patients were included, of which 16,515 (69.3%) were from responders and 8,262 (30.7%) from non-responders. Models trained on the VP dataset had greater overall accuracy when compared to BOT alone and combined VP and BOT image sets, suggesting that VP images contain discriminative features for identifying therapeutic efficacy. The VCG-16 DL model had the best overall performance on the VP image set with high training accuracy (0.833), F1 score (0.78), and recall (0.883). Among ML models, the logistic regression model had the greatest accuracy (0.685) and F1 score (0.813).
CONCLUSION: Deep neural networks have potential to predict HGNS therapeutic efficacy using images from DISE, facilitating better patient selection for implantation. Development of multi-institutional data and image sets will allow for development of generalizable predictive models.
LEVEL OF EVIDENCE: N/A Laryngoscope, 2024.
PMID:38934474 | DOI:10.1002/lary.31609
Hybrid deep learning and optimized clustering mechanism for load balancing and fault tolerance in cloud computing
Network. 2024 Jun 27:1-22. doi: 10.1080/0954898X.2024.2369137. Online ahead of print.
ABSTRACT
Cloud services are one of the most quickly developing technologies. Furthermore, load balancing is recognized as a fundamental challenge for achieving energy efficiency. The primary function of load balancing is to deliver optimal services by releasing the load over multiple resources. Fault tolerance is being used to improve the reliability and accessibility of the network. In this paper, a hybrid Deep Learning-based load balancing algorithm is developed. Initially, tasks are allocated to all VMs in a round-robin method. Furthermore, the Deep Embedding Cluster (DEC) utilizes the Central Processing Unit (CPU), bandwidth, memory, processing elements, and frequency scaling factors while determining if a VM is overloaded or underloaded. The task performed on the overloaded VM is valued and the tasks accomplished on the overloaded VM are assigned to the underloaded VM for cloud load balancing. In addition, the Deep Q Recurrent Neural Network (DQRNN) is proposed to balance the load based on numerous factors such as supply, demand, capacity, load, resource utilization, and fault tolerance. Furthermore, the effectiveness of this model is assessed by load, capacity, resource consumption, and success rate, with ideal values of 0.147, 0.726, 0.527, and 0.895 are achieved.
PMID:38934441 | DOI:10.1080/0954898X.2024.2369137
Self-supervised learning for denoising of multidimensional MRI data
Magn Reson Med. 2024 Jun 27. doi: 10.1002/mrm.30197. Online ahead of print.
ABSTRACT
PURPOSE: To develop a fast denoising framework for high-dimensional MRI data based on a self-supervised learning scheme, which does not require ground truth clean image.
THEORY AND METHODS: Quantitative MRI faces limitations in SNR, because the variation of signal amplitude in a large set of images is the key mechanism for quantification. In addition, the complex non-linear signal models make the fitting process vulnerable to noise. To address these issues, we propose a fast deep-learning framework for denoising, which efficiently exploits the redundancy in multidimensional MRI data. A self-supervised model was designed to use only noisy images for training, bypassing the challenge of clean data paucity in clinical practice. For validation, we used two different datasets of simulated magnetization transfer contrast MR fingerprinting (MTC-MRF) dataset and in vivo DWI image dataset to show the generalizability.
RESULTS: The proposed method drastically improved denoising performance in the presence of mild-to-severe noise regardless of noise distributions compared to previous methods of the BM3D, tMPPCA, and Patch2self. The improvements were even pronounced in the following quantification results from the denoised images.
CONCLUSION: The proposed MD-S2S (Multidimensional-Self2Self) denoising technique could be further applied to various multi-dimensional MRI data and improve the quantification accuracy of tissue parameter maps.
PMID:38934408 | DOI:10.1002/mrm.30197
Automatic uncovering of patient primary concerns in portal messages using a fusion framework of pretrained language models
J Am Med Inform Assoc. 2024 Jun 27:ocae144. doi: 10.1093/jamia/ocae144. Online ahead of print.
ABSTRACT
OBJECTIVES: The surge in patient portal messages (PPMs) with increasing needs and workloads for efficient PPM triage in healthcare settings has spurred the exploration of AI-driven solutions to streamline the healthcare workflow processes, ensuring timely responses to patients to satisfy their healthcare needs. However, there has been less focus on isolating and understanding patient primary concerns in PPMs-a practice which holds the potential to yield more nuanced insights and enhances the quality of healthcare delivery and patient-centered care.
MATERIALS AND METHODS: We propose a fusion framework to leverage pretrained language models (LMs) with different language advantages via a Convolution Neural Network for precise identification of patient primary concerns via multi-class classification. We examined 3 traditional machine learning models, 9 BERT-based language models, 6 fusion models, and 2 ensemble models.
RESULTS: The outcomes of our experimentation underscore the superior performance achieved by BERT-based models in comparison to traditional machine learning models. Remarkably, our fusion model emerges as the top-performing solution, delivering a notably improved accuracy score of 77.67 ± 2.74% and an F1 score of 74.37 ± 3.70% in macro-average.
DISCUSSION: This study highlights the feasibility and effectiveness of multi-class classification for patient primary concern detection and the proposed fusion framework for enhancing primary concern detection.
CONCLUSIONS: The use of multi-class classification enhanced by a fusion of multiple pretrained LMs not only improves the accuracy and efficiency of patient primary concern identification in PPMs but also aids in managing the rising volume of PPMs in healthcare, ensuring critical patient communications are addressed promptly and accurately.
PMID:38934289 | DOI:10.1093/jamia/ocae144