Deep learning
A CT-based Deep Learning Model for Predicting Subsequent Fracture Risk in Patients with Hip Fracture
Radiology. 2024 Jan;310(1):e230614. doi: 10.1148/radiol.230614.
ABSTRACT
Background Patients have the highest risk of subsequent fractures in the first few years after an initial fracture, yet models to predict short-term subsequent risk have not been developed. Purpose To develop and validate a deep learning prediction model for subsequent fracture risk using digitally reconstructed radiographs from hip CT in patients with recent hip fractures. Materials and Methods This retrospective study included adult patients who underwent three-dimensional hip CT due to a fracture from January 2004 to December 2020. Two-dimensional frontal, lateral, and axial digitally reconstructed radiographs were generated and assembled to construct an ensemble model. DenseNet modules were used to calculate risk probability based on extracted image features and fracture-free probability plots were output. Model performance was assessed using the C index and area under the receiver operating characteristic curve (AUC) and compared with other models using the paired t test. Results The training and validation set included 1012 patients (mean age, 74.5 years ± 13.3 [SD]; 706 female, 113 subsequent fracture) and the test set included 468 patients (mean age, 75.9 years ± 14.0; 335 female, 22 subsequent fractures). In the test set, the ensemble model had a higher C index (0.73) for predicting subsequent fractures than that of other image-based models (C index range, 0.59-0.70 for five of six models; P value range, < .001 to < .05). The ensemble model achieved AUCs of 0.74, 0.74, and 0.73 at the 2-, 3-, and 5-year follow-ups, respectively; higher than that of most other image-based models at 2 years (AUC range, 0.57-0.71 for five of six models; P value range, < .001 to < .05) and 3 years (AUC range, 0.55-0.72 for four of six models; P value range, < .001 to < .05). Moreover, the AUCs achieved by the ensemble model were higher than that of a clinical model that included known risk factors (2-, 3-, and 5-year AUCs of 0.58, 0.64, and 0.70, respectively; P < .001 for all). Conclusion In patients with recent hip fractures, the ensemble deep learning model using digital reconstructed radiographs from hip CT showed good performance for predicting subsequent fractures in the short term. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Li and Jaremko in this issue.
PMID:38289213 | DOI:10.1148/radiol.230614
TIMED-Design: Flexible and Accessible Protein Sequence Design with Convolutional Neural Networks
Protein Eng Des Sel. 2024 Jan 30:gzae002. doi: 10.1093/protein/gzae002. Online ahead of print.
ABSTRACT
MOTIVATION: Sequence design is a crucial step in the process of designing or engineering proteins. Traditionally, physics-based methods have been used to solve for optimal sequences, with the main disadvantages being that they are computationally intensive for the end user. Deep learning based methods offer an attractive alternative, outperforming physics-based methods at a significantly lower computational cost.
RESULTS: In this paper, we explore the application of Convolutional Neural Networks (CNNs) for sequence design. We describe the development and benchmarking of a range of networks, as well as reimplementations of previously described CNNs. We demonstrate the flexibility of representing proteins in a three-dimensional voxel grid by encoding additional design constraints into the input data. Finally, we describe TIMED-Design, a web application and command line tool for exploring and applying the models described in this paper.
AVAILABILITY: The User Interface (UI) will be available at the URL: https://pragmaticproteindesign.bio.ed.ac.uk/timed. The source code for TIMED-Design is available at https://github.com/wells-wood-research/timed-design.
CONTACT: chris.wood@ed.ac.uk.
SUPPLEMENTARY INFORMATION: Supplementary data are available at Journal Name online.
PMID:38288671 | DOI:10.1093/protein/gzae002
Cancer immunotherapy efficacy and machine learning
Expert Rev Anticancer Ther. 2024 Jan 30. doi: 10.1080/14737140.2024.2311684. Online ahead of print.
ABSTRACT
INTRODUCTION: Immunotherapy is one of the major breakthroughs in the treatment of cancer and it has become a powerful clinical strategy, however, not all patients respond to immune checkpoint blockade and other immunotherapy strategies. Applying machine learning (ML) techniques to predict the efficacy of cancer immunotherapy is useful for clinical decision-making.
AREAS COVERED: Applying ML including deep learning (DL) in radiomics, pathomics, tumor microenvironment (TME) and immune-related genes analysis to predict immunotherapy efficacy. The studies in this review were searched from PubMed and ClinicalTrials.gov (January 2023).
EXPERT OPINION: An increasing number of studies indicate that ML has been applied to various aspects of oncology research, with the potential to provide more effective individualized immunotherapy strategies and enhance treatment decisions. With advances in ML technology, more efficient methods of predicting the efficacy of immunotherapy may become available in the future.
PMID:38288663 | DOI:10.1080/14737140.2024.2311684
Deep-learning model to improve histological grading and predict upstaging of atypical ductal hyperplasia / ductal carcinoma in situ on breast biopsy
Histopathology. 2024 Jan 30. doi: 10.1111/his.15144. Online ahead of print.
ABSTRACT
AIMS: Risk stratification of atypical ductal hyperplasia (ADH) and ductal carcinoma in situ (DCIS), diagnosed using breast biopsy, has great clinical significance. Clinical trials are currently exploring the possibility of active surveillance for low-risk lesions, whereas axillary lymph node staging may be considered during surgical planning for high-risk lesions. We aimed to develop a machine-learning algorithm based on whole-slide images of breast biopsy specimens and clinical information to predict the risk of upstaging to invasive breast cancer after wide excision.
METHODS AND RESULTS: Patients diagnosed with ADH/DCIS on breast biopsy were included in this study, comprising 592 (740 slides) and 141 (198 slides) patients in the development and independent testing cohorts, respectively. Histological grading of the lesions was independently evaluated by two pathologists. Clinical information, including biopsy method, lesion size, and Breast Imaging Reporting and Data System (BI-RADS) classification of ultrasound and mammograms, were collected. Deep DCIS consisted of three deep neural networks to evaluate nuclear grade, necrosis, and stromal reactivity. Deep DCIS output comprised five parameters: total patches, lesion extent, Deep Grade, Deep Necrosis, and Deep Stroma. Deep DCIS highly correlated with the pathologists' evaluations of both slide- and patient-level labels. All five parameters of Deep DCIS were significantly associated with upstaging to invasive carcinoma in subsequent wide excisional specimens. Using multivariate logistic regression, Deep DCIS predicted upstaging to invasive carcinoma with an area under the curve (AUC) of 0.81, outperforming pathologists' evaluation (AUC, 0.71 and 0.69). After including clinical and hormone receptor status information, performance further improved (AUC, 0.87). This combined model retained its predictive power in two subgroup analyses: the first subgroup included unequivocal DCIS (excluding cases of ADH and DCIS suspicious for microinvasion) (AUC, 0.83), while the second excluded cases of high-grade DCIS (AUC, 0.81). The model was validated in an independent testing cohort (AUC, 0.81).
CONCLUSION: This study demonstrated that deep-learning models can refine histological evaluation of ADH and DCIS on breast biopsies, which may help guide future treatment planning.
PMID:38288642 | DOI:10.1111/his.15144
A nomogram for predicting prognosis in patients with transjugular intrahepatic portosystemic shunt creation based on deep learning-derived spleen volume-to-platelet ratio
Br J Radiol. 2023 Dec 26:tqad064. doi: 10.1093/bjr/tqad064. Online ahead of print.
ABSTRACT
OBJECTIVES: The objective of our study was to develop a nomogram to predict post-transjugular intrahepatic portosystemic shunt (TIPS) survival in patients with cirrhosis based on CT images.
METHODS: This retrospective cohort study included patients who had received TIPS operation at the Wenzhou Medical University First Affiliated Hospital between November 2013 and April 2017. To predict prognosis, a nomogram and Web-based probability were developed to assess the overall survival (OS) rates at 1, 3, and 5 years based on multivariate analyses. With deep learning algorithm, the automated measurement of liver and spleen volumes can be realized. We assessed the predictive accuracy and discriminative ability of the nomogram using the concordance index (C-index), receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA).
RESULTS: Age, total bilirubin, and spleen volume-to-platelet ratio (SVPR) were identified as the independent risk factors for OS. The nomogram was constructed based on the above risk factors. The C-index (0.80, 0.74, 0.70), ROC curve (area under curve: 0.828, 0.761, 0.729), calibration curve, and DCA showed that nomogram good at predictive value, stability, and clinical benefit in the prediction of 1-, 3-, 5-year OS in patients with TIPS creation.
CONCLUSIONS: We constructed a nomogram for predicting prognosis in patients with TIPS creation based on risk factors. The nomogram can help clinicians in identifying patients with poor prognosis, eventually facilitating earlier treatment and selecting suitable patients before TIPS.
ADVANCES IN KNOWLEDGE: This study developed the first nomogram based on SVPR to predict the prognosis of patients treated with TIPS. The nomogram could help clinician in non-invasive decision-making.
PMID:38288507 | DOI:10.1093/bjr/tqad064
YOLOV5-CBAM-C3TR: an optimized model based on transformer module and attention mechanism for apple leaf disease detection
Front Plant Sci. 2024 Jan 15;14:1323301. doi: 10.3389/fpls.2023.1323301. eCollection 2023.
ABSTRACT
Apple trees face various challenges during cultivation. Apple leaves, as the key part of the apple tree for photosynthesis, occupy most of the area of the tree. Diseases of the leaves can hinder the healthy growth of trees and cause huge economic losses to fruit growers. The prerequisite for precise control of apple leaf diseases is the timely and accurate detection of different diseases on apple leaves. Traditional methods relying on manual detection have problems such as limited accuracy and slow speed. In this study, both the attention mechanism and the module containing the transformer encoder were innovatively introduced into YOLOV5, resulting in YOLOV5-CBAM-C3TR for apple leaf disease detection. The datasets used in this experiment were uniformly RGB images. To better evaluate the effectiveness of YOLOV5-CBAM-C3TR, the model was compared with different target detection models such as SSD, YOLOV3, YOLOV4, and YOLOV5. The results showed that YOLOV5-CBAM-C3TR achieved mAP@0.5, precision, and recall of 73.4%, 70.9%, and 69.5% for three apple leaf diseases including Alternaria blotch, Grey spot, and Rust. Compared with the original model YOLOV5, the mAP 0.5increased by 8.25% with a small change in the number of parameters. In addition, YOLOV5-CBAM-C3TR can achieve an average accuracy of 92.4% in detecting 208 randomly selected apple leaf disease samples. Notably, YOLOV5-CBAM-C3TR achieved 93.1% and 89.6% accuracy in detecting two very similar diseases including Alternaria Blotch and Grey Spot, respectively. The YOLOV5-CBAM-C3TR model proposed in this paper has been applied to the detection of apple leaf diseases for the first time, and also showed strong recognition ability in identifying similar diseases, which is expected to promote the further development of disease detection technology.
PMID:38288410 | PMC:PMC10822903 | DOI:10.3389/fpls.2023.1323301
Non-destructive identification of <em>Pseudostellaria heterophylla</em> from different geographical origins by Vis/NIR and SWIR hyperspectral imaging techniques
Front Plant Sci. 2024 Jan 15;14:1342970. doi: 10.3389/fpls.2023.1342970. eCollection 2023.
ABSTRACT
The composition of Pseudostellaria heterophylla (Tai-Zi-Shen, TZS) is greatly influenced by the growing area of the plants, making it significant to distinguish the origins of TZS. However, traditional methods for TZS origin identification are time-consuming, laborious, and destructive. To address this, two or three TZS accessions were selected from four different regions of China, with each of these resources including distinct quality grades of TZS samples. The visible near-infrared (Vis/NIR) and short-wave infrared (SWIR) hyperspectral information from these samples were then collected. Fast and high-precision methods to identify the origins of TZS were developed by combining various preprocessing algorithms, feature band extraction algorithms (CARS and SPA), traditional two-stage machine learning classifiers (PLS-DA, SVM, and RF), and an end-to-end deep learning classifier (DCNN). Specifically, SWIR hyperspectral information outperformed Vis/NIR hyperspectral information in detecting geographic origins of TZS. The SPA algorithm proved particularly effective in extracting SWIR information that was highly correlated with the origins of TZS. The corresponding FD-SPA-SVM model reduced the number of bands by 77.2% and improved the model accuracy from 97.6% to 98.1% compared to the full-band FD-SVM model. Overall, two sets of fast and high-precision models, SWIR-FD-SPA-SVM and SWIR-FD-DCNN, were established, achieving accuracies of 98.1% and 98.7% respectively. This work provides a potentially efficient alternative for rapidly detecting the origins of TZS during actual production.
PMID:38288409 | PMC:PMC10822997 | DOI:10.3389/fpls.2023.1342970
A series of methods incorporating deep learning and computer vision techniques in the study of fruit fly (Diptera: Tephritidae) regurgitation
Front Plant Sci. 2024 Jan 15;14:1337467. doi: 10.3389/fpls.2023.1337467. eCollection 2023.
ABSTRACT
In this study, we explored the potential of fruit fly regurgitation as a window to understand complex behaviors, such as predation and defense mechanisms, with implications for species-specific control measures that can enhance fruit quality and yield. We leverage deep learning and computer vision technologies to propose three distinct methodologies that advance the recognition, extraction, and trajectory tracking of fruit fly regurgitation. These methods show promise for broader applications in insect behavioral studies. Our evaluations indicate that the I3D model achieved a Top-1 Accuracy of 96.3% in regurgitation recognition, which is a notable improvement over the C3D and X3D models. The segmentation of the regurgitated substance via a combined U-Net and CBAM framework attains an MIOU of 90.96%, outperforming standard network models. Furthermore, we utilized threshold segmentation and OpenCV for precise quantification of the regurgitation liquid, while the integration of the Yolov5 and DeepSort algorithms provided 99.8% accuracy in fruit fly detection and tracking. The success of these methods suggests their efficacy in fruit fly regurgitation research and their potential as a comprehensive tool for interdisciplinary insect behavior analysis, leading to more efficient and non-destructive insect control strategies in agricultural settings.
PMID:38288408 | PMC:PMC10822896 | DOI:10.3389/fpls.2023.1337467
Autoregulatory Efficiency Assessment in Kidneys Using Deep Learning
Proc Eur Signal Process Conf EUSIPCO. 2020;2020:1165-1169. doi: 10.23919/eusipco47968.2020.9287447. Epub 2020 Dec 18.
ABSTRACT
A convolutional deep neural network is employed to assess renal autoregulation using time series of arterial blood pressure and blood flow rate measurements in conscious rats. The network is trained using representative data samples from rats with intact autoregulation and rats whose autoregulation is impaired by the calcium channel blocker amlodipine. Network performance is evaluated using test data of the types used for training, but also with data from other models for autoregulatory impairment, including different calcium channel blockers and also renal mass reduction. The network is shown to provide effective classification for impairments from calcium channel blockers. However, the assessment of autoregulation when impaired by renal mass reduction was not as clear, evidencing a different signature in the hemodynamic data for that impairment model. When calcium channel blockers were given to those animals, however, the classification again was effective.
PMID:38288370 | PMC:PMC10824283 | DOI:10.23919/eusipco47968.2020.9287447
ID-YOLOv7: an efficient method for insulator defect detection in power distribution network
Front Neurorobot. 2024 Jan 15;17:1331427. doi: 10.3389/fnbot.2023.1331427. eCollection 2023.
ABSTRACT
Insulators play a pivotal role in the reliability of power distribution networks, necessitating precise defect detection. However, compared with aerial insulator images of transmission network, insulator images of power distribution network contain more complex backgrounds and subtle insulator defects, it leads to high false detection rates and omission rates in current mainstream detection algorithms. In response, this study presents ID-YOLOv7, a tailored convolutional neural network. First, we design a novel Edge Detailed Shape Data Augmentation (EDSDA) method to enhance the model's sensitivity to insulator's edge shapes. Meanwhile, a Cross-Channel and Spatial Multi-Scale Attention (CCSMA) module is proposed, which can interactively model across different channels and spatial domains, to augment the network's attention to high-level insulator defect features. Second, we design a Re-BiC module to fuse multi-scale contextual features and reconstruct the Neck component, alleviating the issue of critical feature loss during inter-feature layer interaction in traditional FPN structures. Finally, we utilize the MPDIoU function to calculate the model's localization loss, effectively reducing redundant computational costs. We perform comprehensive experiments using the Su22kV_broken and PASCAL VOC 2007 datasets to validate our algorithm's effectiveness. On the Su22kV_broken dataset, our approach attains an 85.7% mAP on a single NVIDIA RTX 2080ti graphics card, marking a 7.2% increase over the original YOLOv7. On the PASCAL VOC 2007 dataset, we achieve an impressive 90.3% mAP at a processing speed of 53 FPS, showing a 2.9% improvement compared to the original YOLOv7.
PMID:38288312 | PMC:PMC10822988 | DOI:10.3389/fnbot.2023.1331427
Clinical Applications, Methodology, and Scientific Reporting of Electrocardiogram Deep-Learning Models: A Systematic Review
JACC Adv. 2023 Dec;2(10):100686. doi: 10.1016/j.jacadv.2023.100686. Epub 2023 Nov 8.
ABSTRACT
BACKGROUND: The electrocardiogram (ECG) is one of the most common diagnostic tools available to assess cardio-vascular health. The advent of advanced computational techniques such as deep learning has dramatically expanded the breadth of clinical problems that can be addressed using ECG data, leading to increasing popularity of ECG deep-learning models aimed at predicting clinical endpoints.
OBJECTIVES: The purpose of this study was to define the current landscape of clinically relevant ECG deep-learning models and examine practices in the scientific reporting of these studies.
METHODS: We performed a systematic review of PubMed and EMBASE databases to identify clinically relevant ECG deep-learning models published through July 1, 2022.
RESULTS: We identified 44 manuscripts including 53 unique, clinically relevant ECG deep-learning models. The rate of publication of ECG deep-learning models is increasing rapidly. The most common clinical applications of ECG deep learning were identification of cardiomyopathy (14/53 [26%]), followed by arrhythmia detection (9/53 [17%]). Methodologic reporting varied; while 33/44 (75%) publications included model architecture diagrams, complete information required to reproduce these models was provided in only 10/44 (23%). Saliency analysis was performed in 20/44 (46%) of publications. Only 18/53 (34%) models were tested within external validation cohorts. Model code or resources allowing for model implementation by external groups were available for only 5/44 (11%) publications.
CONCLUSIONS: While ECG deep-learning models are increasingly clinically relevant, their reporting is highly variable, and few publications provide sufficient detail for methodologic reproduction or model validation by external groups. The field of ECG deep learning would benefit from adherence to a set of standardized scientific reporting guidelines.
PMID:38288263 | PMC:PMC10824530 | DOI:10.1016/j.jacadv.2023.100686
Development and prognostic validation of a three-level NHG-like deep learning-based model for histological grading of breast cancer
Breast Cancer Res. 2024 Jan 29;26(1):17. doi: 10.1186/s13058-024-01770-4.
ABSTRACT
BACKGROUND: Histological grade is a well-known prognostic factor that is routinely assessed in breast tumours. However, manual assessment of Nottingham Histological Grade (NHG) has high inter-assessor and inter-laboratory variability, causing uncertainty in grade assignments. To address this challenge, we developed and validated a three-level NHG-like deep learning-based histological grade model (predGrade). The primary performance evaluation focuses on prognostic performance.
METHODS: This observational study is based on two patient cohorts (SöS-BC-4, N = 2421 (training and internal test); SCAN-B-Lund, N = 1262 (test)) that include routine histological whole-slide images (WSIs) together with patient outcomes. A deep convolutional neural network (CNN) model with an attention mechanism was optimised for the classification of the three-level histological grading (NHG) from haematoxylin and eosin-stained WSIs. The prognostic performance was evaluated by time-to-event analysis of recurrence-free survival and compared to clinical NHG grade assignments in the internal test set as well as in the fully independent external test cohort.
RESULTS: We observed effect sizes (hazard ratio) for grade 3 versus 1, for the conventional NHG method (HR = 2.60 (1.18-5.70 95%CI, p-value = 0.017)) and the deep learning model (HR = 2.27, 95%CI 1.07-4.82, p-value = 0.033) on the internal test set after adjusting for established clinicopathological risk factors. In the external test set, the unadjusted HR for clinical NHG 2 versus 1 was estimated to be 2.59 (p-value = 0.004) and clinical NHG 3 versus 1 was estimated to be 3.58 (p-value < 0.001). For predGrade, the unadjusted HR for predGrade 2 versus 1 HR = 2.52 (p-value = 0.030), and 4.07 (p-value = 0.001) for preGrade 3 versus 1 was observed in the independent external test set. In multivariable analysis, HR estimates for neither clinical NHG nor predGrade were found to be significant (p-value > 0.05). We tested for differences in HR estimates between NHG and predGrade in the independent test set and found no significant difference between the two classification models (p-value > 0.05), confirming similar prognostic performance between conventional NHG and predGrade.
CONCLUSION: Routine histopathology assessment of NHG has a high degree of inter-assessor variability, motivating the development of model-based decision support to improve reproducibility in histological grading. We found that the proposed model (predGrade) provides a similar prognostic performance as clinical NHG. The results indicate that deep CNN-based models can be applied for breast cancer histological grading.
PMID:38287342 | DOI:10.1186/s13058-024-01770-4
Protocol for metadata and image collection at diabetic foot ulcer clinics: enabling research in wound analytics and deep learning
Biomed Eng Online. 2024 Jan 29;23(1):12. doi: 10.1186/s12938-024-01210-6.
ABSTRACT
BACKGROUND: The escalating impact of diabetes and its complications, including diabetic foot ulcers (DFUs), presents global challenges in quality of life, economics, and resources, affecting around half a billion people. DFU healing is hindered by hyperglycemia-related issues and diverse diabetes-related physiological changes, necessitating ongoing personalized care. Artificial intelligence and clinical research strive to address these challenges by facilitating early detection and efficient treatments despite resource constraints. This study establishes a standardized framework for DFU data collection, introducing a dedicated case report form, a comprehensive dataset named Zivot with patient population clinical feature breakdowns and a baseline for DFU detection using this dataset and a UNet architecture.
RESULTS: Following this protocol, we created the Zivot dataset consisting of 269 patients with active DFUs, and about 3700 RGB images and corresponding thermal and depth maps for the DFUs. The effectiveness of collecting a consistent and clean dataset was demonstrated using a bounding box prediction deep learning network that was constructed with EfficientNet as the feature extractor and UNet architecture. The network was trained on the Zivot dataset, and the evaluation metrics showed promising values of 0.79 and 0.86 for F1-score and mAP segmentation metrics.
CONCLUSIONS: This work and the Zivot database offer a foundation for further exploration of holistic and multimodal approaches to DFU research.
PMID:38287324 | DOI:10.1186/s12938-024-01210-6
Predicting lncRNA-disease associations using multiple metapaths in hierarchical graph attention networks
BMC Bioinformatics. 2024 Jan 29;25(1):46. doi: 10.1186/s12859-024-05672-2.
ABSTRACT
BACKGROUND: Many biological studies have shown that lncRNAs regulate the expression of epigenetically related genes. The study of lncRNAs has helped to deepen our understanding of the pathogenesis of complex diseases at the molecular level. Due to the large number of lncRNAs and the complex and time-consuming nature of biological experiments, applying computer techniques to predict potential lncRNA-disease associations is very effective. To explore information between complex network structures, existing methods rely mainly on lncRNA and disease information. Metapaths have been applied to network models as an effective method for exploring information in heterogeneous graphs. However, existing methods are dominated by lncRNAs or disease nodes and tend to ignore the paths provided by intermediate nodes.
METHODS: We propose a deep learning model based on hierarchical graphical attention networks to predict unknown lncRNA-disease associations using multiple types of metapaths to extract features. We have named this model the MMHGAN. First, the model constructs a lncRNA-disease-miRNA heterogeneous graph based on known associations and two homogeneous graphs of lncRNAs and diseases. Second, for homogeneous graphs, the features of neighboring nodes are aggregated using a multihead attention mechanism. Third, for the heterogeneous graph, metapaths of different intermediate nodes are selected to construct subgraphs, and the importance of different types of metapaths is calculated and aggregated to obtain the final embedded features. Finally, the features are reconstructed using a fully connected layer to obtain the prediction results.
RESULTS: We used a fivefold cross-validation method and obtained an average AUC value of 96.07% and an average AUPR value of 93.23%. Additionally, ablation experiments demonstrated the role of homogeneous graphs and different intermediate node path weights. In addition, we studied lung cancer, esophageal carcinoma, and breast cancer. Among the 15 lncRNAs associated with these diseases, 15, 12, and 14 lncRNAs were validated by the lncRNA Disease Database and the Lnc2Cancer Database, respectively.
CONCLUSION: We compared the MMHGAN model with six existing models with better performance, and the case study demonstrated that the model was effective in predicting the correlation between potential lncRNAs and diseases.
PMID:38287236 | DOI:10.1186/s12859-024-05672-2
Survival prediction of glioblastoma patients using modern deep learning and machine learning techniques
Sci Rep. 2024 Jan 29;14(1):2371. doi: 10.1038/s41598-024-53006-2.
ABSTRACT
In this study, we utilized data from the Surveillance, Epidemiology, and End Results (SEER) database to predict the glioblastoma patients' survival outcomes. To assess dataset skewness and detect feature importance, we applied Pearson's second coefficient test of skewness and the Ordinary Least Squares method, respectively. Using two sampling strategies, holdout and five-fold cross-validation, we developed five machine learning (ML) models alongside a feed-forward deep neural network (DNN) for the multiclass classification and regression prediction of glioblastoma patient survival. After balancing the classification and regression datasets, we obtained 46,340 and 28,573 samples, respectively. Shapley additive explanations (SHAP) were then used to explain the decision-making process of the best model. In both classification and regression tasks, as well as across holdout and cross-validation sampling strategies, the DNN consistently outperformed the ML models. Notably, the accuracy were 90.25% and 90.22% for holdout and five-fold cross-validation, respectively, while the corresponding R2 values were 0.6565 and 0.6622. SHAP analysis revealed the importance of age at diagnosis as the most influential feature in the DNN's survival predictions. These findings suggest that the DNN holds promise as a practical auxiliary tool for clinicians, aiding them in optimal decision-making concerning the treatment and care trajectories for glioblastoma patients.
PMID:38287149 | DOI:10.1038/s41598-024-53006-2
Generative deep learning furthers the understanding of local distributions of fat and muscle on body shape and health using 3D surface scans
Commun Med (Lond). 2024 Jan 30;4(1):13. doi: 10.1038/s43856-024-00434-w.
ABSTRACT
BACKGROUND: Body shape, an intuitive health indicator, is deterministically driven by body composition. We developed and validated a deep learning model that generates accurate dual-energy X-ray absorptiometry (DXA) scans from three-dimensional optical body scans (3DO), enabling compositional analysis of the whole body and specified subregions. Previous works on generative medical imaging models lack quantitative validation and only report quality metrics.
METHODS: Our model was self-supervised pretrained on two large clinical DXA datasets and fine-tuned using the Shape Up! Adults study dataset. Model-predicted scans from a holdout test set were evaluated using clinical commercial DXA software for compositional accuracy.
RESULTS: Predicted DXA scans achieve R2 of 0.73, 0.89, and 0.99 and RMSEs of 5.32, 6.56, and 4.15 kg for total fat mass (FM), fat-free mass (FFM), and total mass, respectively. Custom subregion analysis results in R2s of 0.70-0.89 for left and right thigh composition. We demonstrate the ability of models to produce quantitatively accurate visualizations of soft tissue and bone, confirming a strong relationship between body shape and composition.
CONCLUSIONS: This work highlights the potential of generative models in medical imaging and reinforces the importance of quantitative validation for assessing their clinical utility.
PMID:38287144 | DOI:10.1038/s43856-024-00434-w
AutoTransOP: translating omics signatures without orthologue requirements using deep learning
NPJ Syst Biol Appl. 2024 Jan 29;10(1):13. doi: 10.1038/s41540-024-00341-9.
ABSTRACT
The development of therapeutics and vaccines for human diseases requires a systematic understanding of human biology. Although animal and in vitro culture models can elucidate some disease mechanisms, they typically fail to adequately recapitulate human biology as evidenced by the predominant likelihood of clinical trial failure. To address this problem, we developed AutoTransOP, a neural network autoencoder framework, to map omics profiles from designated species or cellular contexts into a global latent space, from which germane information for different contexts can be identified without the typically imposed requirement of matched orthologues. This approach was found in general to perform at least as well as current alternative methods in identifying animal/culture-specific molecular features predictive of other contexts-most importantly without requiring homology matching. For an especially challenging test case, we successfully applied our framework to a set of inter-species vaccine serology studies, where 1-to-1 mapping between human and non-human primate features does not exist.
PMID:38287079 | DOI:10.1038/s41540-024-00341-9
High-throughput microplastic assessment using polarization holographic imaging
Sci Rep. 2024 Jan 29;14(1):2355. doi: 10.1038/s41598-024-52762-5.
ABSTRACT
Microplastic (MP) pollution has emerged as a global environmental concern due to its ubiquity and harmful impacts on ecosystems and human health. MP assessment has therefore become increasingly necessary and common in environmental and experimental samples. Microscopy and spectroscopy are widely employed for the physical and chemical characterization of MPs. However, these analytical methods often require time-consuming pretreatments of samples or expensive instrumentation. In this work, we develop a portable and cost-effective polarization holographic imaging system that prominently incorporates deep learning techniques, enabling efficient, high-throughput detection and dynamic analysis of MPs in aqueous environments. The integration enhances the identification and classification of MPs, eliminating the need for extensive sample preparation. The system simultaneously captures holographic interference patterns and polarization states, allowing for multimodal information acquisition to facilitate rapid MP detection. The characteristics of light waves are registered, and birefringence features are leveraged to classify the material composition and structures of MPs. Furthermore, the system automates real-time counting and morphological measurements of various materials, including MP sheets and additional natural substances. This innovative approach significantly improves the dynamic monitoring of MPs and provides valuable information for their effective filtration and management.
PMID:38287056 | DOI:10.1038/s41598-024-52762-5
Artificial Intelligence in Liver Diseases: Recent Advances
Adv Ther. 2024 Jan 29. doi: 10.1007/s12325-024-02781-5. Online ahead of print.
ABSTRACT
Liver diseases cause a significant burden on public health worldwide. In spite of great advances during recent years, there are still many challenges in the diagnosis and treatment of liver diseases. During recent years, artificial intelligence (AI) has been widely used for the diagnosis, risk stratification, and prognostic prediction of various diseases based on clinical datasets and medical images. Accumulative studies have shown its performance for diagnosing patients with nonalcoholic fatty liver disease and liver fibrosis and assessing their severity, and for predicting treatment response and recurrence of hepatocellular carcinoma, outcomes of liver transplantation recipients, and risk of drug-induced liver injury. Herein, we aim to comprehensively summarize the current evidence regarding diagnostic, prognostic, and/or therapeutic role of AI in these common liver diseases.
PMID:38286960 | DOI:10.1007/s12325-024-02781-5
Radiological age assessment based on clavicle ossification in CT: enhanced accuracy through deep learning
Int J Legal Med. 2024 Jan 30. doi: 10.1007/s00414-024-03167-6. Online ahead of print.
ABSTRACT
BACKGROUND: Radiological age assessment using reference studies is inherently limited in accuracy due to a finite number of assignable skeletal maturation stages. To overcome this limitation, we present a deep learning approach for continuous age assessment based on clavicle ossification in computed tomography (CT).
METHODS: Thoracic CT scans were retrospectively collected from the picture archiving and communication system. Individuals aged 15.0 to 30.0 years examined in routine clinical practice were included. All scans were automatically cropped around the medial clavicular epiphyseal cartilages. A deep learning model was trained to predict a person's chronological age based on these scans. Performance was evaluated using mean absolute error (MAE). Model performance was compared to an optimistic human reader performance estimate for an established reference study method.
RESULTS: The deep learning model was trained on 4,400 scans of 1,935 patients (training set: mean age = 24.2 years ± 4.0, 1132 female) and evaluated on 300 scans of 300 patients with a balanced age and sex distribution (test set: mean age = 22.5 years ± 4.4, 150 female). Model MAE was 1.65 years, and the highest absolute error was 6.40 years for females and 7.32 years for males. However, performance could be attributed to norm-variants or pathologic disorders. Human reader estimate MAE was 1.84 years and the highest absolute error was 3.40 years for females and 3.78 years for males.
CONCLUSIONS: We present a deep learning approach for continuous age predictions using CT volumes highlighting the medial clavicular epiphyseal cartilage with performance comparable to the human reader estimate.
PMID:38286953 | DOI:10.1007/s00414-024-03167-6