Deep learning

Automatic 3D left atrial strain extraction framework on cardiac computed tomography

Wed, 2024-05-22 06:00

Comput Methods Programs Biomed. 2024 May 18;252:108236. doi: 10.1016/j.cmpb.2024.108236. Online ahead of print.

ABSTRACT

BACKGROUND AND OBJECTIVE: Strain analysis provides insights into myocardial function and cardiac condition evaluation. However, the anatomical characteristics of left atrium (LA) inherently limit LA strain analysis when using echocardiography. Cardiac computed tomography (CT) with its superior spatial resolution, has become critical for in-depth evaluation of LA function. Recent studies have explored the feasibility of CT-derived strain; however, they relied on manually selected regions of interest (ROIs) and mainly focused on left ventricle (LV). This study aimed to propose a first-of-its-kind fully automatic deep learning (DL)-based framework for three-dimensional (3D) LA strain extraction on cardiac CT.

METHODS: A total of 111 patients undergoing ECG-gated contrast-enhanced CT for evaluating subclinical atrial fibrillation (AF) were enrolled in this study. We developed a 3D strain extraction framework on cardiac CT images, containing a 2.5D GN-U-Net network for LA segmentation, axis-oriented 3D view extraction, and LA strain measure. The segmentation accuracy was evaluated using Dice similarity coefficient (DSC). The model-extracted LA volumes and emptying fraction (EF) were compared with ground-truth measurements using intraclass correlation coefficient (ICC), correlation coefficient (r), and Bland-Altman plot (B-A). The automatically extracted LA strains were evaluated against the LA strains measured from 2D echocardiograms. We utilized this framework to gauge the effect of AF burden on LA strain, employing the atrial high rate episode (AHRE) burden as the measurement parameter.

RESULTS: The GN-U-Net LA segmentation network achieved a DSC score of 0.9603 on the test set. The framework-extracted LA estimates demonstrated excellent ICCs of 0.949 (95 % CI: 0.93-0.97) for minimal LA volume, 0.904 (95 % CI: 0.86-0.93) for maximal LA volume, and 0.902 (95 % CI: 0.86-0.93) for EF, compared with expert measurements. The framework-extracted LA strains demonstrated moderate agreement with the LA strains based on 2D echocardiography (ICCs >0.703). Patients with AHRE > 6 min had significantly lower global strain and LAEF, as extracted by the framework than those with AHRE ≤ 6 min.

CONCLUSION: The promising results highlighted the feasibility and clinical usefulness of automatically extracting 3D LA strain from CT images using a DL-based framework. This tool could provide a 3D-based alternative to echocardiography for assessing LA function.

PMID:38776829 | DOI:10.1016/j.cmpb.2024.108236

Categories: Literature Watch

Big data analysis for Covid-19 in hospital information systems

Wed, 2024-05-22 06:00

PLoS One. 2024 May 22;19(5):e0294481. doi: 10.1371/journal.pone.0294481. eCollection 2024.

ABSTRACT

The COVID-19 pandemic has triggered a global public health crisis, affecting hundreds of countries. With the increasing number of infected cases, developing automated COVID-19 identification tools based on CT images can effectively assist clinical diagnosis and reduce the tedious workload of image interpretation. To expand the dataset for machine learning methods, it is necessary to aggregate cases from different medical systems to learn robust and generalizable models. This paper proposes a novel deep learning joint framework that can effectively handle heterogeneous datasets with distribution discrepancies for accurate COVID-19 identification. We address the cross-site domain shift by redesigning the COVID-Net's network architecture and learning strategy, and independent feature normalization in latent space to improve prediction accuracy and learning efficiency. Additionally, we propose using a contrastive training objective to enhance the domain invariance of semantic embeddings and boost classification performance on each dataset. We develop and evaluate our method with two large-scale public COVID-19 diagnosis datasets containing CT images. Extensive experiments show that our method consistently improves the performance both datasets, outperforming the original COVID-Net trained on each dataset by 13.27% and 15.15% in AUC respectively, also exceeding existing state-of-the-art multi-site learning methods.

PMID:38776299 | DOI:10.1371/journal.pone.0294481

Categories: Literature Watch

Attention-Based MultiOffset Deep Learning Reconstruction of Chemical Exchange Saturation Transfer (AMO-CEST) MRI

Wed, 2024-05-22 06:00

IEEE J Biomed Health Inform. 2024 May 22;PP. doi: 10.1109/JBHI.2024.3404225. Online ahead of print.

ABSTRACT

One challenge of chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is the long scan time due to multiple acquisitions of images at different saturation frequency offsets. k-space under-sampling strategy is commonly used to accelerate MRI acquisition, while this could introduce artifacts and reduce signal-to-noise ratio (SNR). To accelerate CEST-MRI acquisition while maintaining suitable image quality, we proposed an attention-based multioffset deep learning reconstruction network (AMO-CEST) with a multiple radial k-space sampling strategy for CEST-MRI. The AMO-CEST also contains dilated convolution to enlarge the receptive field and data consistency module to preserve the sampled k-space data. We evaluated the proposed method on a mouse brain dataset containing 5760 CEST images acquired at a pre-clinical 3T MRI scanner. Quantitative results demonstrated that AMO-CEST showed obvious improvement over zero-filling method with a PSNR enhancement of 11 dB, a SSIM enhancement of 0.15, and a NMSE decrease of 4.37×10-2 in three acquisition orientations. Compared with other deep learning-based models, AMO-CEST showed visual and quantitative improvements in images from three different orientations. We also extracted molecular contrast maps, including the amide proton transfer (APT) and the relayed nuclear Overhauser enhancement (rNOE). The results demonstrated that the CEST contrast maps derived from the CEST images of AMO-CEST were comparable to those derived from the original high-resolution CEST images. The proposed AMO-CEST can efficiently reconstruct high-quality CEST images from under-sampled k-space data and thus has the potential to accelerate CEST-MRI acquisition.

PMID:38776205 | DOI:10.1109/JBHI.2024.3404225

Categories: Literature Watch

Exploring and Exploiting Multi-modality Uncertainty for Tumor Segmentation on PET/CT

Wed, 2024-05-22 06:00

IEEE J Biomed Health Inform. 2024 May 22;PP. doi: 10.1109/JBHI.2024.3397332. Online ahead of print.

ABSTRACT

Despite the success of deep learning methods in multi-modality segmentation tasks, they typically produce a deterministic output, neglecting the underlying uncertainty. The absence of uncertainty could lead to over-confident predictions with catastrophic consequences, particularly in safety-critical clinical applications. Recently, uncertainty estimation has attracted increasing attention, offering a measure of confidence associated with machine decisions. Nonetheless, existing uncertainty estimation approaches primarily focus on single-modality networks, leaving the uncertainty of multi-modality networks a largely under-explored domain. In this study, we present the first exploration of multi-modality uncertainties in the context of tumor segmentation on PET/CT. Concretely, we assessed four well-established uncertainty estimation approaches across various dimensions, including segmentation performance, uncertainty quality, comparison to single-modality uncertainties, and correlation to the contradictory information between modalities. Through qualitative and quantitative analyses, we gained valuable insights into what benefits multi-modality uncertainties derive, what information multi-modality uncertainties capture, and how multi-modality uncertainties correlate to information from single modalities. Drawing from these insights, we introduced a novel uncertainty-driven loss, which incentivized the network to effectively utilize the complementary information between modalities. The proposed approach outperformed the backbone network by 4.53 and 2.92 Dices in percentages on two PET/CT datasets while achieving lower uncertainties. This study not only advanced the comprehension of multi-modality uncertainties but also revealed the potential benefit of incorporating them into the segmentation network. The code is available at https://github.com/HUST-Tan/MMUE.

PMID:38776203 | DOI:10.1109/JBHI.2024.3397332

Categories: Literature Watch

Prediction of Visual Outcome After Rhegmatogenous Retinal Detachment Surgery Using Artificial Intelligence Techniques

Wed, 2024-05-22 06:00

Transl Vis Sci Technol. 2024 May 1;13(5):17. doi: 10.1167/tvst.13.5.17.

ABSTRACT

PURPOSE: This study aimed to develop artificial intelligence models for predicting postoperative functional outcomes in patients with rhegmatogenous retinal detachment (RRD).

METHODS: A retrospective review and data extraction were conducted on 184 patients diagnosed with RRD who underwent pars plana vitrectomy (PPV) and gas tamponade. The primary outcome was the best-corrected visual acuity (BCVA) at three months after the surgery. Those with a BCVA of less than 6/18 Snellen acuity were classified into a vision impairment group. A deep learning model was developed using presurgical predictors, including ultra-widefield fundus images, structural optical coherence tomography (OCT) images of the macular region, age, gender, and preoperative BCVA. A fusion method was used to capture the interaction between different modalities during model construction.

RESULTS: Among the participants, 74 (40%) still had vision impairment after the treatment. There were significant differences in age, gender, presurgical BCVA, intraocular pressure, macular detachment, and extension of retinal detachment between the vision impairment and vision non-impairment groups. The multimodal fusion model achieved a mean area under the curve (AUC) of 0.91, with a mean accuracy of 0.86, sensitivity of 0.94, and specificity of 0.80. Heatmaps revealed that the macular involvement was the most active area, as observed in both the OCT and ultra-widefield images.

CONCLUSIONS: This pilot study demonstrates that artificial intelligence techniques can achieve a high AUC for predicting functional outcomes after RRD surgery, even with a small sample size. Machine learning methods identified The macular region as the most active region.

TRANSLATIONAL RELEVANCE: Multimodal fusion models have the potential to assist clinicians in predicting postoperative visual outcomes prior to undergoing PPV.

PMID:38776109 | DOI:10.1167/tvst.13.5.17

Categories: Literature Watch

Pre-operative lung ablation prediction using deep learning

Wed, 2024-05-22 06:00

Eur Radiol. 2024 May 22. doi: 10.1007/s00330-024-10767-8. Online ahead of print.

ABSTRACT

OBJECTIVE: Microwave lung ablation (MWA) is a minimally invasive and inexpensive alternative cancer treatment for patients who are not candidates for surgery/radiotherapy. However, a major challenge for MWA is its relatively high tumor recurrence rates, due to incomplete treatment as a result of inaccurate planning. We introduce a patient-specific, deep-learning model to accurately predict post-treatment ablation zones to aid planning and enable effective treatments.

MATERIALS AND METHODS: Our IRB-approved retrospective study consisted of ablations with a single applicator/burn/vendor between 01/2015 and 01/2019. The input data included pre-procedure computerized tomography (CT), ablation power/time, and applicator position. The ground truth ablation zone was segmented from follow-up CT post-treatment. Novel deformable image registration optimized for ablation scans and an applicator-centric co-ordinate system for data analysis were applied. Our prediction model was based on the U-net architecture. The registrations were evaluated using target registration error (TRE) and predictions using Bland-Altman plots, Dice co-efficient, precision, and recall, compared against the applicator vendor's estimates.

RESULTS: The data included 113 unique ablations from 72 patients (median age 57, interquartile range (IQR) (49-67); 41 women). We obtained a TRE ≤ 2 mm on 52 ablations. Our prediction had no bias from ground truth ablation volumes (p = 0.169) unlike the vendor's estimate (p < 0.001) and had smaller limits of agreement (p < 0.001). An 11% improvement was achieved in the Dice score. The ability to account for patient-specific in-vivo anatomical effects due to vessels, chest wall, heart, lung boundaries, and fissures was shown.

CONCLUSIONS: We demonstrated a patient-specific deep-learning model to predict the ablation treatment effect prior to the procedure, with the potential for improved planning, achieving complete treatments, and reduce tumor recurrence.

CLINICAL RELEVANCE STATEMENT: Our method addresses the current lack of reliable tools to estimate ablation extents, required for ensuring successful ablation treatments. The potential clinical implications include improved treatment planning, ensuring complete treatments, and reducing tumor recurrence.

PMID:38775950 | DOI:10.1007/s00330-024-10767-8

Categories: Literature Watch

OneSLAM to map them all: a generalized approach to SLAM for monocular endoscopic imaging based on tracking any point

Wed, 2024-05-22 06:00

Int J Comput Assist Radiol Surg. 2024 May 22. doi: 10.1007/s11548-024-03171-6. Online ahead of print.

ABSTRACT

PURPOSE: Monocular SLAM algorithms are the key enabling technology for image-based surgical navigation systems for endoscopic procedures. Due to the visual feature scarcity and unique lighting conditions encountered in endoscopy, classical SLAM approaches perform inconsistently. Many of the recent approaches to endoscopic SLAM rely on deep learning models. They show promising results when optimized on singular domains such as arthroscopy, sinus endoscopy, colonoscopy or laparoscopy, but are limited by an inability to generalize to different domains without retraining.

METHODS: To address this generality issue, we propose OneSLAM a monocular SLAM algorithm for surgical endoscopy that works out of the box for several endoscopic domains, including sinus endoscopy, colonoscopy, arthroscopy and laparoscopy. Our pipeline builds upon robust tracking any point (TAP) foundation models to reliably track sparse correspondences across multiple frames and runs local bundle adjustment to jointly optimize camera poses and a sparse 3D reconstruction of the anatomy.

RESULTS: We compare the performance of our method against three strong baselines previously proposed for monocular SLAM in endoscopy and general scenes. OneSLAM presents better or comparable performance over existing approaches targeted to that specific data in all four tested domains, generalizing across domains without the need for retraining.

CONCLUSION: OneSLAM benefits from the convincing performance of TAP foundation models but generalizes to endoscopic sequences of different anatomies all while demonstrating better or comparable performance over domain-specific SLAM approaches. Future research on global loop closure will investigate how to reliably detect loops in endoscopic scenes to reduce accumulated drift and enhance long-term navigation capabilities.

PMID:38775904 | DOI:10.1007/s11548-024-03171-6

Categories: Literature Watch

A Novel Deep Learning Approach for Forecasting Myocardial Infarction Occurrences with Time Series Patient Data

Wed, 2024-05-22 06:00

J Med Syst. 2024 May 22;48(1):53. doi: 10.1007/s10916-024-02076-w.

ABSTRACT

Myocardial Infarction (MI) commonly referred to as a heart attack, results from the abrupt obstruction of blood supply to a section of the heart muscle, leading to the deterioration or death of the affected tissue due to a lack of oxygen. MI, poses a significant public health concern worldwide, particularly affecting the citizens of the Chittagong Metropolitan Area. The challenges lie in both prevention and treatment, as the emergence of MI has inflicted considerable suffering among residents. Early warning systems are crucial for managing epidemics promptly, especially given the escalating disease burden in older populations and the complexities of assessing present and future demands. The primary objective of this study is to forecast MI incidence early using a deep learning model, predicting the prevalence of heart attacks in patients. Our approach involves a novel dataset collected from daily heart attack incidence Time Series Patient Data spanning January 1, 2020, to December 31, 2021, in the Chittagong Metropolitan Area. Initially, we applied various advanced models, including Autoregressive Integrated Moving Average (ARIMA), Error-Trend-Seasonal (ETS), Trigonometric seasonality, Box-Cox transformation, ARMA errors, Trend and Seasonal (TBATS), and Long Short Time Memory (LSTM). To enhance prediction accuracy, we propose a novel Myocardial Sequence Classification (MSC)-LSTM method tailored to forecast heart attack occurrences in patients using the newly collected data from the Chittagong Metropolitan Area. Comprehensive results comparisons reveal that the novel MSC-LSTM model outperforms other applied models in terms of performance, achieving a minimum Mean Percentage Error (MPE) score of 1.6477. This research aids in predicting the likely future course of heart attack occurrences, facilitating the development of thorough plans for future preventive measures. The forecasting of MI occurrences contributes to effective resource allocation, capacity planning, policy creation, budgeting, public awareness, research identification, quality improvement, and disaster preparedness.

PMID:38775899 | DOI:10.1007/s10916-024-02076-w

Categories: Literature Watch

Generation and classification of patch-based land use and land cover dataset in diverse Indian landscapes: a comparative study of machine learning and deep learning models

Wed, 2024-05-22 06:00

Environ Monit Assess. 2024 May 22;196(6):568. doi: 10.1007/s10661-024-12719-7.

ABSTRACT

In the context of environmental and social applications, the analysis of land use and land cover (LULC) holds immense significance. The growing accessibility of remote sensing (RS) data has led to the development of LULC benchmark datasets, especially pivotal for intricate image classification tasks. This study addresses the scarcity of such benchmark datasets across diverse settings, with a particular focus on the distinctive landscape of India. The study entails the creation of patch-based datasets, consisting of 4000 labelled images spanning four distinct LULC classes derived from Sentinel-2 satellite imagery. For the subsequent classification task, three traditional machine learning (ML) models and three convolutional neural networks (CNNs) were employed. Despite facing several challenges throughout the process of dataset generation and subsequent classification, the CNN models consistently attained an overall accuracy of 90% or more. Notably, one of the ML models stood out with 96% accuracy, surpassing CNNs in this specific context. The study also conducts a comparative analysis of ML models on existing benchmark datasets, revealing higher prediction accuracy when dealing with fewer LULC classes. Thus, the selection of an appropriate model hinges on the given task, available resources, and the necessary trade-offs between performance and efficiency, particularly crucial in resource-constrained settings. The standardized benchmark dataset contributes valuable insights into the relative performance of deep CNN and ML models in LULC classification, providing a comprehensive understanding of their strengths and weaknesses.

PMID:38775887 | DOI:10.1007/s10661-024-12719-7

Categories: Literature Watch

Improved brain metastases segmentation using generative adversarial network and conditional random field optimization mask R-CNN

Wed, 2024-05-22 06:00

Med Phys. 2024 May 22. doi: 10.1002/mp.17176. Online ahead of print.

ABSTRACT

BACKGROUND: In radiotherapy, the delineation of the gross tumor volume (GTV) in brain metastases using computed tomography (CT) simulation localization is very important. However, despite the criticality of this process, a pronounced gap exists in the availability of tools tailored for the automatic segmentation of the GTV based on CT simulation localization images.

PURPOSE: This study aims to fill this gap by devising an effective tool specifically for the automatic segmentation of the GTV using CT simulation localization images.

METHODS: A dual-network generative adversarial network (GAN) architecture was developed, wherein the generator focused on refining CT images for more precise delineation, and the discriminator differentiated between real and augmented images. This architecture was coupled with the Mask R-CNN model to achieve meticulous GTV segmentation. An end-to-end training process facilitated the integration between the GAN and Mask R-CNN functionalities. Furthermore, a conditional random field (CRF) was incorporated to refine the initial masks generated by the Mask R-CNN model to ensure optimal segmentation accuracy. The performance was assessed using key metrics, namely, the Dice coefficient (DSC), intersection over union (IoU), accuracy, specificity, and sensitivity.

RESULTS: The GAN+Mask R-CNN+CRF integration method in this study performs well in GTV segmentation. In particular, the model has an overall average DSC of 0.819 ± 0.102 and an IoU of 0.712 ± 0.111 in the internal validation. The overall average DSC in the external validation data is 0.726 ± 0.128 and the IoU is 0.640 ± 0.136. It demonstrates favorable generalization ability.

CONCLUSION: The integration of the GAN, Mask R-CNN, and CRF optimization provides a pioneering tool for the sophisticated segmentation of the GTV in brain metastases using CT simulation localization images. The method proposed in this study can provide a robust automatic segmentation approach for brain metastases in the absence of MRI.

PMID:38775791 | DOI:10.1002/mp.17176

Categories: Literature Watch

Deep Learning for Breast Cancer Risk Prediction: Application to a Large Representative UK Screening Cohort

Wed, 2024-05-22 06:00

Radiol Artif Intell. 2024 May 22:e230431. doi: 10.1148/ryai.230431. Online ahead of print.

ABSTRACT

"Just Accepted" papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop an artificial intelligence (AI) deep learning tool capable of predicting future breast cancer risk from a current negative screening mammographic examination and to evaluate the model on data from the UK National Health Service Breast Screening Program. Materials and Methods The OPTIMAM Mammography Imaging Database contains screening data, including mammograms and information on interval cancers, for > 300,000 women who attended screening at three different sites in the UK from 2012 onward. Cancer-free screening examinations from women aged 50-70 years were obtained and classified as risk-positive or risk-negative based on the occurrence of cancer within 3 years of the original examination. Examinations with confirmed cancer and images containing implants were excluded. From the resulting 5264 risk-positive and 191488 risk-negative examinations, training (n = 89285) validation (n = 2106) and test (n = 39351) datasets were produced for model development and evaluation. The AI model was trained to predict future cancer occurrence based on screening mammograms and patient age. Performance was evaluated on the test dataset using the area under the receiver operating characteristic curve (AUC) and compared across subpopulations to assess potential biases. Interpretability of the model was explored, including with saliency maps. Results On the hold-out test set, the AI model achieved an overall AUC of 0.70 (95% CI: 0.69, 0.72). There was no evidence of a difference in performance across the three sites, between patient ethnicities or across age-groups Visualization of saliency maps and sample images provided insights into the mammographic features associated with AI-predicted cancer risk. Conclusion The developed AI tool showed good performance on a multisite, UK-specific dataset. ©RSNA, 2024.

PMID:38775671 | DOI:10.1148/ryai.230431

Categories: Literature Watch

Automated segmentation and recognition of C. elegans whole-body cells

Wed, 2024-05-22 06:00

Bioinformatics. 2024 May 22:btae324. doi: 10.1093/bioinformatics/btae324. Online ahead of print.

ABSTRACT

MOTIVATION: Motivation: Accurate segmentation and recognition of Caenorhabditis elegans cells are critical for various biological studies, including gene expression, cell lineages and cell fates analysis at single-cell level. However, the highly dense distribution, similar shapes, and inhomogeneous intensity profiles of whole-body cells in 3D fluorescence microscopy images make automatic cell segmentation and recognition a challenging task. Existing methods either rely on additional fiducial markers or only handle a subset of cells. Given the difficulty or expense associated with generating fiducial features in many experimental settings, a marker-free approach capable of reliably segmenting and recognizing C. elegans whole-body cells is highly desirable.

RESULTS: We report a new pipeline, called Automated Segmentation and Recognition (ASR) of cells, and applied it to 3D fluorescent microscopy images of L1-stage C. elegans with 558 whole-body cells. A novel displacement vector field based deep learning model is proposed to address the problem of reliable segmentation of highly crowded cells with blurred boundary. We then realize the cell recognition by encoding and exploiting statistical priors on cell positions and structural similarities of neighboring cells. To the best of our knowledge, this is the first method successfully applied to the segmentation and recognition of C. elegans whole-body cells. The ASR segmentation module achieves an F1-score of 0.8956 on a dataset of 116 C. elegans image stacks with 64728 cells (Accuracy 0.9880, AJI 0.7813). Based on the segmentation results, the ASR recognition module achieved an average accuracy of 0.8879. We also show ASR's applicability to other cell types, e.g. platynereis and rat kidney cells.

AVAILABILITY: The code is available at https://github.com/reaneyli/ASR.

SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

PMID:38775410 | DOI:10.1093/bioinformatics/btae324

Categories: Literature Watch

Optimized encoder-decoder cascaded deep convolutional network for leaf disease image segmentation

Wed, 2024-05-22 06:00

Network. 2024 May 22:1-27. doi: 10.1080/0954898X.2024.2326493. Online ahead of print.

ABSTRACT

Nowadays, Deep Learning (DL) techniques are being used to automate the identification and diagnosis of plant diseases, thereby enhancing global food security and enabling non-experts to detect these diseases. Among many DL techniques, a Deep Encoder-Decoder Cascaded Network (DEDCNet) model can precisely segment diseased areas from the leaf images to differentiate and classify multiple diseases. On the other hand, the model training depends on the appropriate selection of hyperparameters. Also, this network structure has weak robustness with different parameters. Hence, in this manuscript, an Optimized DEDCNet (ODEDCNet) model is proposed for improved leaf disease image segmentation. To choose the best DEDCNet hyperparameters, a brand-new Dingo Optimization Algorithm (DOA) is included in this model. The DOA depends on the foraging nature of dingoes, which comprises exploration and exploitation phases. In exploration, it attains many predictable decisions in the search area, whereas exploitation enables exploring the best decisions in a provided area. The segmentation accuracy is used as the fitness value of each dingo for hyperparameter selection. By configuring the chosen hyperparameters, the DEDCNet is trained to segment the leaf disease regions. The segmented images are further given to the pre-trained Convolutional Neural Networks (CNNs) followed by the Support Vector Machine (SVM) for classifying leaf diseases. ODEDCNet performs exceptionally well on the PlantVillage and Betel Leaf Image datasets, attaining an astounding 97.33% accuracy on the former and 97.42% accuracy on the latter. Both datasets achieve noteworthy recall, F-score, Dice coefficient, and precision values: the Betel Leaf Image dataset shows values of 97.4%, 97.29%, 97.35%, and 0.9897; the PlantVillage dataset shows values of 97.5%, 97.42%, 97.46%, and 0.9901, all completed in remarkably short processing times of 0.07 and 0.06 seconds, respectively. The achieved outcomes are evaluated with the contemporary optimization algorithms using the considered datasets to comprehend the efficiency of DOA.

PMID:38775271 | DOI:10.1080/0954898X.2024.2326493

Categories: Literature Watch

The Application of Artificial Intelligence to Cancer Research: A Comprehensive Guide

Wed, 2024-05-22 06:00

Technol Cancer Res Treat. 2024 Jan-Dec;23:15330338241250324. doi: 10.1177/15330338241250324.

ABSTRACT

Advancements in AI have notably changed cancer research, improving patient care by enhancing detection, survival prediction, and treatment efficacy. This review covers the role of Machine Learning, Soft Computing, and Deep Learning in oncology, explaining key concepts and algorithms (like SVM, Naïve Bayes, and CNN) in a clear, accessible manner. It aims to make AI advancements understandable to a broad audience, focusing on their application in diagnosing, classifying, and predicting various cancer types, thereby underlining AI's potential to better patient outcomes. Moreover, we present a tabular summary of the most significant advances from the literature, offering a time-saving resource for readers to grasp each study's main contributions. The remarkable benefits of AI-powered algorithms in cancer care underscore their potential for advancing cancer research and clinical practice. This review is a valuable resource for researchers and clinicians interested in the transformative implications of AI in cancer care.

PMID:38775067 | DOI:10.1177/15330338241250324

Categories: Literature Watch

Innova4Health: an integrated approach for prevention of recurrence and personalized treatment of Major Depressive Disorder

Wed, 2024-05-22 06:00

Front Artif Intell. 2024 May 7;7:1366055. doi: 10.3389/frai.2024.1366055. eCollection 2024.

ABSTRACT

BACKGROUND: Major Depressive Disorder (MDD) is a prevalent mental health condition characterized by persistent low mood, cognitive and physical symptoms, anhedonia (loss of interest in activities), and suicidal ideation. The World Health Organization (WHO) predicts depression will become the leading cause of disability by 2030. While biological markers remain essential for understanding MDD's pathophysiology, recent advancements in social signal processing and environmental monitoring hold promise. Wearable technologies, including smartwatches and air purifiers with environmental sensors, can generate valuable digital biomarkers for depression assessment in real-world settings. Integrating these with existing physical, psychopathological, and other indices (autoimmune, inflammatory, neuroradiological) has the potential to improve MDD recurrence prevention strategies.

METHODS: This prospective, randomized, interventional, and non-pharmacological integrated study aims to evaluate digital and environmental biomarkers in adolescents and young adults diagnosed with MDD who are currently taking medication. The study implements a sensor-integrated platform built around an open-source "Pothos" air purifier system. This platform is designed for scalability and integration with third-party devices. It accomplishes this through software interfaces, a dedicated app, sensor signal pre-processing, and an embedded deep learning AI system. The study will enroll two experimental groups (10 adolescents and 30 young adults each). Within each group, participants will be randomly allocated to Group A or Group B. Only Group B will receive the technological equipment (Pothos system and smartwatch) for collecting digital biomarkers. Blood and saliva samples will be collected at baseline (T0) and endpoint (T1) to assess inflammatory markers and cortisol levels.

RESULTS: Following initial age-based stratification, the sample will undergo detailed classification at the 6-month follow-up based on remission status. Digital and environmental biomarker data will be analyzed to explore intricate relationships between these markers, depression symptoms, disease progression, and early signs of illness.

CONCLUSION: This study seeks to validate an AI tool for enhancing early MDD clinical management, implement an AI solution for continuous data processing, and establish an AI infrastructure for managing healthcare Big Data. Integrating innovative psychophysical assessment tools into clinical practice holds significant promise for improving diagnostic accuracy and developing more specific digital devices for comprehensive mental health evaluation.

PMID:38774832 | PMC:PMC11106633 | DOI:10.3389/frai.2024.1366055

Categories: Literature Watch

What does artificial intelligence mean in rheumatology?

Wed, 2024-05-22 06:00

Arch Rheumatol. 2024 Feb 12;39(1):1-9. doi: 10.46497/ArchRheumatol.2024.10664. eCollection 2024 Mar.

ABSTRACT

Intelligence is the ability of humans to learn from experiences to ascribe conscious weights and unconscious biases to modulate their outputs from given inputs. Transferring this ability to computers is artificial intelligence (AI). The ability of computers to understand data in an intelligent manner is machine learning. When such learning is with images and videos, which involves deeper layers of artificial neural networks, it is described as deep learning. Large language models are the latest development in AI which incorporate self-learning into deep learning through transformers. AI in Rheumatology has immense potential to revolutionize healthcare and research. Machine learning could aid clinical diagnosis and decision-making, and deep learning could extend this to analyze images of radiology or positron emission tomography scans or histopathology images to aid a clinician's diagnosis. Analysis of routinely obtained patient data or continuously collected information from wearables could predict disease flares. Analysis of high-volume genomics, transcriptomics, proteomics, or metabolomics data from patients could help identify novel markers of disease prognosis. AI might identify newer therapeutic targets based on in-silico modelling of omics data. AI could help automate medical administrative work such as inputting information into electronic health records or transcribing clinic notes. AI could help automate patient education and counselling. Beyond the clinic, AI has the potential to aid medical education. The ever-expanding capabilities of AI models bring along with them considerable ethical challenges, particularly related to risks of misuse. Nevertheless, the widespread use of AI in Rheumatology is inevitable and a progress with great potential.

PMID:38774703 | PMC:PMC11104749 | DOI:10.46497/ArchRheumatol.2024.10664

Categories: Literature Watch

On the additive artificial intelligence-based discovery of nanoparticle neurodegenerative disease drug delivery systems

Wed, 2024-05-22 06:00

Beilstein J Nanotechnol. 2024 May 15;15:535-555. doi: 10.3762/bjnano.15.47. eCollection 2024.

ABSTRACT

Neurodegenerative diseases are characterized by slowly progressing neuronal cell death. Conventional drug treatment strategies often fail because of poor solubility, low bioavailability, and the inability of the drugs to effectively cross the blood-brain barrier. Therefore, the development of new neurodegenerative disease drugs (NDDs) requires immediate attention. Nanoparticle (NP) systems are of increasing interest for transporting NDDs to the central nervous system. However, discovering effective nanoparticle neuronal disease drug delivery systems (N2D3Ss) is challenging because of the vast number of combinations of NP and NDD compounds, as well as the various assays involved. Artificial intelligence/machine learning (AI/ML) algorithms have the potential to accelerate this process by predicting the most promising NDD and NP candidates for assaying. Nevertheless, the relatively limited amount of reported data on N2D3S activity compared to assayed NDDs makes AI/ML analysis challenging. In this work, the IFPTML technique, which combines information fusion (IF), perturbation theory (PT), and machine learning (ML), was employed to address this challenge. Initially, we conducted the fusion into a unified dataset comprising 4403 NDD assays from ChEMBL and 260 NP cytotoxicity assays from journal articles. Through a resampling process, three new working datasets were generated, each containing 500,000 cases. We utilized linear discriminant analysis (LDA) along with artificial neural network (ANN) algorithms, such as multilayer perceptron (MLP) and deep learning networks (DLN), to construct linear and non-linear IFPTML models. The IFPTML-LDA models exhibited sensitivity (Sn) and specificity (Sp) values in the range of 70% to 73% (>375,000 training cases) and 70% to 80% (>125,000 validation cases), respectively. In contrast, the IFPTML-MLP and IFPTML-DLN achieved Sn and Sp values in the range of 85% to 86% for both training and validation series. Additionally, IFPTML-ANN models showed an area under the receiver operating curve (AUROC) of approximately 0.93 to 0.95. These results indicate that the IFPTML models could serve as valuable tools in the design of drug delivery systems for neurosciences.

PMID:38774585 | PMC:PMC11106676 | DOI:10.3762/bjnano.15.47

Categories: Literature Watch

Cleaning and Harmonizing Medical Image Data for Reliable AI: Lessons Learned from Longitudinal Oral Cancer Natural History Study Data

Wed, 2024-05-22 06:00

Proc SPIE Int Soc Opt Eng. 2024 Feb;12931:129310E. doi: 10.1117/12.3005875. Epub 2024 Apr 2.

ABSTRACT

For deep learning-based machine learning, not only are large and sufficiently diverse data crucial but their good qualities are equally important. However, in real-world applications, it is very common that raw source data may contain incorrect, noisy, inconsistent, improperly formatted and sometimes missing elements, particularly, when the datasets are large and sourced from many sites. In this paper, we present our work towards preparing and making image data ready for the development of AI-driven approaches for studying various aspects of the natural history of oral cancer. Specifically, we focus on two aspects: 1) cleaning the image data; and 2) extracting the annotation information. Data cleaning includes removing duplicates, identifying missing data, correcting errors, standardizing data sets, and removing personal sensitive information, toward combining data sourced from different study sites. These steps are often collectively referred to as data harmonization. Annotation information extraction includes identifying crucial or valuable texts that are manually entered by clinical providers related to the image paths/names and standardizing of the texts of labels. Both are important for the successful deep learning algorithm development and data analyses. Specifically, we provide details on the data under consideration, describe the challenges and issues we observed that motivated our work, present specific approaches and methods that we used to clean and standardize the image data and extract labelling information. Further, we discuss the ways to increase efficiency of the process and the lessons learned. Research ideas on automating the process with ML-driven techniques are also presented and discussed. Our intent in reporting and discussing such work in detail is to help provide insights in automating or, minimally, increasing the efficiency of these critical yet often under-reported processes.

PMID:38774479 | PMC:PMC11107840 | DOI:10.1117/12.3005875

Categories: Literature Watch

Decoding 2.3 million ECGs: interpretable deep learning for advancing cardiovascular diagnosis and mortality risk stratification

Wed, 2024-05-22 06:00

Eur Heart J Digit Health. 2024 Feb 19;5(3):247-259. doi: 10.1093/ehjdh/ztae014. eCollection 2024 May.

ABSTRACT

AIMS: Electrocardiogram (ECG) is widely considered the primary test for evaluating cardiovascular diseases. However, the use of artificial intelligence (AI) to advance these medical practices and learn new clinical insights from ECGs remains largely unexplored. We hypothesize that AI models with a specific design can provide fine-grained interpretation of ECGs to advance cardiovascular diagnosis, stratify mortality risks, and identify new clinically useful information.

METHODS AND RESULTS: Utilizing a data set of 2 322 513 ECGs collected from 1 558 772 patients with 7 years follow-up, we developed a deep-learning model with state-of-the-art granularity for the interpretable diagnosis of cardiac abnormalities, gender identification, and hypertension screening solely from ECGs, which are then used to stratify the risk of mortality. The model achieved the area under the receiver operating characteristic curve (AUC) scores of 0.998 (95% confidence interval (CI), 0.995-0.999), 0.964 (95% CI, 0.963-0.965), and 0.839 (95% CI, 0.837-0.841) for the three diagnostic tasks separately. Using ECG-predicted results, we find high risks of mortality for subjects with sinus tachycardia (adjusted hazard ratio (HR) of 2.24, 1.96-2.57), and atrial fibrillation (adjusted HR of 2.22, 1.99-2.48). We further use salient morphologies produced by the deep-learning model to identify key ECG leads that achieved similar performance for the three diagnoses, and we find that the V1 ECG lead is important for hypertension screening and mortality risk stratification of hypertensive cohorts, with an AUC of 0.816 (0.814-0.818) and a univariate HR of 1.70 (1.61-1.79) for the two tasks separately.

CONCLUSION: Using ECGs alone, our developed model showed cardiologist-level accuracy in interpretable cardiac diagnosis and the advancement in mortality risk stratification. In addition, it demonstrated the potential to facilitate clinical knowledge discovery for gender and hypertension detection which are not readily available.

PMID:38774384 | PMC:PMC11104458 | DOI:10.1093/ehjdh/ztae014

Categories: Literature Watch

Artificial intelligence-based classification of echocardiographic views

Wed, 2024-05-22 06:00

Eur Heart J Digit Health. 2024 Feb 26;5(3):260-269. doi: 10.1093/ehjdh/ztae015. eCollection 2024 May.

ABSTRACT

AIMS: Augmenting echocardiography with artificial intelligence would allow for automated assessment of routine parameters and identification of disease patterns not easily recognized otherwise. View classification is an essential first step before deep learning can be applied to the echocardiogram.

METHODS AND RESULTS: We trained two- and three-dimensional convolutional neural networks (CNNs) using transthoracic echocardiographic (TTE) studies obtained from 909 patients to classify nine view categories (10 269 videos). Transthoracic echocardiographic studies from 229 patients were used in internal validation (2582 videos). Convolutional neural networks were tested on 100 patients with comprehensive TTE studies (where the two examples chosen by CNNs as most likely to represent a view were evaluated) and 408 patients with five view categories obtained via point-of-care ultrasound (POCUS). The overall accuracy of the two-dimensional CNN was 96.8%, and the averaged area under the curve (AUC) was 0.997 on the comprehensive TTE testing set; these numbers were 98.4% and 0.998, respectively, on the POCUS set. For the three-dimensional CNN, the accuracy and AUC were 96.3% and 0.998 for full TTE studies and 95.0% and 0.996 on POCUS videos, respectively. The positive predictive value, which defined correctly identified predicted views, was higher with two-dimensional rather than three-dimensional networks, exceeding 93% in apical, short-axis aortic valve, and parasternal long-axis left ventricle views.

CONCLUSION: An automated view classifier utilizing CNNs was able to classify cardiac views obtained using TTE and POCUS with high accuracy. The view classifier will facilitate the application of deep learning to echocardiography.

PMID:38774376 | PMC:PMC11104471 | DOI:10.1093/ehjdh/ztae015

Categories: Literature Watch

Pages