Deep learning
Identification of breast cancer subtypes based on graph convolutional network
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Feb 25;41(1):121-128. doi: 10.7507/1001-5515.202306071.
ABSTRACT
Identification of molecular subtypes of malignant tumors plays a vital role in individualized diagnosis, personalized treatment, and prognosis prediction of cancer patients. The continuous improvement of comprehensive tumor genomics database and the ongoing breakthroughs in deep learning technology have driven further advancements in computer-aided tumor classification. Although the existing classification methods based on gene expression omnibus database take the complexity of cancer molecular classification into account, they ignore the internal correlation and synergism of genes. To solve this problem, we propose a multi-layer graph convolutional network model for breast cancer subtype classification combined with hierarchical attention network. This model constructs the graph embedding datasets of patients' genes, and develops a new end-to-end multi-classification model, which can effectively recognize molecular subtypes of breast cancer. A large number of test data prove the good performance of this new model in the classification of breast cancer subtypes. Compared to the original graph convolutional neural networks and two mainstream graph neural network classification algorithms, the new model has remarkable advantages. The accuracy, weight-F1-score, weight-recall, and weight-precision of our model in seven-category classification has reached 0.851 7, 0.823 5, 0.851 7 and 0.793 6 respectively. In the four-category classification, the results are 0.928 5, 0.894 9, 0.928 5 and 0.865 0 respectively. In addition, compared with the latest breast cancer subtype classification algorithms, the method proposed in this paper also achieved the highest classification accuracy. In summary, the model proposed in this paper may serve as an auxiliary diagnostic technology, providing a reliable option for precise classification of breast cancer subtypes in the future and laying the theoretical foundation for computer-aided tumor classification.
PMID:38403612 | DOI:10.7507/1001-5515.202306071
Deep learning approach for automatic segmentation of auricular acupoint divisions
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Feb 25;41(1):114-120. doi: 10.7507/1001-5515.202309010.
ABSTRACT
The automatic segmentation of auricular acupoint divisions is the basis for realizing intelligent auricular acupoint therapy. However, due to the large number of ear acupuncture areas and the lack of clear boundary, existing solutions face challenges in automatically segmenting auricular acupoints. Therefore, a fast and accurate automatic segmentation approach of auricular acupuncture divisions is needed. A deep learning-based approach for automatic segmentation of auricular acupoint divisions is proposed, which mainly includes three stages: ear contour detection, anatomical part segmentation and keypoints localization, and image post-processing. In the anatomical part segmentation and keypoints localization stages, K-YOLACT was proposed to improve operating efficiency. Experimental results showed that the proposed approach achieved automatic segmentation of 66 acupuncture points in the frontal image of the ear, and the segmentation effect was better than existing solutions. At the same time, the mean average precision (mAP) of the anatomical part segmentation of the K-YOLACT was 83.2%, mAP of keypoints localization was 98.1%, and the running speed was significantly improved. The implementation of this approach provides a reliable solution for the accurate segmentation of auricular point images, and provides strong technical support for the modern development of traditional Chinese medicine.
PMID:38403611 | DOI:10.7507/1001-5515.202309010
Application of electrical impedance tomography imaging technology combined with generative adversarial network in pulmonary ventilation monitoring
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Feb 25;41(1):105-113. doi: 10.7507/1001-5515.202308026.
ABSTRACT
Electrical impedance tomography (EIT) plays a crucial role in the monitoring of pulmonary ventilation and regional pulmonary function test. However, the inherent ill-posed nature of EIT algorithms results in significant deviations in the reconstructed conductivity obtained from voltage data contaminated with noise, making it challenging to obtain accurate distribution images of conductivity change as well as clear boundary contours. In order to enhance the image quality of EIT in lung ventilation monitoring, a novel approach integrating the EIT with deep learning algorithm was proposed. Firstly, an optimized operator was introduced to enhance the Kalman filter algorithm, and Tikhonov regularization was incorporated into the state-space expression of the algorithm to obtain the initial lung image reconstructed. Following that, the imaging outcomes were fed into a generative adversarial network model in order to reconstruct accurate lung contours. The simulation experiment results indicate that the proposed method produces pulmonary images with clear boundaries, demonstrating increased robustness against noise interference. This methodology effectively achieves a satisfactory level of visualization and holds potential significance as a reference for the diagnostic purposes of imaging modalities such as computed tomography.
PMID:38403610 | DOI:10.7507/1001-5515.202308026
Research on bark-frequency spectral coefficients heart sound classification algorithm based on multiple window time-frequency reassignment
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Feb 25;41(1):51-59. doi: 10.7507/1001-5515.202212037.
ABSTRACT
The multi-window time-frequency reassignment helps to improve the time-frequency resolution of bark-frequency spectral coefficient (BFSC) analysis of heart sounds. For this purpose, a new heart sound classification algorithm combining feature extraction based on multi-window time-frequency reassignment BFSC with deep learning was proposed in this paper. Firstly, the randomly intercepted heart sound segments are preprocessed with amplitude normalization, the heart sounds were framed and time-frequency rearrangement based on short-time Fourier transforms were computed using multiple orthogonal windows. A smooth spectrum estimate is calculated by arithmetic averaging each of the obtained independent spectra. Finally, the BFSC of reassignment spectrum is extracted as a feature by the Bark filter bank. In this paper, convolutional network and recurrent neural network are used as classifiers for model comparison and performance evaluation of the extracted features. Eventually, the multi-window time-frequency rearrangement improved BFSC method extracts more discriminative features, with a binary classification accuracy of 0.936, a sensitivity of 0.946, and a specificity of 0.922. These results present that the algorithm proposed in this paper does not need to segment the heart sounds and randomly intercepts the heart sound segments, which greatly simplifies the computational process and is expected to be used for screening of congenital heart disease.
PMID:38403604 | DOI:10.7507/1001-5515.202212037
A topological deep learning framework for neural spike decoding
Biophys J. 2024 Feb 8:S0006-3495(24)00041-9. doi: 10.1016/j.bpj.2024.01.025. Online ahead of print.
ABSTRACT
The brain's spatial orientation system uses different neuron ensembles to aid in environment-based navigation. Two of the ways brains encode spatial information are through head direction cells and grid cells. Brains use head direction cells to determine orientation, whereas grid cells consist of layers of decked neurons that overlay to provide environment-based navigation. These neurons fire in ensembles where several neurons fire at once to activate a single head direction or grid. We want to capture this firing structure and use it to decode head direction and animal location from head direction and grid cell activity. Understanding, representing, and decoding these neural structures require models that encompass higher-order connectivity, more than the one-dimensional connectivity that traditional graph-based models provide. To that end, in this work, we develop a topological deep learning framework for neural spike train decoding. Our framework combines unsupervised simplicial complex discovery with the power of deep learning via a new architecture we develop herein called a simplicial convolutional recurrent neural network. Simplicial complexes, topological spaces that use not only vertices and edges but also higher-dimensional objects, naturally generalize graphs and capture more than just pairwise relationships. Additionally, this approach does not require prior knowledge of the neural activity beyond spike counts, which removes the need for similarity measurements. The effectiveness and versatility of the simplicial convolutional neural network is demonstrated on head direction and trajectory prediction via head direction and grid cell datasets.
PMID:38402607 | DOI:10.1016/j.bpj.2024.01.025
U-PASS: An uncertainty-guided deep learning pipeline for automated sleep staging
Comput Biol Med. 2024 Feb 23;171:108205. doi: 10.1016/j.compbiomed.2024.108205. Online ahead of print.
ABSTRACT
With the increasing prevalence of machine learning in critical fields like healthcare, ensuring the safety and reliability of these systems is crucial. Estimating uncertainty plays a vital role in enhancing reliability by identifying areas of high and low confidence and reducing the risk of errors. This study introduces U-PASS, a specialized human-centered machine learning pipeline tailored for clinical applications, which effectively communicates uncertainty to clinical experts and collaborates with them to improve predictions. U-PASS incorporates uncertainty estimation at every stage of the process, including data acquisition, training, and model deployment. Training is divided into a supervised pre-training step and a semi-supervised recording-wise finetuning step. We apply U-PASS to the challenging task of sleep staging and demonstrate that it systematically improves performance at every stage. By optimizing the training dataset, actively seeking feedback from domain experts for informative samples, and deferring the most uncertain samples to experts, U-PASS achieves an impressive expert-level accuracy of 85% on a challenging clinical dataset of elderly sleep apnea patients. This represents a significant improvement over the starting point at 75% accuracy. The largest improvement gain is due to the deferral of uncertain epochs to a sleep expert. U-PASS presents a promising AI approach to incorporating uncertainty estimation in machine learning pipelines, improving their reliability and unlocking their potential in clinical settings.
PMID:38401452 | DOI:10.1016/j.compbiomed.2024.108205
External validation of the RSNA 2020 pulmonary embolism detection challenge winning deep learning algorithm
Eur J Radiol. 2024 Feb 13;173:111361. doi: 10.1016/j.ejrad.2024.111361. Online ahead of print.
ABSTRACT
PURPOSE: To evaluate the diagnostic performance and generalizability of the winning DL algorithm of the RSNA 2020 PE detection challenge to a local population using CTPA data from two hospitals.
MATERIALS AND METHODS: Consecutive CTPA images from patients referred for suspected PE were retrospectively analysed. The winning RSNA 2020 DL algorithm was retrained on the RSNA-STR Pulmonary Embolism CT (RSPECT) dataset. The algorithm was tested in hospital A on multidetector CT (MDCT) images of 238 patients and in hospital B on spectral detector CT (SDCT) and virtual monochromatic images (VMI) of 114 patients. The output of the DL algorithm was compared with a reference standard, which included a consensus reading by at least two experienced cardiothoracic radiologists for both hospitals. Areas under the receiver operating characteristic curve (AUCs) were calculated. Sensitivity and specificity were determined using the maximum Youden index.
RESULTS: According to the reference standard, PE was present in 73 patients (30.7%) in hospital A and 33 patients (29.0%) in hospital B. For the DL algorithm the AUC was 0.96 (95% CI 0.92-0.98) in hospital A, 0.89 (95% CI 0.81-0.94) for conventional reconstruction in hospital B and 0.87 (95% CI 0.80-0.93) for VMI.
CONCLUSION: The RSNA 2020 pulmonary embolism detection on CTPA challenge winning DL algorithm, retrained on the RSPECT dataset, showed high diagnostic accuracy on MDCT images. A somewhat lower performance was observed on SDCT images, which suggest additional training on novel CT technology may improve generalizability of this DL algorithm.
PMID:38401407 | DOI:10.1016/j.ejrad.2024.111361
A cognitive deep learning approach for medical image processing
Sci Rep. 2024 Feb 24;14(1):4539. doi: 10.1038/s41598-024-55061-1.
ABSTRACT
In ophthalmic diagnostics, achieving precise segmentation of retinal blood vessels is a critical yet challenging task, primarily due to the complex nature of retinal images. The intricacies of these images often hinder the accuracy and efficiency of segmentation processes. To overcome these challenges, we introduce the cognitive DL retinal blood vessel segmentation (CoDLRBVS), a novel hybrid model that synergistically combines the deep learning capabilities of the U-Net architecture with a suite of advanced image processing techniques. This model uniquely integrates a preprocessing phase using a matched filter (MF) for feature enhancement and a post-processing phase employing morphological techniques (MT) for refining the segmentation output. Also, the model incorporates multi-scale line detection and scale space methods to enhance its segmentation capabilities. Hence, CoDLRBVS leverages the strengths of these combined approaches within the cognitive computing framework, endowing the system with human-like adaptability and reasoning. This strategic integration enables the model to emphasize blood vessels, accurately segment effectively, and proficiently detect vessels of varying sizes. CoDLRBVS achieves a notable mean accuracy of 96.7%, precision of 96.9%, sensitivity of 99.3%, and specificity of 80.4% across all of the studied datasets, including DRIVE, STARE, HRF, retinal blood vessel and Chase-DB1. CoDLRBVS has been compared with different models, and the resulting metrics surpass the compared models and establish a new benchmark in retinal vessel segmentation. The success of CoDLRBVS underscores its significant potential in advancing medical image processing, particularly in the realm of retinal blood vessel segmentation.
PMID:38402321 | DOI:10.1038/s41598-024-55061-1
Novel antimicrobial peptides against Cutibacterium acnes designed by deep learning
Sci Rep. 2024 Feb 24;14(1):4529. doi: 10.1038/s41598-024-55205-3.
ABSTRACT
The increasing prevalence of antibiotic resistance in Cutibacterium acnes (C. acnes) requires the search for alternative therapeutic strategies. Antimicrobial peptides (AMPs) offer a promising avenue for the development of new treatments targeting C. acnes. In this study, to design peptides with the specific inhibitory activity against C. acnes, we employed a deep learning pipeline with generators and classifiers, using transfer learning and pretrained protein embeddings, trained on publicly available data. To enhance the training data specific to C. acnes inhibition, we constructed a phylogenetic tree. A panel of 42 novel generated linear peptides was then synthesized and experimentally evaluated for their antimicrobial selectivity and activity. Five of them demonstrated their high potency and selectivity against C. acnes with MIC of 2-4 µg/mL. Our findings highlight the potential of these designed peptides as promising candidates for anti-acne therapeutics and demonstrate the power of computational approaches for the rational design of targeted antimicrobial peptides.
PMID:38402320 | DOI:10.1038/s41598-024-55205-3
Deep Learning for Perfusion Cerebral Blood Flow (CBF) and Volume (CBV) Predictions and Diagnostics
Ann Biomed Eng. 2024 Feb 24. doi: 10.1007/s10439-024-03471-7. Online ahead of print.
ABSTRACT
Dynamic susceptibility contrast magnetic resonance perfusion (DSC-MRP) is a non-invasive imaging technique for hemodynamic measurements. Various perfusion parameters, such as cerebral blood volume (CBV) and cerebral blood flow (CBF), can be derived from DSC-MRP, hence this non-invasive imaging protocol is widely used clinically for the diagnosis and assessment of intracranial pathologies. Currently, most institutions use commercially available software to compute the perfusion parametric maps. However, these conventional methods often have limitations, such as being time-consuming and sensitive to user input, which can lead to inconsistent results; this highlights the need for a more robust and efficient approach like deep learning. Using the relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) perfusion maps generated by FDA-approved software, we trained a multistage deep learning model. The model, featuring a combination of a 1D convolutional neural network (CNN) and a 2D U-Net encoder-decoder network, processes each 4D MRP dataset by integrating temporal and spatial features of the brain for voxel-wise perfusion parameters prediction. An auxiliary model, with similar architecture, but trained with truncated datasets that had fewer time-points, was designed to explore the contribution of temporal features. Both qualitatively and quantitatively evaluated, deep learning-generated rCBV and rCBF maps showcased effective integration of temporal and spatial data, producing comprehensive predictions for the entire brain volume. Our deep learning model provides a robust and efficient approach for calculating perfusion parameters, demonstrating comparable performance to FDA-approved commercial software, and potentially mitigating the challenges inherent to traditional techniques.
PMID:38402314 | DOI:10.1007/s10439-024-03471-7
A novel neural network-based framework to estimate oil and gas pipelines life with missing input parameters
Sci Rep. 2024 Feb 24;14(1):4511. doi: 10.1038/s41598-024-54964-3.
ABSTRACT
Dry gas pipelines can encounter various operational, technical, and environmental issues, such as corrosion, leaks, spills, restrictions, and cyber threats. To address these difficulties, proactive maintenance and management and a new technological strategy are needed to increase safety, reliability, and efficiency. A novel neural network model for forecasting the life of a dry gas pipeline system and detecting the metal loss dimension class that is exposed to a harsh environment is presented in this study to handle the missing data. The proposed strategy blends the strength of deep learning techniques with industry-specific expertise. The main advantage of this study is to predict the pipeline life with a significant advantage of predicting the dimension classification of metal loss simultaneously employing a Bayesian regularization-based neural network framework when there are missing inputs in the datasets. The proposed intelligent model, trained on four pipeline datasets of a dry gas pipeline system, can predict the health condition of pipelines with high accuracy, even if there are missing parameters in the dataset. The proposed model using neural network technology generated satisfactory results in terms of numerical performance, with MSE and R2 values closer to 0 and 1, respectively. A few cases with missing input data are carried out, and the missing data is forecasted for each case. Then, a model is developed to predict the life condition of pipelines with the predicted missing input variables. The findings reveal that the model has the potential for real-world applications in the oil and gas sector for estimating the health condition of pipelines, even if there are missing input parameters. Additionally, multi-model comparative analysis and sensitivity analysis are incorporated, offering an extensive comprehension of multi-model prediction abilities and beneficial insights into the impact of various input variables on model outputs, thereby improving the interpretability and reliability of our results. The proposed framework could help business plans by lowering the chance of severe accidents and environmental harm with better safety and reliability.
PMID:38402261 | DOI:10.1038/s41598-024-54964-3
Prevalence and risk factors analysis of postpartum depression at early stage using hybrid deep learning model
Sci Rep. 2024 Feb 24;14(1):4533. doi: 10.1038/s41598-024-54927-8.
ABSTRACT
Postpartum Depression Disorder (PPDD) is a prevalent mental health condition and results in severe depression and suicide attempts in the social community. Prompt actions are crucial in tackling PPDD, which requires a quick recognition and accurate analysis of the probability factors associated with this condition. This concern requires attention. The primary aim of our research is to investigate the feasibility of anticipating an individual's mental state by categorizing individuals with depression from those without depression using a dataset consisting of text along with audio recordings from patients diagnosed with PPDD. This research proposes a hybrid PPDD framework that combines Improved Bi-directional Long Short-Term Memory (IBi-LSTM) with Transfer Learning (TL) based on two Convolutional Neural Network (CNN) architectures, respectively CNN-text and CNN audio. In the proposed model, the CNN section efficiently utilizes TL to obtain crucial knowledge from text and audio characteristics, whereas the improved Bi-LSTM module combines written material and sound data to obtain intricate chronological interpersonal relationships. The proposed model incorporates an attention technique to augment the effectiveness of the Bi-LSTM scheme. An experimental analysis is conducted on the PPDD online textual and speech audio dataset collected from UCI. It includes textual features such as age, women's health tracks, medical histories, demographic information, daily life metrics, psychological evaluations, and 'speech records' of PPDD patients. Data pre-processing is applied to maintain the data integrity and achieve reliable model performance. The proposed model demonstrates a great performance in better precision, recall, accuracy, and F1-score over existing deep learning models, including VGG-16, Base-CNN, and CNN-LSTM. These metrics indicate the model's ability to differentiate among women at risk of PPDD vs. non-PPDD. In addition, the feature importance analysis demonstrates that specific risk factors substantially impact the prediction of PPDD. The findings of this research establish a basis for improved precision and promptness in assessing the risk of PPDD, which may ultimately result in earlier implementation of interventions and the establishment of support networks for women who are susceptible to PPDD.
PMID:38402249 | DOI:10.1038/s41598-024-54927-8
Rapid deep learning-assisted predictive diagnostics for point-of-care testing
Nat Commun. 2024 Feb 24;15(1):1695. doi: 10.1038/s41467-024-46069-2.
ABSTRACT
Prominent techniques such as real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and rapid kits are currently being explored to both enhance sensitivity and reduce assay time for diagnostic tests. Existing commercial molecular methods typically take several hours, while immunoassays can range from several hours to tens of minutes. Rapid diagnostics are crucial in Point-of-Care Testing (POCT). We propose an approach that integrates a time-series deep learning architecture and AI-based verification, for the enhanced result analysis of lateral flow assays. This approach is applicable to both infectious diseases and non-infectious biomarkers. In blind tests using clinical samples, our method achieved diagnostic times as short as 2 minutes, exceeding the accuracy of human analysis at 15 minutes. Furthermore, our technique significantly reduces assay time to just 1-2 minutes in the POCT setting. This advancement has the potential to greatly enhance POCT diagnostics, enabling both healthcare professionals and non-experts to make rapid, accurate decisions.
PMID:38402240 | DOI:10.1038/s41467-024-46069-2
Artificial intelligence for radiographic imaging detection of caries lesions: a systematic review
BMC Oral Health. 2024 Feb 24;24(1):274. doi: 10.1186/s12903-024-04046-7.
ABSTRACT
BACKGROUND: The aim of this systematic review is to evaluate the diagnostic performance of Artificial Intelligence (AI) models designed for the detection of caries lesion (CL).
MATERIALS AND METHODS: An electronic literature search was conducted on PubMed, Web of Science, SCOPUS, LILACS and Embase databases for retrospective, prospective and cross-sectional studies published until January 2023, using the following keywords: artificial intelligence (AI), machine learning (ML), deep learning (DL), artificial neural networks (ANN), convolutional neural networks (CNN), deep convolutional neural networks (DCNN), radiology, detection, diagnosis and dental caries (DC). The quality assessment was performed using the guidelines of QUADAS-2.
RESULTS: Twenty articles that met the selection criteria were evaluated. Five studies were performed on periapical radiographs, nine on bitewings, and six on orthopantomography. The number of imaging examinations included ranged from 15 to 2900. Four studies investigated ANN models, fifteen CNN models, and two DCNN models. Twelve were retrospective studies, six cross-sectional and two prospective. The following diagnostic performance was achieved in detecting CL: sensitivity from 0.44 to 0.86, specificity from 0.85 to 0.98, precision from 0.50 to 0.94, PPV (Positive Predictive Value) 0.86, NPV (Negative Predictive Value) 0.95, accuracy from 0.73 to 0.98, area under the curve (AUC) from 0.84 to 0.98, intersection over union of 0.3-0.4 and 0.78, Dice coefficient 0.66 and 0.88, F1-score from 0.64 to 0.92. According to the QUADAS-2 evaluation, most studies exhibited a low risk of bias.
CONCLUSION: AI-based models have demonstrated good diagnostic performance, potentially being an important aid in CL detection. Some limitations of these studies are related to the size and heterogeneity of the datasets. Future studies need to rely on comparable, large, and clinically meaningful datasets.
PROTOCOL: PROSPERO identifier: CRD42023470708.
PMID:38402191 | DOI:10.1186/s12903-024-04046-7
Correction: Wheat physiology predictor: predicting physiological traits in wheat from hyperspectral reflectance measurements using deep learning
Plant Methods. 2024 Feb 24;20(1):32. doi: 10.1186/s13007-024-01153-y.
NO ABSTRACT
PMID:38402157 | DOI:10.1186/s13007-024-01153-y
A deep learning model based on magnifying endoscopy with narrow-band imaging to evaluate intestinal metaplasia grading and OLGIM staging: A multicenter study
Dig Liver Dis. 2024 Feb 23:S1590-8658(24)00261-5. doi: 10.1016/j.dld.2024.02.001. Online ahead of print.
ABSTRACT
BACKGROUND AND PURPOSE: Patients with stage III or IV of operative link for gastric intestinal metaplasia assessment (OLGIM) are at a higher risk of gastric cancer (GC). We aimed to construct a deep learning (DL) model based on magnifying endoscopy with narrow-band imaging (ME-NBI) to evaluate OLGIM staging.
METHODS: This study included 4473 ME-NBI images obtained from 803 patients at three endoscopy centres. The endoscopic expert marked intestinal metaplasia (IM) regions on endoscopic images of the target biopsy sites. Faster Region-Convolutional Neural Network model was used to grade IM lesions and predict OLGIM staging.
RESULTS: The diagnostic performance of the model for IM grading in internal and external validation sets, as measured by the area under the curve (AUC), was 0.872 and 0.803, respectively. The accuracy of this model in predicting the high-risk stage of OLGIM was 84.0%, which was not statistically different from that of three junior (71.3%, p = 0.148) and three senior endoscopists (75.3%, p = 0.317) specially trained in endoscopic images corresponding to pathological IM grade, but higher than that of three untrained junior endoscopists (64.0%, p = 0.023).
CONCLUSION: This DL model can assist endoscopists in predicting OLGIM staging using ME-NBI without biopsy, thereby facilitating screening high-risk patients for GC.
PMID:38402085 | DOI:10.1016/j.dld.2024.02.001
Implementing a deep learning model for automatic tongue tumour segmentation in ex-vivo 3-dimensional ultrasound volumes
Br J Oral Maxillofac Surg. 2024 Jan 3:S0266-4356(23)00613-7. doi: 10.1016/j.bjoms.2023.12.017. Online ahead of print.
ABSTRACT
Three-dimensional (3D) ultrasound can assess the margins of resected tongue carcinoma during surgery. Manual segmentation (MS) is time-consuming, labour-intensive, and subject to operator variability. This study aims to investigate use of a 3D deep learning model for fast intraoperative segmentation of tongue carcinoma in 3D ultrasound volumes. Additionally, it investigates the clinical effect of automatic segmentation. A 3D No New U-Net (nnUNet) was trained on 113 manually annotated ultrasound volumes of resected tongue carcinoma. The model was implemented on a mobile workstation and clinically validated on 16 prospectively included tongue carcinoma patients. Different prediction settings were investigated. Automatic segmentations with multiple islands were adjusted by selecting the best-representing island. The final margin status (FMS) based on automatic, semi-automatic, and manual segmentation was computed and compared with the histopathological margin. The standard 3D nnUNet resulted in the best-performing automatic segmentation with a mean (SD) Dice volumetric score of 0.65 (0.30), Dice surface score of 0.73 (0.26), average surface distance of 0.44 (0.61) mm, Hausdorff distance of 6.65 (8.84) mm, and prediction time of 8 seconds. FMS based on automatic segmentation had a low correlation with histopathology (r = 0.12, p = 0.67); MS resulted in a moderate but insignificant correlation with histopathology (r = 0.4, p = 0.12, n = 16). Implementing the 3D nnUNet yielded fast, automatic segmentation of tongue carcinoma in 3D ultrasound volumes. Correlation between FMS and histopathology obtained from these segmentations was lower than the moderate correlation between MS and histopathology.
PMID:38402068 | DOI:10.1016/j.bjoms.2023.12.017
Revolutionizing crop disease detection with computational deep learning: a comprehensive review
Environ Monit Assess. 2024 Feb 24;196(3):302. doi: 10.1007/s10661-024-12454-z.
ABSTRACT
Digital image processing has witnessed a significant transformation, owing to the adoption of deep learning (DL) algorithms, which have proven to be vastly superior to conventional methods for crop detection. These DL algorithms have recently found successful applications across various domains, translating input data, such as images of afflicted plants, into valuable insights, like the identification of specific crop diseases. This innovation has spurred the development of cutting-edge techniques for early detection and diagnosis of crop diseases, leveraging tools such as convolutional neural networks (CNN), K-nearest neighbour (KNN), support vector machines (SVM), and artificial neural networks (ANN). This paper offers an all-encompassing exploration of the contemporary literature on methods for diagnosing, categorizing, and gauging the severity of crop diseases. The review examines the performance analysis of the latest machine learning (ML) and DL techniques outlined in these studies. It also scrutinizes the methodologies and datasets and outlines the prevalent recommendations and identified gaps within different research investigations. As a conclusion, the review offers insights into potential solutions and outlines the direction for future research in this field. The review underscores that while most studies have concentrated on traditional ML algorithms and CNN, there has been a noticeable dearth of focus on emerging DL algorithms like capsule neural networks and vision transformers. Furthermore, it sheds light on the fact that several datasets employed for training and evaluating DL models have been tailored to suit specific crop types, emphasizing the pressing need for a comprehensive and expansive image dataset encompassing a wider array of crop varieties. Moreover, the survey draws attention to the prevailing trend where the majority of research endeavours have concentrated on individual plant diseases, ML, or DL algorithms. In light of this, it advocates for the development of a unified framework that harnesses an ensemble of ML and DL algorithms to address the complexities of multiple plant diseases effectively.
PMID:38401024 | DOI:10.1007/s10661-024-12454-z
From laser-on time to lithotripsy duration: how neural networks can refine "KIDNEY STONE CALCULATOR" predictions for ureteroscopic lithotripsy duration: preliminary results
World J Urol. 2024 Feb 24;42(1):99. doi: 10.1007/s00345-024-04882-w.
NO ABSTRACT
PMID:38400928 | DOI:10.1007/s00345-024-04882-w
Efficacy of the methods of age determination using artificial intelligence in panoramic radiographs - a systematic review
Int J Legal Med. 2024 Feb 24. doi: 10.1007/s00414-024-03162-x. Online ahead of print.
ABSTRACT
The aim of this systematic review is to analyze the literature to determine whether the methods of artificial intelligence are effective in determining age in panoramic radiographs. Searches without language and year limits were conducted in PubMed/Medline, Embase, Web of Science, and Scopus databases. Hand searches were also performed, and unpublished manuscripts were searched in specialized journals. Thirty-six articles were included in the analysis. Significant differences in terms of root mean square error and mean absolute error were found between manual methods and artificial intelligence techniques, favoring the use of artificial intelligence (p < 0.00001). Few articles compared deep learning methods with machine learning models or manual models. Although there are advantages of machine learning in data processing and deep learning in data collection and analysis, non-comparable data was a limitation of this study. More information is needed on the comparison of these techniques, with particular emphasis on time as a variable.
PMID:38400923 | DOI:10.1007/s00414-024-03162-x