Deep learning

Multiple model visual feature embedding and selection method for an efficient oncular disease classification

Tue, 2025-02-11 06:00

Sci Rep. 2025 Feb 12;15(1):5157. doi: 10.1038/s41598-024-84922-y.

ABSTRACT

Early detection of ocular diseases is vital to preventing severe complications, yet it remains challenging due to the need for skilled specialists, complex imaging processes, and limited resources. Automated solutions are essential to enhance diagnostic precision and support clinical workflows. This study presents a deep learning-based system for automated classification of ocular diseases using the Ocular Disease Intelligent Recognition (ODIR) dataset. The dataset includes 5,000 patient fundus images labeled into eight categories of ocular diseases. Initial experiments utilized transfer learning models such as DenseNet201, EfficientNetB3, and InceptionResNetV2. To optimize computational efficiency, a novel two-level feature selection framework combining Linear Discriminant Analysis (LDA) and advanced neural network classifiers-Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), and Bidirectional LSTM (BiLSTM)-was introduced. Among the tested approaches, the "Combined Data" strategy utilizing features from all three models achieved the best results, with the BiLSTM classifier attaining 100% accuracy, precision, and recall on the training set, and over 98% performance on the validation set. The LDA-based framework significantly reduced computational complexity while enhancing classification accuracy. The proposed system demonstrates a scalable, efficient solution for ocular disease detection, offering robust support for clinical decision-making. By bridging the gap between clinical demands and technological capabilities, it has the potential to alleviate the workload of ophthalmologists, particularly in resource-constrained settings, and improve patient outcomes globally.

PMID:39934192 | DOI:10.1038/s41598-024-84922-y

Categories: Literature Watch

Association Between Aortic Imaging Features and Impaired Glucose Metabolism: A Deep Learning Population Phenotyping Approach

Tue, 2025-02-11 06:00

Acad Radiol. 2025 Feb 10:S1076-6332(25)00087-X. doi: 10.1016/j.acra.2025.01.032. Online ahead of print.

ABSTRACT

RATIONALE AND OBJECTIVES: Type 2 diabetes is a known risk factor for vascular disease with an impact on the aorta. The aim of this study was to develop a deep learning framework for quantification of aortic phenotypes from magnetic resonance imaging (MRI) and to investigate the association between aortic features and impaired glucose metabolism beyond traditional cardiovascular (CV) risk factors.

MATERIALS AND METHODS: This study used data from the prospective Cooperative Health Research in the Region of Augsburg (KORA) study to develop a deep learning framework for automatic quantification of aortic features (maximum aortic diameter, total volume, length, and width of the aortic arch) derived from MRI. Aortic features were compared between different states of glucose metabolism and tested for associations with impaired glucose metabolism adjusted for traditional CV risk factors (age, sex, height, weight, hypertension, smoking, and lipid panel).

RESULTS: The deep learning framework yielded a high performance for aortic feature quantification with a Dice coefficient of 91.1±0.02. Of 381 participants (58% male, mean age 56 years), 231 (60.6%) had normal blood glucose, 97 (25.5%) had prediabetes, and 53 (13.9%) had diabetes. All aortic features showed a significant increase between different groups of glucose metabolism (p≤0.04). Total aortic length and total aortic volume were associated with impaired glucose metabolism (OR 0.85, 95%CI 0.74-0.96; p=0.01, and OR 0.99, 95%CI 0.98-0.99; p=0.02) independent of CV risk factors.

CONCLUSION: Aortic features showed a glucose level dependent increase from normoglycemic individuals to those with prediabetes and diabetes. Total aortic length and volume were independently and inversely associated with impaired glucose metabolism beyond traditional CV risk factors.

PMID:39934079 | DOI:10.1016/j.acra.2025.01.032

Categories: Literature Watch

Deep-learning-ready RGB-depth images of seedling development

Tue, 2025-02-11 06:00

Plant Methods. 2025 Feb 11;21(1):16. doi: 10.1186/s13007-025-01334-3.

ABSTRACT

In the era of machine learning-driven plant imaging, the production of annotated datasets is a very important contribution. In this data paper, a unique annotated dataset of seedling emergence kinetics is proposed. It is composed of almost 70,000 RGB-depth frames and more than 700,000 plant annotations. The dataset is shown valuable for training deep learning models and performing high-throughput phenotyping by imaging. The ability of such models to generalize to several species and outperform the state-of-the-art owing to the delivered dataset is demonstrated. We also discuss how this dataset raises new questions in plant phenotyping.

PMID:39934882 | DOI:10.1186/s13007-025-01334-3

Categories: Literature Watch

Classifying and fact-checking health-related information about COVID-19 on Twitter/X using machine learning and deep learning models

Tue, 2025-02-11 06:00

BMC Med Inform Decis Mak. 2025 Feb 11;25(1):73. doi: 10.1186/s12911-025-02895-y.

ABSTRACT

BACKGROUND: Despite recent progress in misinformation detection methods, further investigation is required to develop more robust fact-checking models with particular consideration for the unique challenges of health information sharing. This study aimed to identify the most effective approach for detecting and classifying reliable information versus misinformation health content shared on Twitter/X related to COVID-19.

METHODS: We have used 7 different machine learning/deep learning models. Tweets were collected, processed, labeled, and analyzed using relevant keywords and hashtags, then classified into two distinct datasets: "Trustworthy information" versus "Misinformation", through a labeling process. The cosine similarity metric was employed to address oversampling the minority of the Trustworthy information class, ensuring a more balanced representation of both classes for training and testing purposes. Finally, the performance of the various fact-checking models was analyzed and compared using accuracy, precision, recall, and F1-score ROC curve, and AUC.

RESULTS: For measures of accuracy, precision, F1 score, and recall, the average values of TextConvoNet were found to be 90.28, 90.28, 90.29, and 0.9030, respectively. ROC AUC was 0.901."Trustworthy information" class achieved an accuracy of 85%, precision of 93%, recall of 86%, and F1 score of 89%. These values were higher than other models. Moreover, its performance in the misinformation category was even more impressive, with an accuracy of 94%, precision of 88%, recall of 94%, and F1 score of 91%.

CONCLUSION: This study showed that TextConvoNet was the most effective in detecting and classifying trustworthy information V.S misinformation related to health issues that have been shared on Twitter/X.

PMID:39934858 | DOI:10.1186/s12911-025-02895-y

Categories: Literature Watch

A novel method for assessing cycling movement status: an exploratory study integrating deep learning and signal processing technologies

Tue, 2025-02-11 06:00

BMC Med Inform Decis Mak. 2025 Feb 11;25(1):71. doi: 10.1186/s12911-024-02828-1.

ABSTRACT

This study proposes a deep learning-based motion assessment method that integrates the pose estimation algorithm (Keypoint RCNN) with signal processing techniques, demonstrating its reliability and effectiveness.The reliability and validity of this method were also verified.Twenty college students were recruited to pedal a stationary bike. Inertial sensors and a smartphone simultaneously recorded the participants' cycling movement. Keypoint RCNN(KR) algorithm was used to acquire 2D coordinates of the participants' skeletal keypoints from the recorded movement video. Spearman's rank correlation analysis, intraclass correlation coefficient (ICC), error analysis, and t-test were conducted to compare the consistency of data obtained from the two movement capture systems, including the peak frequency of acceleration, transition time point between movement statuses, and the complexity index average (CIA) of the movement status based on multiscale entropy analysis.The KR algorithm showed excellent consistency (ICC1,3=0.988) between the two methods when estimating the peak acceleration frequency. Both peak acceleration frequencies and CIA metrics estimated by the two methods displayed a strong correlation (r > 0.70) and good agreement (ICC2,1>0.750). Additionally, error values were relatively low (MAE = 0.001 and 0.040, MRE = 0.00% and 7.67%). Results of t-tests showed significant differences (p = 0.003 and 0.030) for various acceleration CIAs, indicating our method could distinguish different movement statuses.The KR algorithm also demonstrated excellent intra-session reliability (ICC = 0.988). Acceleration frequency analysis metrics derived from the KR method can accurately identify transitions among movement statuses. Leveraging the KR algorithm and signal processing techniques, the proposed method is designed for individualized motor function evaluation in home or community-based settings.

PMID:39934805 | DOI:10.1186/s12911-024-02828-1

Categories: Literature Watch

Mammalian piRNA target prediction using a hierarchical attention model

Tue, 2025-02-11 06:00

BMC Bioinformatics. 2025 Feb 11;26(1):50. doi: 10.1186/s12859-025-06068-6.

ABSTRACT

BACKGROUND: Piwi-interacting RNAs (piRNAs) are well established for monitoring and protecting the genome from transposons in germline cells. Recently, numerous studies provided evidence that piRNAs also play important roles in regulating mRNA transcript levels. Despite their significant role in regulating cellular RNA levels, the piRNA targeting rules are not well defined, especially in mammals, which poses obstacles to the elucidation of piRNA function.

RESULTS: Given the complexity and current limitation in understanding the mammalian piRNA targeting rules, we designed a deep learning model by selecting appropriate deep learning sub-networks based on the targeting patterns of piRNA inferred from previous experiments. Additionally, to alleviate the problem of insufficient data, a transfer learning approach was employed. Our model achieves a good discriminatory power (Accuracy: 98.5%) in predicting an independent test dataset. Finally, this model was utilized to predict the targets of all mouse and human piRNAs available in the piRNA database.

CONCLUSIONS: In this research, we developed a deep learning framework that significantly advances the prediction of piRNA targets, overcoming the limitations posed by insufficient data and current incomplete targeting rules. The piRNA target prediction network and results can be downloaded from https://github.com/SofiaTianjiaoZhang/piRNATarget .

PMID:39934678 | DOI:10.1186/s12859-025-06068-6

Categories: Literature Watch

A hybrid machine learning framework for functional annotation of mitochondrial glutathione transport and metabolism proteins in cancers

Tue, 2025-02-11 06:00

BMC Bioinformatics. 2025 Feb 11;26(1):48. doi: 10.1186/s12859-025-06051-1.

ABSTRACT

BACKGROUND: Alterations of metabolism, including changes in mitochondrial metabolism as well as glutathione (GSH) metabolism are a well appreciated hallmark of many cancers. Mitochondrial GSH (mGSH) transport is a poorly characterized aspect of GSH metabolism, which we investigate in the context of cancer. Existing functional annotation approaches from machine (ML) or deep learning (DL) models based only on protein sequences, were unable to annotate functions in biological contexts.

RESULTS: We develop a flexible ML framework for functional annotation from diverse feature data. This hybrid ML framework leverages cancer cell line multi-omics data and other biological knowledge data as features, to uncover potential genes involved in mGSH metabolism and membrane transport in cancers. This framework achieves strong performance across functional annotation tasks and several cell line and primary tumor cancer samples. For our application, classification models predict the known mGSH transporter SLC25A39 but not SLC25A40 as being highly probably related to mGSH metabolism in cancers. SLC25A10, SLC25A50, and orphan SLC25A24, SLC25A43 are predicted to be associated with mGSH metabolism in multiple biological contexts and structural analysis of these proteins reveal similarities in potential substrate binding regions to the binding residues of SLC25A39.

CONCLUSION: These findings have implications for a better understanding of cancer cell metabolism and novel therapeutic targets with respect to GSH metabolism through potential novel functional annotations of genes. The hybrid ML framework proposed here can be applied to other biological function classifications or multi-omics datasets to generate hypotheses in various biological contexts. Code and a tutorial for generating models and predictions in this framework are available at: https://github.com/lkenn012/mGSH_cancerClassifiers .

PMID:39934670 | DOI:10.1186/s12859-025-06051-1

Categories: Literature Watch

Deep attention model for arrhythmia signal classification based on multi-objective crayfish optimization algorithmic variational mode decomposition

Tue, 2025-02-11 06:00

Sci Rep. 2025 Feb 11;15(1):5080. doi: 10.1038/s41598-025-89752-0.

ABSTRACT

The detection and classification of arrhythmia play a vital role in the diagnosis and management of cardiac disorders. Many deep learning techniques are utilized for arrhythmia classification in current research but only based on ECG data, lacking the mathematical foundations of cardiac electrophysiology. A finite element model (FEM) of the human heart based on the FitzHugh-Nagumo (FHN) model was established for cardiac electrophysiology simulation and the ECG signals were acquired from the FEM results of representative points. Two different kinds of arrhythmia characterized by major anomalies of parameters a and ɛ in the FHN model were simulated, and the synthetic ECG signals were obtained respectively. A multi-objective optimization method based on non-dominated sorting was incorporated into the crayfish optimization algorithm to optimize the key parameters in VMD, then a variational mode decomposition technique for ECG signal processing based on a multi-objective crayfish optimization algorithm (MOCOA-VMD) was proposed, wherein the spectral kurtosis and KL divergence were determined as the indicators for decomposition. The Pareto optimal front was generated by MOCOA and the intrinsic mode functions of VMD with the best combination of K and α were obtained. A deep attention model based on MOCOA-VMD was constructed for ECG signal classification. The ablation study was implemented to verify the effectiveness of the proposed signal decomposition method and deep attention modules. The performance of the model based on MOCOA-VMD achieves the best accuracy of 94.35%, much higher than the model constructed by modules of EEMD, VMD and CNN. Moreover, Bayesian optimization was carried out to fine-tune the hyperparameters batch size, learning rate, epochs, and momentum. After TPE optimization, the deep model's performance achieved a maximum accuracy of 95.91%. The MIT-BIH arrhythmia database was further utilized for model validation, ascertaining its robustness and generalizability. The proposed deep attention modeling and classification strategy can help in arrhythmia signal processing and may offer inspiration for other signal processing fields as well.

PMID:39934416 | DOI:10.1038/s41598-025-89752-0

Categories: Literature Watch

Artificial intelligence support improves diagnosis accuracy in anterior segment eye diseases

Tue, 2025-02-11 06:00

Sci Rep. 2025 Feb 11;15(1):5117. doi: 10.1038/s41598-025-89768-6.

ABSTRACT

CorneAI, a deep learning model designed for diagnosing cataracts and corneal diseases, was assessed for its impact on ophthalmologists' diagnostic accuracy. In the study, 40 ophthalmologists (20 specialists and 20 residents) classified 100 images, including iPhone 13 Pro photos (50 images) and diffuser slit-lamp photos (50 images), into nine categories (normal condition, infectious keratitis, immunological keratitis, corneal scar, corneal deposit, bullous keratopathy, ocular surface tumor, cataract/intraocular lens opacity, and primary angle-closure glaucoma). The iPhone and slit-lamp images represented the same cases. After initially answering without CorneAI, the same ophthalmologists responded to the same cases with CorneAI 2-4 weeks later. With CorneAI's support, the overall accuracy of ophthalmologists increased significantly from 79.2 to 88.8% (P < 0.001). Specialists' accuracy rose from 82.8 to 90.0%, and residents' from 75.6 to 86.2% (P < 0.001). Smartphone image accuracy improved from 78.7 to 85.5% and slit-lamp image accuracy from 81.2 to 90.6% (both, P < 0.001). In this study, CorneAI's own accuracy was 86%, but its support enhanced ophthalmologists' accuracy beyond the CorneAI's baseline. This study demonstrated that CorneAI, despite being trained on diffuser slit-lamp images, effectively improved diagnostic accuracy, even with smartphone images.

PMID:39934383 | DOI:10.1038/s41598-025-89768-6

Categories: Literature Watch

Multifactor prediction model for stock market analysis based on deep learning techniques

Tue, 2025-02-11 06:00

Sci Rep. 2025 Feb 11;15(1):5121. doi: 10.1038/s41598-025-88734-6.

ABSTRACT

Stock market stability relies on the shares, investors, and stakeholders' participation and global commodity exchanges. In general, multiple factors influence the stock market stability to ensure profitable returns and commodity transactions. This article presents a contradictory-factor-based stability prediction model using the sigmoid deep learning paradigm. Sigmoid learning identifies the possible stabilizations of different influencing factors toward a profitable stock exchange. In this model, each influencing factor is mapped with the profit outcomes considering the live shares and their exchange value. The stability is predicted using sigmoid and non-sigmoid layers repeatedly until the maximum is reached. This stability is matched with the previous outcomes to predict the consecutive hours of stock market changes. Based on the actual changes and predicted ones, the sigmoid function is altered to accommodate the new range. The non-sigmoid layer remains unchanged in the new changes to improve the prediction precision. Based on the outcomes the deep learning's sigmoid layer is trained to identify abrupt changes in the stock market.

PMID:39934296 | DOI:10.1038/s41598-025-88734-6

Categories: Literature Watch

Interpretable deep learning of single-cell and epigenetic data reveals novel molecular insights in aging

Tue, 2025-02-11 06:00

Sci Rep. 2025 Feb 11;15(1):5048. doi: 10.1038/s41598-025-89646-1.

ABSTRACT

Deep learning (DL) and explainable artificial intelligence (XAI) have emerged as powerful machine-learning tools to identify complex predictive data patterns in a spatial or temporal domain. Here, we consider the application of DL and XAI to large omic datasets, in order to study biological aging at the molecular level. We develop an advanced multi-view graph-level representation learning (MGRL) framework that integrates prior biological network information, to build molecular aging clocks at cell-type resolution, which we subsequently interpret using XAI. We apply this framework to one of the largest single-cell transcriptomic datasets encompassing over a million immune cells from 981 donors, revealing a ribosomal gene subnetwork, whose expression correlates with age independently of cell-type. Application of the same DL-XAI framework to DNA methylation data of sorted monocytes reveals an epigenetically deregulated inflammatory response pathway whose activity increases with age. We show that the ribosomal module and inflammatory pathways would not have been discovered had we used more standard machine-learning methods. In summary, the computational deep learning framework presented here illustrates how deep learning when combined with explainable AI tools, can reveal novel biological insights into the complex process of aging.

PMID:39934290 | DOI:10.1038/s41598-025-89646-1

Categories: Literature Watch

A promising AI based super resolution image reconstruction technique for early diagnosis of skin cancer

Tue, 2025-02-11 06:00

Sci Rep. 2025 Feb 11;15(1):5084. doi: 10.1038/s41598-025-89693-8.

ABSTRACT

Skin cancer can be prevalent in people of any age group who are exposed to ultraviolet (UV) radiation. Among all other types, melanoma is a notable severe kind of skin cancer, which can be fatal. Melanoma is a malignant skin cancer arising from melanocytes, requiring early detection. Typically, skin lesions are classified either as benign or malignant. However, some lesions do exist that don't show clear cancer signs, making them suspicious. If unnoticed, these suspicious lesions develop into severe melanoma, requiring invasive treatments later on. These intermediate or suspicious skin lesions are completely curable if it is diagnosed at their early stages. To tackle this, few researchers intended to improve the image quality of the infected lesions obtained from the dermoscopy through image reconstruction techniques. Analyzing reconstructed super-resolution (SR) images allows early detection, fine feature extraction, and treatment plans. Despite advancements in machine learning, deep learning, and complex neural networks enhancing skin lesion image quality, a key challenge remains unresolved: how the intricate textures are obtained while performing significant up scaling in medical image reconstruction? Thus, an artificial intelligence (AI) based reconstruction algorithm is proposed to obtain the fine features from the intermediate skin lesion from dermoscopic images for early diagnosis. This serves as a non-invasive approach. In this research, a novel melanoma information improvised generative adversarial network (MELIIGAN) framework is proposed for the expedited diagnosis of intermediate skin lesions. Also, designed a stacked residual block that handles larger scaling factors and the reconstruction of fine-grained details. Finally, a hybrid loss function with a total variation (TV) regularization term switches to the Charbonnier loss function, a robust substitute for the mean square error loss function. The benchmark dataset results in a structural index similarity (SSIM) of 0.946 and a peak signal-to-noise ratio (PSNR) of 40.12 dB as the highest texture information, evidently compared to other state-of-the-art methods.

PMID:39934265 | DOI:10.1038/s41598-025-89693-8

Categories: Literature Watch

RAE-Net: a multi-modal neural network based on feature fusion and evidential deep learning algorithm in predicting breast cancer subtypes on DCE-MRI

Tue, 2025-02-11 06:00

Biomed Phys Eng Express. 2025 Feb 11. doi: 10.1088/2057-1976/adb494. Online ahead of print.

ABSTRACT

Abstract&#xD;&#xD;Objectives: Accurate identification of molecular subtypes in breast cancer is critical for personalized treatment. This study introduces a novel neural network model, RAE-Net, based on Multimodal Feature Fusion (MFF) and the Evidential Deep Learning Algorithm (EDLA) to improve breast cancer subtype prediction using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).&#xD;&#xD;Methods: A dataset of 344 patients with histologically confirmed breast cancer was divided into training (n=200), validation (n=60), and testing (n=62) cohorts. RAE-Net, built on ResNet-50 with Multi-Head Attention (MHA) fusion and Multi-Layer Perceptron (MLP) mechanisms, combines radiomic and deep learning features for subtype prediction. The EDLA module adds uncertainty estimation to enhance classification reliability.&#xD;&#xD;Results: RAE-Net with the MFF module achieved a mean accuracy of 0.83 and a Macro-F1 score of 0.78, outperforming traditional radiomics models (accuracy: 0.79, Macro-F1: 0.75) and standalone deep learning models (accuracy: 0.80, Macro-F1: 0.76). With an EDLA uncertainty threshold of 0.2, performance improved significantly, with accuracy reaching 0.97 and Macro-F1 at 0.92. RAE-Net also outperformed ResGANet, increasing accuracy by 0.5% and improving AUC. Compared to HIFUSE, RAE-Net reduced parameters and computational cost by 90%, with only a 5.7% increase in computation time.&#xD;&#xD;Conclusions: RAE-Net integrates feature fusion and uncertainty estimation to predict breast cancer subtypes from DCE-MRI. The model achieves high accuracy while maintaining computational efficiency, demonstrating its potential for clinical use as a reliable and resource-efficient diagnostic tool.

PMID:39933196 | DOI:10.1088/2057-1976/adb494

Categories: Literature Watch

Deep learning-assisted identification and localization of ductal carcinoma from bulk tissue in-silico models generated through polarized Monte Carlo simulations

Tue, 2025-02-11 06:00

Biomed Phys Eng Express. 2025 Feb 11. doi: 10.1088/2057-1976/adb495. Online ahead of print.

ABSTRACT

Despite significant progress in diagnosis and treatment, breast cancer remains a formidable health challenge, emphasizing the continuous need for research. This simulation study uses polarized Monte Carlo approach to identify and locate breast cancer. The tissue model Mueller matrix derived from polarized Monte Carlo simulations provides enhanced contrast for better comprehension of tissue structures. This study explicitly targets tumour regions found at the tissue surface, a possible scenario in thick tissue sections obtained after surgical removal of breast tissue lumps. We use a convolutional neural network for the identification and localization of tumours. Nine distinct spatial positions, defined relative to the point of illumination, allow the identification of the tumour even if it is outside the directly illuminated area. A system incorporating deep learning techniques automates processes and enables real-time diagnosis. This research paper aims to showcase the concurrent detection of the tumour's existence and position by utilizing a Convolutional Neural Network (CNN) implemented on depolarized index images derived from polarized Monte Carlo simulations. The classification accuracy achieved by the CNN model stands at 96%, showcasing its optimal performance. The model is also tested with images obtained from in-vitro tissue models, which yielded 100% classification accuracy on a selected subset of spatial positions.

PMID:39933195 | DOI:10.1088/2057-1976/adb495

Categories: Literature Watch

Deep Learning-based Video-level View Classification of Two-dimensional Transthoracic Echocardiography

Tue, 2025-02-11 06:00

Biomed Phys Eng Express. 2025 Feb 11. doi: 10.1088/2057-1976/adb493. Online ahead of print.

ABSTRACT

In recent years, deep learning (DL)-based automatic view classification of 2D transthoracic echocardiography (TTE) has demonstrated strong performance, but has not fully addressed key clinical requirements such as view coverage, classification accuracy, inference delay, and the need for thorough exploration of performance in real-world clinical settings. We proposed a clinical requirement-driven DL framework, TTESlowFast, for accurate and efficient video-level TTE view classification. This framework is based on the SlowFast architecture and incorporates both a sampling balance strategy and a data augmentation strategy to address class imbalance and the limited availability of labeled TTE videos, respectively. TTESlowFast achieved an overall accuracy of 0.9881, precision of 0.9870, recall of 0.9867, and F1 score of 0.9867 on the test set. After field deployment, the model's overall accuracy, precision, recall, and F1 score for view classification were 0.9607, 0.9586, 0.9499, and 0.9530, respectively. The inference time for processing a single TTE video was (105.0 ± 50.1) ms on a desktop GPU (NVIDIA RTX 3060) and (186.0 ± 5.2) ms on an edge computing device (Jetson Orin Nano), which basically meets the clinical demand for immediate processing following image acquisition. The TTESlowFast framework proposed in this study demonstrates effective performance in TTE view classification with low inference delay, making it well-suited for various medical scenarios and showing significant potential for practical application.

PMID:39933194 | DOI:10.1088/2057-1976/adb493

Categories: Literature Watch

A deep learning-enabled smart garment for accurate and versatile monitoring of sleep conditions in daily life

Tue, 2025-02-11 06:00

Proc Natl Acad Sci U S A. 2025 Feb 18;122(7):e2420498122. doi: 10.1073/pnas.2420498122. Epub 2025 Feb 11.

ABSTRACT

In wearable smart systems, continuous monitoring and accurate classification of different sleep-related conditions are critical for enhancing sleep quality and preventing sleep-related chronic conditions. However, the requirements for device-skin coupling quality in electrophysiological sleep monitoring systems hinder the comfort and reliability of night wearing. Here, we report a washable, skin-compatible smart garment sleep monitoring system that captures local skin strain signals under weak device-skin coupling conditions without positioning or skin preparation requirements. A printed textile-based strain sensor array responds to strain from 0.1 to 10% with a gauge factor as high as 100 and shows independence to extrinsic motion artifacts via strain-isolating printed pattern design. Through reversible starching treatment, ink penetration depth during direct printing on garments is controlled to achieve batch-to-batch performance variation <10%. Coupled with deep learning, explainable AI, and transfer learning data processing, the smart garment is capable of classifying six sleep states with an accuracy of 98.6%, maintaining excellent explainability (classification with low bias) and generalization (95% accuracy on new users with few-shot learning less than 15 samples per class) in practical applications, paving the way for next-generation daily sleep healthcare management.

PMID:39932995 | DOI:10.1073/pnas.2420498122

Categories: Literature Watch

A Conditional Denoising VAE-based Framework for Antimicrobial Peptides Generation with Preserving Desirable Properties

Tue, 2025-02-11 06:00

Bioinformatics. 2025 Feb 11:btaf069. doi: 10.1093/bioinformatics/btaf069. Online ahead of print.

ABSTRACT

MOTIVATION: The widespread use of antibiotics has led to the emergence of resistant pathogens. Antimicrobial peptides (AMPs) combat bacterial infections by disrupting the integrity of cell membranes, making it challenging for bacteria to develop resistance. Consequently, AMPs offer a promising solution to addressing antibiotic resistance. However, the limited availability of natural AMPs cannot meet the growing demand. While deep learning technologies have advanced AMP generation, conventional models often lack stability and may introduce unforeseen side effects.

RESULTS: This study presents a novel denoising VAE-based model guided by desirable physicochemical properties for AMPs generation. The model integrates key features (e.g., molecular weight, isoelectric point, hydrophobicity, etc.), and employs position encoding along with a Transformer architecture to enhance generation accuracy. A customized loss function, combining reconstruction loss, KL divergence, and property preserving loss, ensures effective model training. Additionally, the model incorporates a denoising mechanism, enabling it to learn from perturbed inputs, thus maintaining performance under limited training data. Experimental results demonstrate that the proposed model can generate AMPs with desirable functional properties, offering a viable approach for AMP design and analysis, which ultimately contributes to the fight against antibiotic resistance.

AVAILABILITY AND IMPLEMENTATION: The data and source codes are available both in GitHub (https://github.com/David-WZhao/PPGC-DVAE) and Zenodo (DOI 10.5281/zenodo.14730711).

CONTACT AND SUPPLEMENTARY INFORMATION: wzzhao@ccnu.edu.cn, and Supplementary materials are available at Bioinformatics online.

PMID:39932977 | DOI:10.1093/bioinformatics/btaf069

Categories: Literature Watch

A privacy-preserved horizontal federated learning for malignant glioma tumour detection using distributed data-silos

Tue, 2025-02-11 06:00

PLoS One. 2025 Feb 11;20(2):e0316543. doi: 10.1371/journal.pone.0316543. eCollection 2025.

ABSTRACT

Malignant glioma is the uncontrollable growth of cells in the spinal cord and brain that look similar to the normal glial cells. The most essential part of the nervous system is glial cells, which support the brain's functioning prominently. However, with the evolution of glioma, tumours form that invade healthy tissues in the brain, leading to neurological impairment, seizures, hormonal dysregulation, and venous thromboembolism. Medical tests, including medical resonance imaging (MRI), computed tomography (CT) scans, biopsy, and electroencephalograms are used for early detection of glioma. However, these tests are expensive and may cause irritation and allergic reactions due to ionizing radiation. The deep learning models are highly optimal for disease prediction, however, the challenge associated with it is the requirement for substantial memory and storage to amalgamate the patient's information at a centralized location. Additionally, it also has patient data-privacy concerns leading to anonymous information generalization, regulatory compliance issues, and data leakage challenges. Therefore, in the proposed work, a distributed and privacy-preserved horizontal federated learning-based malignant glioma disease detection model has been developed by employing 5 and 10 different clients' architectures in independent and identically distributed (IID) and non-IID distributions. Initially, for developing this model, the collection of the MRI scans of non-tumour and glioma tumours has been done, which are further pre-processed by performing data balancing and image resizing. The configuration and development of the pre-trained MobileNetV2 base model have been performed, which is then applied to the federated learning(FL) framework. The configurations of this model have been kept as 0.001, Adam, 32, 10, 10, FedAVG, and 10 for learning rate, optimizer, batch size, local epochs, global epochs, aggregation, and rounds, respectively. The proposed model has provided the most prominent accuracy with 5 clients' architecture as 99.76% and 99.71% for IID and non-IID distributions, respectively. These outcomes demonstrate that the model is highly optimized and generalizes the improved outcomes when compared to the state-of-the-art models.

PMID:39932966 | DOI:10.1371/journal.pone.0316543

Categories: Literature Watch

Deep learning-based segmentation of the mandibular canals in cone beam computed tomography reaches human level performance

Tue, 2025-02-11 06:00

Dentomaxillofac Radiol. 2025 Feb 11:twae069. doi: 10.1093/dmfr/twae069. Online ahead of print.

ABSTRACT

OBJECTIVES: This study evaluated the accuracy and reliability of deep learning-based segmentation techniques for mandibular canal identification in CBCT data to provide a reliable and efficient support-tool for dental implant treatment planning.

METHODS: A dataset of 90 cone beam computed tomography (CBCT) scans was annotated as ground truth for mandibular canal segmentation. The dataset was split into training (n = 69), validation (n = 1), and testing (n = 20) subsets. A deep learning model based on a hierarchical convolutional neural network architecture was developed and trained. The model's performance was evaluated using Dice similarity coefficient (DSC), 95% Hausdorff distance (HD), and average symmetric surface distance (ASSD). Qualitative assessment was performed by two experienced dental imaging practitioners who evaluated the segmentation quality in terms of trust and safety on a 5-point Likert scale at three mandibular locations per side.

RESULTS: The trained model achieved a mean DSC of 0.77 ± 0.09, HD of 1.66 ± 0.86 mm, and ASSD of 0.31 ± 0.15 mm on the testing subset. Qualitative assessment showed no significant difference between the deep learning-based segmentations and ground truth in terms of trust and safety across all investigated locations (p > 0.05).

CONCLUSIONS: The proposed deep learning-based segmentation technique exhibits sufficient accuracy for the reliable identification of mandibular canals in CBCT scans. This automated approach could streamline the pre-operative planning process for dental implant placement, reducing the risk of neurovascular complications and enhancing patient safety.

PMID:39932925 | DOI:10.1093/dmfr/twae069

Categories: Literature Watch

Pages