Deep learning

An interpretable dual attention network for diabetic retinopathy grading: IDANet

Sun, 2024-03-10 06:00

Artif Intell Med. 2024 Mar;149:102782. doi: 10.1016/j.artmed.2024.102782. Epub 2024 Jan 17.

ABSTRACT

Diabetic retinopathy (DR) is the most prevalent cause of visual impairment in adults worldwide. Typically, patients with DR do not show symptoms until later stages, by which time it may be too late to receive effective treatment. DR Grading is challenging because of the small size and variation in lesion patterns. The key to fine-grained DR grading is to discover more discriminating elements such as cotton wool, hard exudates, hemorrhages, microaneurysms etc. Although deep learning models like convolutional neural networks (CNN) seem ideal for the automated detection of abnormalities in advanced clinical imaging, small-size lesions are very hard to distinguish by using traditional networks. This work proposes a bi-directional spatial and channel-wise parallel attention based network to learn discriminative features for diabetic retinopathy grading. The proposed attention block plugged with a backbone network helps to extract features specific to fine-grained DR-grading. This scheme boosts classification performance along with the detection of small-sized lesion parts. Extensive experiments are performed on four widely used benchmark datasets for DR grading, and performance is evaluated on different quality metrics. Also, for model interpretability, activation maps are generated using the LIME method to visualize the predicted lesion parts. In comparison with state-of-the-art methods, the proposed IDANet exhibits better performance for DR grading and lesion detection.

PMID:38462283 | DOI:10.1016/j.artmed.2024.102782

Categories: Literature Watch

Opportunities and challenges of artificial intelligence and distributed systems to improve the quality of healthcare service

Sun, 2024-03-10 06:00

Artif Intell Med. 2024 Mar;149:102779. doi: 10.1016/j.artmed.2024.102779. Epub 2024 Jan 24.

ABSTRACT

The healthcare sector, characterized by vast datasets and many diseases, is pivotal in shaping community health and overall quality of life. Traditional healthcare methods, often characterized by limitations in disease prevention, predominantly react to illnesses after their onset rather than proactively averting them. The advent of Artificial Intelligence (AI) has ushered in a wave of transformative applications designed to enhance healthcare services, with Machine Learning (ML) as a noteworthy subset of AI. ML empowers computers to analyze extensive datasets, while Deep Learning (DL), a specific ML methodology, excels at extracting meaningful patterns from these data troves. Despite notable technological advancements in recent years, the full potential of these applications within medical contexts remains largely untapped, primarily due to the medical community's cautious stance toward novel technologies. The motivation of this paper lies in recognizing the pivotal role of the healthcare sector in community well-being and the necessity for a shift toward proactive healthcare approaches. To our knowledge, there is a notable absence of a comprehensive published review that delves into ML, DL and distributed systems, all aimed at elevating the Quality of Service (QoS) in healthcare. This study seeks to bridge this gap by presenting a systematic and organized review of prevailing ML, DL, and distributed system algorithms as applied in healthcare settings. Within our work, we outline key challenges that both current and future developers may encounter, with a particular focus on aspects such as approach, data utilization, strategy, and development processes. Our study findings reveal that the Internet of Things (IoT) stands out as the most frequently utilized platform (44.3 %), with disease diagnosis emerging as the predominant healthcare application (47.8 %). Notably, discussions center significantly on the prevention and identification of cardiovascular diseases (29.2 %). The studies under examination employ a diverse range of ML and DL methods, along with distributed systems, with Convolutional Neural Networks (CNNs) being the most commonly used (16.7 %), followed by Long Short-Term Memory (LSTM) networks (14.6 %) and shallow learning networks (12.5 %). In evaluating QoS, the predominant emphasis revolves around the accuracy parameter (80 %). This study highlights how ML, DL, and distributed systems reshape healthcare. It contributes to advancing healthcare quality, bridging the gap between technology and medical adoption, and benefiting practitioners and patients.

PMID:38462281 | DOI:10.1016/j.artmed.2024.102779

Categories: Literature Watch

Diagnostic performance of deep learning to exclude coronary stenosis on CT angiography in TAVI patients

Sun, 2024-03-10 06:00

Int J Cardiovasc Imaging. 2024 Mar 10. doi: 10.1007/s10554-024-03063-5. Online ahead of print.

ABSTRACT

We evaluated the diagnostic performance of a deep-learning model (DLM) (CorEx®, Spimed-AI, Paris, France) designed to automatically detect > 50% coronary stenosis on coronary computed tomography angiography (CCTA) images. We studied inter-observer variability as an additional aim. CCTA images obtained before transcatheter aortic valve implantation (TAVI) were assessed by two radiologists and the DLM, and the results were compared to those of invasive coronary angiography (ICA) used as the reference standard. 165 consecutive patients underwent both CCTA and ICA as part of their TAVI work-up. We excluded the 42 (25.5%) patients with a history of stenting or bypass grafting and the 23 (13.9%) patients with low-quality images. We retrospectively subjected the CCTA images from the remaining 100 patients to evaluation by the DLM and compared the DLM and ICA results. All 25 patients with > 50% stenosis by ICA also had > 50% stenosis by DLM evaluation of CCTA: thus, the DLM had 100% sensitivity and 100% negative predictive value. False-positive DLM results were common, yielding a positive predictive value of only 39% (95% CI, 27-51%). Two radiologists with 3 and 25 years' experience, respectively, performed similarly to the DLM in evaluating the CCTA images; thus, accuracy did not differ significantly between each reader and the DLM (p = 0.625 and p = 0.375, respectively). The DLM had 100% negative predictive value for > 50% stenosis and performed similarly to experienced radiologists. This tool may hold promise for identifying the up to one-third of patients who do not require ICA before TAVI.

PMID:38461472 | DOI:10.1007/s10554-024-03063-5

Categories: Literature Watch

TipDet: A multi-keyframe motion-aware framework for tip detection during ultrasound-guided interventions

Sat, 2024-03-09 06:00

Comput Methods Programs Biomed. 2024 Mar 8;247:108109. doi: 10.1016/j.cmpb.2024.108109. Online ahead of print.

ABSTRACT

BACKGROUND AND OBJECTIVE: Automatic needle tip detection is important in real-time ultrasound (US) images that are utilized to guide interventional needle puncture procedures in clinical settings. However, due to the spatial indiscernibility problem caused by the severe background interferences and the tip characteristics of small size, being grayscale and indistinctive appearance patterns, tip detection in US images is challenging.

METHODS: To achieve precise tip detection in US images against spatial indiscernibility, a novel multi-keyframe motion-aware framework called TipDet is proposed. It can identify tips based on their short-term spatial-temporal pattern and long-term motion pattern. In TipDet, first, an adaptive keyframe model (AKM) is proposed to decide whether a frame is informative to serve as a keyframe for long-term motion pattern learning. Second, candidate tip detection is conducted using a two-stream backbone (TSB) based on their short-term spatial-temporal pattern. Third, to further identify the true one in the candidate tips, a novel method for learning the long-term motion pattern of the tips is proposed based on the proposed optical-flow-aware multi-head cross-attention (OFA-MHCA).

RESULTS: On the clinical human puncture dataset, which includes 4195 B-mode images, the experimental results show that the proposed TipDet can achieve precise tip detection against the spatial indiscernibility problem, achieving 78.7 % AP0.1:0.5 and 8.9 % improvement over the base detector at approximately 20 FPS. Moreover, a tip localization error of 1.3±0.6 % is achieved, exceeding the existing method.

CONCLUSIONS: The proposed TipDet can facilitate a wider and easier application of US-guided interventional procedures by providing robust and precise needle tip localization. The codes and data are available at https://github.com/ResonWang/TipDet.

PMID:38460346 | DOI:10.1016/j.cmpb.2024.108109

Categories: Literature Watch

A graph convolutional network with dynamic weight fusion of multi-scale local features for diabetic retinopathy grading

Sat, 2024-03-09 06:00

Sci Rep. 2024 Mar 9;14(1):5791. doi: 10.1038/s41598-024-56389-4.

ABSTRACT

Diabetic retinopathy (DR) is a serious ocular complication that can pose a serious risk to a patient's vision and overall health. Currently, the automatic grading of DR is mainly using deep learning techniques. However, the lesion information in DR images is complex, variable in shape and size, and randomly distributed in the images, which leads to some shortcomings of the current research methods, i.e., it is difficult to effectively extract the information of these various features, and it is difficult to establish the connection between the lesion information in different regions. To address these shortcomings, we design a multi-scale dynamic fusion (MSDF) module and combine it with graph convolution operations to propose a multi-scale dynamic graph convolutional network (MDGNet) in this paper. MDGNet firstly uses convolution kernels with different sizes to extract features with different shapes and sizes in the lesion regions, and then automatically learns the corresponding weights for feature fusion according to the contribution of different features to model grading. Finally, the graph convolution operation is used to link the lesion features in different regions. As a result, our proposed method can effectively combine local and global features, which is beneficial for the correct DR grading. We evaluate the effectiveness of method on two publicly available datasets, namely APTOS and DDR. Extensive experiments demonstrate that our proposed MDGNet achieves the best grading results on APTOS and DDR, and is more accurate and diverse for the extraction of lesion information.

PMID:38461342 | DOI:10.1038/s41598-024-56389-4

Categories: Literature Watch

Automated Spontaneous Echo Contrast Detection Using a Multisequence Attention Convolutional Neural Network

Sat, 2024-03-09 06:00

Ultrasound Med Biol. 2024 Mar 8:S0301-5629(24)00030-9. doi: 10.1016/j.ultrasmedbio.2024.01.016. Online ahead of print.

ABSTRACT

OBJECTIVE: Spontaneous echo contrast (SEC) is a vascular ultrasound finding associated with increased thromboembolism risk. However, identification requires expert determination and clinician time to report. We developed a deep learning model that can automatically identify SEC. Our model can be applied retrospectively without deviating from routine clinical practice. The retrospective nature of our model means future works could scan archival data to opportunistically correlate SEC findings with documented clinical outcomes.

METHODS: We curated a data set of 801 archival acquisitions along the femoral vein from 201 patients. We used a multisequence convolutional neural network (CNN) with ResNetv2 backbone and visualized keyframe importance using soft attention. We evaluated SEC prediction performance using an 80/20 train/test split. We report receiver operating characteristic area under the curve (ROC-AUC), along with the Youden threshold-associated sensitivity, specificity, F1 score, true negative, false negative, false positive and true positive.

RESULTS: Using soft attention, we can identify SEC with an AUC of 0.74, sensitivity of 0.73 and specificity of 0.68. Without soft attention, our model achieves an AUC of 0.69, sensitivity of 0.71 and specificity of 0.60. Additionally, we provide attention visualizations and note that our model assigns higher attention score to ultrasound frames containing more vessel lumen.

CONCLUSION: Our multisequence CNN model can identify the presence of SEC from ultrasound keyframes with an AUC of 0.74, which could enable screening applications and enable more SEC data discovery. The model does not require the expert intervention or additional clinician reporting time that are currently significant barriers to SEC adoption. Model and processed data sets are publicly available at https://github.com/Ouwen/automatic-spontaneous-echo-contrast.

PMID:38461036 | DOI:10.1016/j.ultrasmedbio.2024.01.016

Categories: Literature Watch

Novel 3D-based deep learning for classification of acute exacerbation of idiopathic pulmonary fibrosis using high-resolution CT

Sat, 2024-03-09 06:00

BMJ Open Respir Res. 2024 Mar 9;11(1):e002226. doi: 10.1136/bmjresp-2023-002226.

ABSTRACT

PURPOSE: Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) is the primary cause of death in patients with IPF, characterised by diffuse, bilateral ground-glass opacification on high-resolution CT (HRCT). This study proposes a three-dimensional (3D)-based deep learning algorithm for classifying AE-IPF using HRCT images.

MATERIALS AND METHODS: A novel 3D-based deep learning algorithm, SlowFast, was developed by applying a database of 306 HRCT scans obtained from two centres. The scans were divided into four separate subsets (training set, n=105; internal validation set, n=26; temporal test set 1, n=79; and geographical test set 2, n=96). The final training data set consisted of 1050 samples with 33 600 images for algorithm training. Algorithm performance was evaluated using accuracy, sensitivity, specificity, positive predictive value, negative predictive value, receiver operating characteristic (ROC) curve and weighted κ coefficient.

RESULTS: The accuracy of the algorithm in classifying AE-IPF on the test sets 1 and 2 was 93.9% and 86.5%, respectively. Interobserver agreements between the algorithm and the majority opinion of the radiologists were good (κw=0.90 for test set 1 and κw=0.73 for test set 2, respectively). The ROC accuracy of the algorithm for classifying AE-IPF on the test sets 1 and 2 was 0.96 and 0.92, respectively. The algorithm performance was superior to visual analysis in accurately diagnosing radiological findings. Furthermore, the algorithm's categorisation was a significant predictor of IPF progression.

CONCLUSIONS: The deep learning algorithm provides high auxiliary diagnostic efficiency in patients with AE-IPF and may serve as a useful clinical aid for diagnosis.

PMID:38460976 | DOI:10.1136/bmjresp-2023-002226

Categories: Literature Watch

ECG-based data-driven solutions for diagnosis and prognosis of cardiovascular diseases: A systematic review

Sat, 2024-03-09 06:00

Comput Biol Med. 2024 Feb 28;172:108235. doi: 10.1016/j.compbiomed.2024.108235. Online ahead of print.

ABSTRACT

Cardiovascular diseases (CVD) are a leading cause of death globally, and result in significant morbidity and reduced quality of life. The electrocardiogram (ECG) plays a crucial role in CVD diagnosis, prognosis, and prevention; however, different challenges still remain, such as an increasing unmet demand for skilled cardiologists capable of accurately interpreting ECG. This leads to higher workload and potential diagnostic inaccuracies. Data-driven approaches, such as machine learning (ML) and deep learning (DL) have emerged to improve existing computer-assisted solutions and enhance physicians' ECG interpretation of the complex mechanisms underlying CVD. However, many ML and DL models used to detect ECG-based CVD suffer from a lack of explainability, bias, as well as ethical, legal, and societal implications (ELSI). Despite the critical importance of these Trustworthy Artificial Intelligence (AI) aspects, there is a lack of comprehensive literature reviews that examine the current trends in ECG-based solutions for CVD diagnosis or prognosis that use ML and DL models and address the Trustworthy AI requirements. This review aims to bridge this knowledge gap by providing a systematic review to undertake a holistic analysis across multiple dimensions of these data-driven models such as type of CVD addressed, dataset characteristics, data input modalities, ML and DL algorithms (with a focus on DL), and aspects of Trustworthy AI like explainability, bias and ethical considerations. Additionally, within the analyzed dimensions, various challenges are identified. To these, we provide concrete recommendations, equipping other researchers with valuable insights to understand the current state of the field comprehensively.

PMID:38460311 | DOI:10.1016/j.compbiomed.2024.108235

Categories: Literature Watch

A bidirectional interpretable compound-protein interaction prediction framework based on cross attention

Sat, 2024-03-09 06:00

Comput Biol Med. 2024 Mar 2;172:108239. doi: 10.1016/j.compbiomed.2024.108239. Online ahead of print.

ABSTRACT

The identification of compound-protein interactions (CPIs) plays a vital role in drug discovery. However, the huge cost and labor-intensive nature in vitro and vivo experiments make it urgent for researchers to develop novel CPI prediction methods. Despite emerging deep learning methods have achieved promising performance in CPI prediction, they also face ongoing challenges: (i) providing bidirectional interpretability from both the chemical and biological perspective for the prediction results; (ii) comprehensively evaluating model generalization performance; (iii) demonstrating the practical applicability of these models. To overcome the challenges posed by current deep learning methods, we propose a cross multi-head attention oriented bidirectional interpretable CPI prediction model (CmhAttCPI). First, CmhAttCPI takes molecular graphs and protein sequences as inputs, utilizing the GCW module to learn atom features and the CNN module to learn residue features, respectively. Second, the model applies cross multi-head attention module to compute attention weights for atoms and residues. Finally, CmhAttCPI employs a fully connected neural network to predict scores for CPIs. We evaluated the performance of CmhAttCPI on balanced datasets and imbalanced datasets. The results consistently show that CmhAttCPI outperforms multiple state-of-the-art methods. We constructed three scenarios based on compound and protein clustering and comprehensively evaluated the model generalization ability within these scenarios. The results demonstrate that the generalization ability of CmhAttCPI surpasses that of other models. Besides, the visualizations of attention weights reveal that CmhAttCPI provides chemical and biological interpretation for CPI prediction. Moreover, case studies confirm the practical applicability of CmhAttCPI in discovering anticancer candidates.

PMID:38460309 | DOI:10.1016/j.compbiomed.2024.108239

Categories: Literature Watch

AI supported fetal echocardiography with quality assessment

Sat, 2024-03-09 06:00

Sci Rep. 2024 Mar 9;14(1):5809. doi: 10.1038/s41598-024-56476-6.

ABSTRACT

This study aimed to develop a deep learning model to assess the quality of fetal echocardiography and to perform prospective clinical validation. The model was trained on data from the 18-22-week anomaly scan conducted in seven hospitals from 2008 to 2018. Prospective validation involved 100 patients from two hospitals. A total of 5363 images from 2551 pregnancies were used for training and validation. The model's segmentation accuracy depended on image quality measured by a quality score (QS). It achieved an overall average accuracy of 0.91 (SD 0.09) across the test set, with images having above-average QS scoring 0.97 (SD 0.03). During prospective validation of 192 images, clinicians rated 44.8% (SD 9.8) of images as equal in quality, 18.69% (SD 5.7) favoring auto-captured images and 36.51% (SD 9.0) preferring manually captured ones. Images with above average QS showed better agreement on segmentations (p < 0.001) and QS (p < 0.001) with fetal medicine experts. Auto-capture saved additional planes beyond protocol requirements, resulting in more comprehensive echocardiographies. Low QS had adverse effect on both model performance and clinician's agreement with model feedback. The findings highlight the importance of developing and evaluating AI models based on 'noisy' real-life data rather than pursuing the highest accuracy possible with retrospective academic-grade data.

PMID:38461322 | DOI:10.1038/s41598-024-56476-6

Categories: Literature Watch

DeepAEG: a model for predicting cancer drug response based on data enhancement and edge-collaborative update strategies

Sat, 2024-03-09 06:00

BMC Bioinformatics. 2024 Mar 9;25(1):105. doi: 10.1186/s12859-024-05723-8.

ABSTRACT

MOTIVATION: The prediction of cancer drug response is a challenging subject in modern personalized cancer therapy due to the uncertainty of drug efficacy and the heterogeneity of patients. It has been shown that the characteristics of the drug itself and the genomic characteristics of the patient can greatly influence the results of cancer drug response. Therefore, accurate, efficient, and comprehensive methods for drug feature extraction and genomics integration are crucial to improve the prediction accuracy.

RESULTS: Accurate prediction of cancer drug response is vital for guiding the design of anticancer drugs. In this study, we propose an end-to-end deep learning model named DeepAEG which is based on a complete-graph update mode to predict IC50. Specifically, we integrate an edge update mechanism on the basis of a hybrid graph convolutional network to comprehensively learn the potential high-dimensional representation of topological structures in drugs, including atomic characteristics and chemical bond information. Additionally, we present a novel approach for enhancing simplified molecular input line entry specification data by employing sequence recombination to eliminate the defect of single sequence representation of drug molecules. Our extensive experiments show that DeepAEG outperforms other existing methods across multiple evaluation parameters in multiple test sets. Furthermore, we identify several potential anticancer agents, including bortezomib, which has proven to be an effective clinical treatment option. Our results highlight the potential value of DeepAEG in guiding the design of specific cancer treatment regimens.

PMID:38461284 | DOI:10.1186/s12859-024-05723-8

Categories: Literature Watch

A deep learning method for empirical spectral prediction and inverse design of all-optical nonlinear plasmonic ring resonator switches

Sat, 2024-03-09 06:00

Sci Rep. 2024 Mar 9;14(1):5787. doi: 10.1038/s41598-024-56522-3.

ABSTRACT

All-optical plasmonic switches (AOPSs) utilizing surface plasmon polaritons are well-suited for integration into photonic integrated circuits (PICs) and play a crucial role in advancing all-optical signal processing. The current AOPS design methods still rely on trial-and-error or empirical approaches. In contrast, recent deep learning (DL) advances have proven highly effective as computational tools, offering an alternative means to accelerate nanophotonics simulations. This paper proposes an innovative approach utilizing DL for spectrum prediction and inverse design of AOPS. The switches employ circular nonlinear plasmonic ring resonators (NPRRs) composed of interconnected metal-insulator-metal waveguides with a ring resonator. The NPRR switching performance is shown using the nonlinear Kerr effect. The forward model presented in this study demonstrates superior computational efficiency when compared to the finite-difference time-domain method. The model analyzes various structural parameters to predict transmission spectra with a distinctive dip. Inverse modeling enables the prediction of design parameters for desired transmission spectra. This model provides a rapid estimation of design parameters, offering a clear advantage over time-intensive conventional optimization approaches. The loss of prediction for both the forward and inverse models, when compared to simulations, is exceedingly low and on the order of 10-4. The results confirm the suitability of employing DL for forward and inverse design of AOPSs in PICs.

PMID:38461205 | DOI:10.1038/s41598-024-56522-3

Categories: Literature Watch

Be Careful About Metrics When Imbalanced Data Is Used for a Deep Learning Model

Sat, 2024-03-09 06:00

Chest. 2024 Mar;165(3):e87-e89. doi: 10.1016/j.chest.2023.10.039.

NO ABSTRACT

PMID:38461027 | DOI:10.1016/j.chest.2023.10.039

Categories: Literature Watch

MMDB: Multimodal dual-branch model for multi-functional bioactive peptide prediction

Sat, 2024-03-09 06:00

Anal Biochem. 2024 Mar 7:115491. doi: 10.1016/j.ab.2024.115491. Online ahead of print.

ABSTRACT

Bioactive peptides can hinder oxidative processes and microbial spoilage in foodstuffs and play important roles in treating diverse diseases and disorders. While most of the methods focus on single-functional bioactive peptides and have obtained promising prediction performance, it is still a significant challenge to accurately detect complex and diverse functions simultaneously with the quick increase of multi-functional bioactive peptides. In contrast to previous research on multi-functional bioactive peptide prediction based solely on sequence, we propose a novel multimodal dual-branch (MMDB) lightweight deep learning model that designs two different branches to effectively capture the complementary information of peptide sequence and structural properties. Specifically, a multi-scale dilated convolution with Bi-LSTM branch is presented to effectively model the different scales sequence properties of peptides while a multi-layer convolution branch is proposed to capture structural information. To the best of our knowledge, this is the first effective extraction of peptide sequence features using multi-scale dilated convolution without parameter increase. Multimodal features from both branches are integrated via a fully connected layer for multi-label classification. Compared to state-of-the-art methods, our MMDB model exhibits competitive results across metrics, with a 9.1% Coverage increase and 5.3% and 3.5% improvements in Precision and Accuracy, respectively.

PMID:38460901 | DOI:10.1016/j.ab.2024.115491

Categories: Literature Watch

First report on chemometrics-driven multilayered lead prioritization in addressing oxysterol-mediated overexpression of G protein-coupled receptor 183

Sat, 2024-03-09 06:00

Mol Divers. 2024 Mar 9. doi: 10.1007/s11030-024-10811-1. Online ahead of print.

ABSTRACT

Contemporary research has convincingly demonstrated that upregulation of G protein-coupled receptor 183 (GPR183), orchestrated by its endogenous agonist, 7α,25-dihydroxyxcholesterol (7α,25-OHC), leads to the development of cancer, diabetes, multiple sclerosis, infectious, and inflammatory diseases. A recent study unveiled the cryo-EM structure of 7α,25-OHC bound GPR183 complex, presenting an untapped opportunity for computational exploration of potential GPR183 inhibitors, which served as our inspiration for the current work. A predictive and validated two-dimensional QSAR model using genetic algorithm (GA) and multiple linear regression (MLR) on experimental GPR183 inhibition data was developed. QSAR study highlighted that structural features like dissimilar electronegative atoms, quaternary carbon atoms, and CH2RX fragment (X: heteroatoms) influence positively, while the existence of oxygen atoms with a topological separation of 3, negatively affects GPR183 inhibitory activity. Post assessment of true external set prediction capability, the MLR model was deployed to screen 12,449 DrugBank compounds, followed by a screening pipeline involving molecular docking, druglikeness, ADMET, protein-ligand stability assessment using deep learning algorithm, molecular dynamics, and molecular mechanics. The current findings strongly evidenced DB05790 as a potential lead for prospective interference of oxysterol-mediated GPR183 overexpression, warranting further in vitro and in vivo validation.

PMID:38460065 | DOI:10.1007/s11030-024-10811-1

Categories: Literature Watch

Prediction of extraction difficulty for impacted maxillary third molars with deep learning approach

Fri, 2024-03-08 06:00

J Stomatol Oral Maxillofac Surg. 2024 Mar 6:101817. doi: 10.1016/j.jormas.2024.101817. Online ahead of print.

ABSTRACT

OBJECTIVE: The aim of this study is to determine if a deep learning (DL) model can predict the surgical difficulty for impacted maxillary third molar tooth using panoramic images before surgery.

MATERIALS AND METHODS: The dataset consists of 708 panoramic radiographs of the patients who applied to the Oral and Maxillofacial Surgery Clinic for various reasons. Each maxillary third molar difficulty was scored based on dept (V), angulation (H), relation with maxillary sinus (S), and relation with ramus (R) on panoramic images. The YoloV5x architecture was used to perform automatic segmentation and classification. To prevent re-testing of images, participate in the training, the data set was subdivided as: 80 % training, 10 % validation, and 10 % test group.

RESULTS: Impacted Upper Third Molar Segmentation model showed best success on sensitivity, precision and F1 score with 0,9705, 0,9428 and 0,9565, respectively. S-model had a lesser sensitivity, precision and F1 score than the other models with 0,8974, 0,6194, 0,7329, respectively.

CONCLUSION: The results showed that the proposed DL model could be effective for predicting the surgical difficulty of an impacted maxillary third molar tooth using panoramic radiographs and this approach might help as a decision support mechanism for the clinicians in peri-surgical period.

PMID:38458545 | DOI:10.1016/j.jormas.2024.101817

Categories: Literature Watch

4 mC site recognition algorithm based on pruned pre-trained DNABert-Pruning model and fused artificial feature encoding

Fri, 2024-03-08 06:00

Anal Biochem. 2024 Mar 6:115492. doi: 10.1016/j.ab.2024.115492. Online ahead of print.

ABSTRACT

DNA 4 mC plays a crucial role in the genetic expression process of organisms. However, existing deep learning algorithms have shortcomings in the ability to represent DNA sequence features. In this paper, we propose a 4 mC site identification algorithm, DNABert-4mC, based on a fusion of the pruned pre-training DNABert-Pruning model and artificial feature encoding to identify 4 mC sites. The algorithm prunes and compresses the DNABert model, resulting in the pruned pre-training model DNABert-Pruning. This model reduces the number of parameters and removes redundancy from output features, yielding more precise feature representations while upholding accuracy.Simultaneously, the algorithm constructs an artificial feature encoding module to assist the DNABert-Pruning model in feature representation, effectively supplementing the information that is missing from the pre-trained features. The algorithm also introduces the AFF-4mC fusion strategy, which combines artificial feature encoding with the DNABert-Pruning model, to improve the feature representation capability of DNA sequences in multi-semantic spaces and better extract 4 mC sites and the distribution of nucleotide importance within the sequence. In experiments on six independent test sets, the DNABert-4mC algorithm achieved an average AUC value of 93.81%, outperforming seven other advanced algorithms with improvements of 2.05%, 5.02%, 11.32%, 5.90%, 12.02%, 2.42% and 2.34%, respectively.

PMID:38458307 | DOI:10.1016/j.ab.2024.115492

Categories: Literature Watch

A robust multi-branch multi-attention-mechanism EEGNet for motor imagery BCI decoding

Fri, 2024-03-08 06:00

J Neurosci Methods. 2024 Mar 6:110108. doi: 10.1016/j.jneumeth.2024.110108. Online ahead of print.

ABSTRACT

BACKGROUND: Motor-Imagery-based Brain-Computer Interface (MI-BCI) is a promising technology to assist communication, movement, and neurological rehabilitation for motor-impaired individuals. Electroencephalography (EEG) decoding techniques using deep learning (DL) possess noteworthy advantages due to automatic feature extraction and end-to-end learning. However, the DL-based EEG decoding models tend to show large variations due to intersubject variability of EEG, which results from inconsistencies of different subjects' optimal hyperparameters.

NEW METHODS: This study proposes a multi-branch multi-attention mechanism EEGNet model (MBMANet) for robust decoding. It applies the multi-branch EEGNet structure to achieve various feature extractions. Further, the different attention mechanisms introduced in each branch attain diverse adaptive weight adjustments. This combination of multi-branch and multi-attention mechanisms allows for multi-level feature fusion to provide robust decoding for different subjects.

RESULTS: The MBMANet model has a four-classification accuracy of 83.18% and kappa of 0.776 on the BCI Competition IV-2a dataset, which outperforms other eight CNN-based decoding models. This consistently satisfactory performance across all nine subjects indicates that the proposed model is robust.

CONCLUSIONS: The combine of multi-branch and multi-attention mechanisms empowers the DL-based models to adaptively learn different EEG features, which provides a feasible solution for dealing with data variability. It also gives the MBMANet model more accurate decoding of motion intentions and lower training costs, thus improving the MI-BCI's utility and robustness.

PMID:38458260 | DOI:10.1016/j.jneumeth.2024.110108

Categories: Literature Watch

Deep-learning assisted zwitterionic magnetic immunochromatographic assays for multiplex diagnosis of biomarkers

Fri, 2024-03-08 06:00

Talanta. 2024 Mar 7;273:125868. doi: 10.1016/j.talanta.2024.125868. Online ahead of print.

ABSTRACT

Magnetic nanoparticle (MNP)-based immunochromatographic tests (ICTs) display long-term stability and an enhanced capability for multiplex biomarker detection, surpassing conventional gold nanoparticles (AuNPs) and fluorescence-based ICTs. In this study, we innovatively developed zwitterionic silica-coated MNPs (MNP@Si-Zwit/COOH) with outstanding antifouling capabilities and effectively utilised them for the simultaneous identification of the nucleocapsid protein (N protein) of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) and influenza A/B. The carboxyl-functionalised MNPs with 10% zwitterionic ligands (MNP@Si-Zwit 10/COOH) exhibited a wide linear dynamic detection range and the most pronounced signal-to-noise ratio when used as probes in the ICT. The relative limit of detection (LOD) values were achieved in 12 min by using a magnetic assay reader (MAR), with values of 0.0062 ng/mL for SARS-CoV-2 and 0.0051 and 0.0147 ng/mL, respectively, for the N protein of influenza A and influenza B. By integrating computer vision and deep learning to enhance the image processing of immunoassay results for multiplex detection, a classification accuracy in the range of 0.9672-0.9936 was achieved for evaluating the three proteins at concentrations of 0, 0.1, 1, and 10 ng/mL. The proposed MNP-based ICT for the multiplex diagnosis of biomarkers holds substantial promise for applications in both medical institutions and self-administered diagnostic settings.

PMID:38458085 | DOI:10.1016/j.talanta.2024.125868

Categories: Literature Watch

A comparison between centralized and asynchronous federated learning approaches for survival outcome prediction using clinical and PET data from non-small cell lung cancer patients

Fri, 2024-03-08 06:00

Comput Methods Programs Biomed. 2024 Feb 29;248:108104. doi: 10.1016/j.cmpb.2024.108104. Online ahead of print.

ABSTRACT

BACKGROUND AND OBJECTIVE: Survival analysis plays an essential role in the medical field for optimal treatment decision-making. Recently, survival analysis based on the deep learning (DL) approach has been proposed and is demonstrating promising results. However, developing an ideal prediction model requires integrating large datasets across multiple institutions, which poses challenges concerning medical data privacy.

METHODS: In this paper, we propose FedSurv, an asynchronous federated learning (FL) framework designed to predict survival time using clinical information and positron emission tomography (PET)-based features. This study used two datasets: a public radiogenic dataset of non-small cell lung cancer (NSCLC) from the Cancer Imaging Archive (RNSCLC), and an in-house dataset from the Chonnam National University Hwasun Hospital (CNUHH) in South Korea, consisting of clinical risk factors and F-18 fluorodeoxyglucose (FDG) PET images in NSCLC patients. Initially, each dataset was divided into multiple clients according to histological attributes, and each client was trained using the proposed DL model to predict individual survival time. The FL framework collected weights and parameters from the clients, which were then incorporated into the global model. Finally, the global model aggregated all weights and parameters and redistributed the updated model weights to each client. We evaluated different frameworks including single-client-based approach, centralized learning and FL.

RESULTS: We evaluated our method on two independent datasets. First, on the RNSCLC dataset, the mean absolute error (MAE) was 490.80±22.95 d and the C-Index was 0.69±0.01. Second, on the CNUHH dataset, the MAE was 494.25±40.16 d and the C-Index was 0.71±0.01. The FL approach achieved centralized method performance in PET-based survival time prediction and outperformed single-client-based approaches.

CONCLUSIONS: Our results demonstrated the feasibility and effectiveness of employing FL for individual survival prediction in NSCLC patients, using clinical information and PET-based features.

PMID:38457959 | DOI:10.1016/j.cmpb.2024.108104

Categories: Literature Watch

Pages