Pharmacogenomics
Relationship of the <em>1846G</em> > <em>A</em> Polymorphism of the <em>CYP2D6</em> Gene to the Equilibrium Concentration Levels of Haloperidol in Patients with Acute Alcoholic Hallucinosis
Psychopharmacol Bull. 2023 Dec 4;53(4):15-22.
ABSTRACT
Haloperidol is currently used in addictology for the treatment of acute psychotic disorders, including acute alcoholic hallucinosis. The use of haloperidol is often accompanied by the occurrence of adverse drug reactions (ADRs). There is evidence that CYP2D6 isoenzyme is involved in the biotransformation of haloperidol.
AIM: The study aimed to evaluate the relationship of 1846G > A polymorphism of the CYP2D6 gene to the equilibrium concentration levels of haloperidol in patients with acute alcoholic hallucinosis.
MATERIAL AND METHODS: The study was conducted on 100 male patients with acute alcoholic hallucinosis (mean age 41.4 ± 14.4 years). The efficacy profile was evaluated using the PANSS (Positive and Negative Syndrome Scale) scale. The safety of therapy was assessed using the UKU Side-Effect Rating Scale and the SAS (Simpson-Angus Scale for Extrapyramidal Symptoms) scale. Genotyping was performed using the real-time polymerase chain reaction (Real-time PCR). Equilibrium plasma concentration levels of haloperidol were investigated using the high-performance liquid chromatography with mass spectrometry (HPLC with MS/MS).
RESULTS: No statistically significant results were obtained during the therapy efficacy assessment (dynamics of the PANSS score: GG genotype (-13.00 [-16.00; -16.00; -11.00]), GA genotype (-15.00 [-16.75; -13.00], p = 0.728). There was a statistically significant difference in safety assessment scores (dynamics of the UKU score: GG genotype (8.00 [7.00; 10.00]), GA genotype (15.00 [9.25; 18.00], p < 0.001); dynamics of the SAS score: GG genotype (11.00 [9.00; 14.00]), GA genotype (14.50 [12.00; 18.00], p < 0.001). The pharmacokinetic study results showed a statistically significant difference: GG (3.13 [2.32; 3.95]), GA (3.89 [2.92; 5.26], p = 0.010). Thus, a study conducted on a group of 100 patients with acute alcoholic hallucinosis demonstrated an association between the 1846G > A polymorphism of the CYP2D6 gene (rs3892097) and the safety profile of haloperidol therapy. We also revealed the presence of statistically significant difference in the equilibrium concentration levels of haloperidol in patients with the GG and AG genotypes.
CONCLUSION: It can be concluded that patients with the GA genotype have a higher risk of ADRs compared to patients carrying the GG genotype. It is shown that 1846G > A polymorphism of the CYP2D6 gene (rs3892097) has a statistically significant effect on the equilibrium concentration levels of haloperidol.
PMID:38076663 | PMC:PMC10698856
Multi-level characteristics recognition of cancer core therapeutic targets and drug screening for a broader patient population
Front Pharmacol. 2023 Nov 23;14:1280099. doi: 10.3389/fphar.2023.1280099. eCollection 2023.
ABSTRACT
Introduction: Target therapy for cancer cell mutation has brought attention to several challenges in clinical applications, including limited therapeutic targets, less patient benefits, and susceptibility to acquired due to their clear biological mechanisms and high specificity in targeting cancers with specific mutations. However, the identification of truly lethal synthetic lethal therapeutic targets for cancer cells remains uncommon, primarily due to compensatory mechanisms. Methods: In our pursuit of core therapeutic targets (CTTs) that exhibit extensive synthetic lethality in cancer and the corresponding potential drugs, we have developed a machine-learning model that utilizes multiple levels and dimensions of cancer characterization. This is achieved through the consideration of the transcriptional and post-transcriptional regulation of cancer-specific genes and the construction of a model that integrates statistics and machine learning. The model incorporates statistics such as Wilcoxon and Pearson, as well as random forest. Through WGCNA and network analysis, we identify hub genes in the SL network that serve as CTTs. Additionally, we establish regulatory networks for non-coding RNA (ncRNA) and drug-target interactions. Results: Our model has uncovered 7277 potential SL interactions, while WGCNA has identified 13 gene modules. Through network analysis, we have identified 30 CTTs with the highest degree in these modules. Based on these CTTs, we have constructed networks for ncRNA regulation and drug targets. Furthermore, by applying the same process to lung cancer and renal cell carcinoma, we have identified corresponding CTTs and potential therapeutic drugs. We have also analyzed common therapeutic targets among all three cancers. Discussion: The results of our study have broad applicability across various dimensions and histological data, as our model identifies potential therapeutic targets by learning multidimensional complex features from known synthetic lethal gene pairs. The incorporation of statistical screening and network analysis further enhances the confidence in these potential targets. Our approach provides novel theoretical insights and methodological support for the identification of CTTs and drugs in diverse types of cancer.
PMID:38074121 | PMC:PMC10701285 | DOI:10.3389/fphar.2023.1280099
Single-nucleotide polymorphism profiling by multimodal-targeted next-generation sequencing in methotrexate-resistant and -sensitive human osteosarcoma cell lines
Front Pharmacol. 2023 Nov 22;14:1294873. doi: 10.3389/fphar.2023.1294873. eCollection 2023.
ABSTRACT
Introduction: Methotrexate (MTX) is one of the most important drugs included in the first-line protocols to treat high-grade osteosarcoma (HGOS). Although several polymorphisms have been reported to be associated with drug response or MTX-related toxicity in pharmacogenetic studies, their role in the development of MTX resistance in HGOS is still unclear. Methods: Therefore, in this study, 22 single nucleotide polymorphisms (SNPs) in 4 genes of the folate metabolism, 7 MTX transporter genes, and 2 SNPs of the tumor protein p53 (TP53) gene were investigated using a custom multimodal-targeted next-generation sequencing (mmNGS) approach in 8 MTX-resistant and 12 MTX-sensitive human HGOS cell lines. The panel was validated by TaqMan genotyping assays. Results: High instability of TP53 rs1642785 was observed in all U-2OS/MTX variants. Allele changes of the solute carrier family 19 member 1/replication factor C subunit 1 (SLC19A1, previously known as RFC1) and rs1051266 were identified in all Saos-2/MTX-resistant variants in both DNA- and RNA- derived libraries compared to the parental Saos-2 cell line. Allele changes of methylenetetrahydrofolate reductase (MTHFR) rs1801133 were identified only in the RNA-derived libraries of the two U2OS variants with the highest MTX resistance level. Significantly upregulated gene expression associated with the development of MTX resistance was revealed for dihydrofolate reductase (DHFR) whereas SLC19A1 was downregulated. In addition, a fusion transcript of DHFR (ex4) and MutS Homolog 3 (MSH3) (ex9) was identified in the RNA libraries derived from the two U-2OS variants with the highest MTX resistance level. Conclusion: This innovative mmNGS approach enabled the simultaneous exploration of SNPs at DNA and RNA levels in human HGOS cell lines, providing evidence of the functional involvement of allele changes associated with the development of MTX resistance.
PMID:38074116 | PMC:PMC10698553 | DOI:10.3389/fphar.2023.1294873
Most patients with disorders of gut-brain interaction receive pharmacotherapy with major or moderate drug-gene interactions
Neurogastroenterol Motil. 2023 Dec 10:e14722. doi: 10.1111/nmo.14722. Online ahead of print.
ABSTRACT
BACKGROUND: How variations predicted by pharmacogenomic testing to alter drug metabolism and therapeutic response affect outcomes for patients with disorders of gut- brain interaction is unclear.
AIMS: To assess the prevalence of pharmacogenomics-predicted drug-gene interactions and symptom outcomes for patients with disorders of gut-brain interaction.
METHODS: Patients who were treated in our clinical practice for functional dyspepsia/bowel disorder underwent pharmacogenomic testing. The change in symptoms from baseline to 6 months was compared for patients with variations in CYP2D6 and CYP2C19, which metabolize neuromodulators, and SLC6A4, which encodes the sodium- dependent serotonin transporter.
RESULTS: At baseline, 79 of 94 participants (84%) had at least one predicted major drug- gene interaction, and all 94 (100%) had at least one predicted moderate interaction. For the 44 participants who completed a survey of their symptoms at 6 months, the mean (SD) irritable bowel syndrome-symptom severity score decreased from 284 (71) at baseline to 231 (95) at 6 months (p < 0.001). Among patients taking selective serotonin reuptake inhibitors, the decrease in symptom severity (p = 0.03) and pain (p = 0.002) scores from baseline to 6 months was greater for patients with a homozygous SLC6A4 long/long genotype (n = 30) (ie, increased serotonin transporter activity) than for patients with homozygous short/short or heterozygous long/short genotypes (n = 64). Symptom outcomes were not affected by CYP2D6 or CYP2C19 variations.
CONCLUSIONS: The homozygous SLC6A4 long/long genotype confers better symptom resolution for patients with disorders of gut-brain interaction who take selective serotonin reuptake inhibitors than do the homozygous short/short or heterozygous long/short genotypes.
PMID:38072827 | DOI:10.1111/nmo.14722
Implementation of a liver health check in people with type 2 diabetes
Lancet Gastroenterol Hepatol. 2024 Jan;9(1):83-91. doi: 10.1016/S2468-1253(23)00270-4.
ABSTRACT
As morbidity and mortality related to potentially preventable liver diseases are on the rise globally, early detection of liver fibrosis offers a window of opportunity to prevent disease progression. Early detection of non-alcoholic fatty liver disease allows for initiation and reinforcement of guidance on bodyweight management, risk stratification for advanced liver fibrosis, and treatment optimisation of diabetes and other metabolic complications. Identification of alcohol-related liver disease provides the opportunity to support patients with detoxification and abstinence programmes. In all patient groups, identification of cirrhosis ensures that patients are enrolled in surveillance programmes for hepatocellular carcinoma and portal hypertension. When considering early detection strategies, success can be achieved from applying ad-hoc screening for liver fibrosis in established frameworks of care. Patients with type 2 diabetes are an important group to consider case findings of advanced liver fibrosis and cirrhosis, as up to 19% have advanced fibrosis (which is ten times higher than the general population) and almost 70% have non-alcoholic fatty liver disease. Additionally, patients with type 2 diabetes with alcohol use disorders have the highest proportion of liver-related morbidity of people with type 2 diabetes generally. Patients with type 2 diabetes receive an annual diabetes review as part of their routine clinical care, in which the health of many organs are considered. Yet, liver health is seldom included in this review. This Viewpoint argues that augmenting the existing risk stratification strategy with an additional liver health check provides the opportunity to detect advanced liver fibrosis, thereby opening a window for early interventions to prevent end-stage liver disease and its complications, including hepatocellular carcinoma.
PMID:38070521 | DOI:10.1016/S2468-1253(23)00270-4
Diabetes management in cancer patients. An Italian Association of Medical Oncology, Italian Association of Medical Diabetologists, Italian Society of Diabetology, Italian Society of Endocrinology and Italian Society of Pharmacology multidisciplinary...
ESMO Open. 2023 Dec 8;8(6):102062. doi: 10.1016/j.esmoop.2023.102062. Online ahead of print.
ABSTRACT
Cancer management has significantly evolved in recent years, focusing on a multidisciplinary team approach to provide the best possible patient care and address the various comorbidities, toxicities, and complications that may arise during the patient's treatment journey. The co-occurrence of diabetes and cancer presents a significant challenge for health care professionals worldwide. Management of these conditions requires a holistic approach to improve patients' overall health, treatment outcomes, and quality of life, preventing diabetes complications and cancer treatment side-effects. In this article, a multidisciplinary panel of experts from different Italian scientific societies provide a critical overview of the co-management of cancer and diabetes, with an increasing focus on identifying a novel specialty field, 'diabeto-oncology', and suggest new co-management models of cancer patients with diabetes to improve their care. To better support cancer patients with diabetes and ensure high levels of coordinated care between oncologists and diabetologists, 'diabeto-oncology' could represent a new specialized field that combines specific expertise, skills, and training.
PMID:38070434 | DOI:10.1016/j.esmoop.2023.102062
The impact of metformin use on the outcomes of relapse-remitting multiple sclerosis patients receiving interferon beta 1a: an exploratory prospective phase II open-label randomized controlled trial
J Neurol. 2023 Dec 9. doi: 10.1007/s00415-023-12113-2. Online ahead of print.
ABSTRACT
BACKGROUND: Multiple sclerosis (MS) is a chronic demyelinating neurodegenerative disorder. Elevated levels of pro-inflammatory mediators and some oxidative stress parameters can accelerate the demyelination process. We aimed to investigate the efficacy and safety of metformin as an adjuvant therapy to interferon beta 1a (IFNβ-1a) in relapsing-remitting multiple sclerosis (RRMS) patients.
METHOD: Eighty RRMS patients were equally divided into 2 groups: the intervention group receiving IFNβ-1a plus 2 gm of metformin once daily and the control group receiving IFNβ-1a alone. Interleukin 17 (IL17), interleukin 22 (IL22), malondialdehyde (MDA), T2 lesions in magnetic resonance imaging (MRI) and expanded disability status scale (EDSS) were assessed at the baseline and then after 6 months.
RESULTS: At baseline, there were no statistically significant differences between the two groups (p > 0.05). After 6 months, the change in the median (interquartile range) of the results for both the intervention and control group were; IL17 (- 1.39 (4.19) vs - 0.93 (5.48), p = 0.48), IL22 (- 0.14 (0.48) vs - 0.09 (0.6), p = 0.53), and EDSS (0 vs 0, p = 1), respectively. The mean (standard deviation) change in MDA for the intervention and control group was - 0.93 (2.2) vs - 0.5 (2.53), p = 0.038, respectively. For MRI results, 21 patients had stationary and regressive course and 1 patient had a progressive course in the intervention arm vs 12 patients had stationary and regressive course and 4 had a progressive course in the control arm, p = 0.14.
CONCLUSION: Adding metformin to IFNβ-1a demonstrated a potential effect on an oxidative stress marker (MDA). However, there is no statistically significant effect on immunological, MRI and clinical outcomes. We recommend larger scale studies to confirm or negate these findings.
TRIAL REGISTRATION: ClinicalTrials.gov number: NCT05298670, 28/3/2022.
PMID:38070031 | DOI:10.1007/s00415-023-12113-2
MicroRNAs as Potential Biomarkers of Environmental Exposure to Polycyclic Aromatic Hydrocarbons and Their Link with Inflammation and Lung Cancer
Int J Mol Sci. 2023 Nov 30;24(23):16984. doi: 10.3390/ijms242316984.
ABSTRACT
Exposure to atmospheric air pollution containing volatile organic compounds such as polycyclic aromatic hydrocarbons (PAHs) has been shown to be a risk factor in the induction of lung inflammation and the initiation and progression of lung cancer. MicroRNAs (miRNAs) are small single-stranded non-coding RNA molecules of ~20-22 nucleotides that regulate different physiological processes, and their altered expression is implicated in various pathophysiological conditions. Recent studies have shown that the regulation of gene expression of miRNAs can be affected in diseases associated with outdoor air pollution, meaning they could also be useful as biomarkers of exposure to environmental pollution. In this article, we review the published evidence on miRNAs in relation to exposure to PAH pollution and discuss the possible mechanisms that may link these compounds with the expression of miRNAs.
PMID:38069307 | DOI:10.3390/ijms242316984
PARP1 Characterization as a Potential Biomarker for <em>BCR::ABL1</em> p190+ Acute Lymphoblastic Leukemia
Cancers (Basel). 2023 Nov 22;15(23):5510. doi: 10.3390/cancers15235510.
ABSTRACT
Detection of t(9;22), and consequent BCR::ABL1 fusion, is still a marker of worse prognosis for acute lymphoblastic leukemia (ALL), with resistance to tyrosine-kinase inhibitor therapy being a major obstacle in the clinical practice for this subset of patients. In this study, we investigated the effectiveness of targeting poly-ADP-ribose polymerase (PARP) in a model of BCR::ABL1 p190+ ALL, the most common isoform to afflict ALL patients, and demonstrated the use of experimental PARP inhibitor (PARPi), AZD2461, as a therapeutic option with cytotoxic capabilities similar to that of imatinib, the current gold standard in medical care. We characterized cytostatic profiles, induced cell death, and biomarker expression modulation utilizing cell models, also providing a comprehensive genome-wide analysis through an aCGH of the model used, and further validated PARP1 differential expression in samples of ALL p190+ patients from local healthcare institutions, as well as in larger cohorts of online and readily available datasets. Overall, we demonstrate the effectiveness of PARPi in the treatment of BCR::ABL1 p190+ ALL cell models and that PARP1 is differentially expressed in patient samples. We hope our findings help expand the characterization of molecular profiles in ALL settings and guide future investigations into novel biomarker detection and pharmacological choices in clinical practice.
PMID:38067214 | DOI:10.3390/cancers15235510
Three snake venoms from Bothrops genus induced apoptosis and cell cycle arrest in K562 human leukemic cell line
Toxicon. 2023 Dec 6:107547. doi: 10.1016/j.toxicon.2023.107547. Online ahead of print.
ABSTRACT
Cancer is indisputably one of the leading causes of death worldwide. Snake venoms are a potential source of bioactive compounds, complex mixtures constituted mainly of proteins and peptides with several pharmacological possibilities, including the potential to inhibit tumoral cell growth. In the present study, it was evaluated the antitumor effect of crude venom of Bothrops erythromelas (BeV), Bothrops jararaca (from Southern and Southeastern- BjsV and BjsdV, respectively) and Bothrops alternatus (BaV) in in vitro Chronic myeloid leukemia (CML) cancer cell line model. After 24 h of cell exposure to 10 and 50 μg/mL, BjsV, BjsdV, and BaV exerted a decrease in cell viability in both concentrations. BeV was not cytotoxic and, therefore wasn't chosen for further mechanism of action investigation. Furthermore, morphological alterations show modification typical of apoptosis. Also, was observes a significant cell cycle arrest in the S phase by BjsdV and BaV treatment. Flow cytometry evidenced the involvement of changes in the cell membrane permeability and the mitochondrial function by BjsV and BjsdV, corroborating with the triggering of the apoptotic pathway by the venom administration. BjsV, BjsdV, and BaV also led to extensive DNA damage and were shown to modulate the gene expression of transcripts related to the cell cycle progression and suppress the expression of the BCR-ABL1 oncogene. Altogether, these findings suggest that the venoms trigger the apoptosis pathway due to mitochondrial damage and cell cycle arrest, with modulation of intracellular pathways important for CML progression. Thus, indicating the pharmacological potential of these venoms in the development of new antitumoral compounds.
PMID:38065258 | DOI:10.1016/j.toxicon.2023.107547
Physiologically based pharmacokinetic (PBPK) modeling to predict the pharmacokinetics of irbesartan in different CYP2C9 genotypes
Arch Pharm Res. 2023 Dec 8. doi: 10.1007/s12272-023-01472-z. Online ahead of print.
ABSTRACT
Irbesartan, a potent and selective angiotensin II type-1 (AT1) receptor blocker (ARB), is one of the representative medications for the treatment of hypertension. Cytochrome P450 (CYP) 2C9 is primarily involved in the oxidation of irbesartan. CYP2C9 is highly polymorphic, and genetic polymorphism of this enzyme is the leading cause of significant alterations in the pharmacokinetics of irbesartan. This study aimed to establish the physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics of irbesartan in different CYP2C9 genotypes. The irbesartan PBPK model was established using the PK-Sim® software. Our previously reported pharmacogenomic data for irbesartan was leveraged in the development of the PBPK model and collected clinical pharmacokinetic data for irbesartan was used for the validation of the model. Physicochemical and ADME properties of irbesartan were obtained from previously reported data, predicted by the modeling software, or optimized to fit the observed plasma concentration-time profiles. Model evaluation was performed by comparing the predicted plasma concentration-time profiles and pharmacokinetic parameters to the observed results. Predicted plasma concentration-time profiles were visually similar to observed profiles. Predicted AUCinf in CYP2C9*1/*3 and CYP2C9*1/*13 genotypes were increased by 1.54- and 1.62-fold compared to CYP2C9*1/*1 genotype, respectively. All fold error values for AUC and Cmax in non-genotyped and CYP2C9 genotyped models were within the two-fold error criterion. We properly established the PBPK model of irbesartan in different CYP2C9 genotypes. It can be used to predict the pharmacokinetics of irbesartan for personalized pharmacotherapy in individuals of various races, ages, and CYP2C9 genotypes.
PMID:38064121 | DOI:10.1007/s12272-023-01472-z
When the same treatment has different response: The role of pharmacogenomics in statin therapy
Biomed Pharmacother. 2023 Dec 6;170:115966. doi: 10.1016/j.biopha.2023.115966. Online ahead of print.
ABSTRACT
Statins, also known as HMG-CoA reductase inhibitors, are one of the most potently prescribed and thoroughly researched medications, predominantly utilized for managing cardiovascular diseases by modulating serum cholesterol levels. Despite the well-documented efficacy of statins in reducing overall mortality via attenuating the risk of cardiovascular diseases, notable interindividual variability in therapeutic responses persists as such variability could compromise the lipid-lowering efficacy of the drug, potentially increasing susceptibility to adverse effects or attenuating therapeutic outcomes.This phenomenon has catalysed a growing interest in the scientific community to explore common genetic polymorphisms within genes that encode for pivotal enzymes within the pharmacokinetic pathways of statins. In our review, we focus to provide insight into potentially clinically relevant polymorphisms associated with statins' pharmacokinetic participants and assess their consequent implications on modulating the therapeutic outcomes of statins among distinct genetic carrier.
PMID:38061135 | DOI:10.1016/j.biopha.2023.115966
A dataset of proteomic changes during human heat stress and heat acclimation
Sci Data. 2023 Dec 7;10(1):877. doi: 10.1038/s41597-023-02809-5.
ABSTRACT
Hotter climates have important impacts on human health and performance. Yet, the cellular and molecular responses involved in human heat stress and acclimation remain understudied. This dataset includes physiological measurements and the plasma concentration of 2,938 proteins collected from 10 healthy adults, before and during passive heat stress that was performed both prior to and after a 7-day heat acclimation protocol. Physiological measurements included body temperatures, sweat rate, cutaneous vascular conductance, blood pressure, and skin sympathetic nerve activity. The proteomic dataset was generated using the Olink Explore 3072 assay, enabling a high-multiplex antibody-based assessment of protein changes based on proximity extension assay technology. The data need to be interpreted in the context of the moderate level of body hyperthermia attained and the specific demographic of young, healthy adults. We have made this dataset publicly available to facilitate research into the cellular and molecular mechanisms involved in human heat stress and acclimation, crucial for addressing the health and performance challenges posed by rising temperatures.
PMID:38062080 | DOI:10.1038/s41597-023-02809-5
Selective androgen receptor modulator use and related adverse events including drug-induced liver injury: Analysis of suspected cases
Eur J Clin Pharmacol. 2023 Dec 7. doi: 10.1007/s00228-023-03592-3. Online ahead of print.
ABSTRACT
PURPOSE: Selective androgen receptor modulators (SARMs) have demonstrated agonist activity on the androgen receptor in various tissues, stimulating muscle mass growth and improving bone reconstruction. Despite being in clinical trials, none has been approved by the Food and Drug Administration (FDA) or European Medicines Agency for pharmacotherapy. Still, SARMs are very popular as performance-enhancing drugs. The FDA has issued warnings about the health risks associated with SARMs, but the long-term exposure and possible adverse events still need to be fully understood. This review aims to evaluate the adverse events associated with using SARMs by humans.
METHODS: PubMed database was searched from September 16, 2022, to October 2, 2023. In total, 20 records were included in the final review. Data from preclinical and clinical studies supported the review.
RESULTS: Since 2020, 20 reports of adverse events, most described as drug-induced liver injury associated with the use of SARM agonists, have been published. The main symptoms mentioned were cholestatic or hepatocellular liver injury and jaundice. Limited data are related to the dosages and purity of SARM supplements.
CONCLUSION: Promoting SARMs as an anabolic agent in combination with other performance-enhancing drugs poses a risk to users not only due to doping controls but also to health safety. The lack of quality control of consumed supplements makes it very difficult to assess the direct impact of SARMs on the liver and their potential hepatotoxic effects. Therefore, more detailed analyses are needed to determine the safety of using SARMs.
PMID:38059982 | DOI:10.1007/s00228-023-03592-3
Inactivating negative regulators of cortical branched actin enhances persistence of single cell migration
J Cell Sci. 2023 Dec 7:jcs.261332. doi: 10.1242/jcs.261332. Online ahead of print.
ABSTRACT
The Rac1-WAVE-Arp2/3 pathway pushes the plasma membrane by polymerizing branched actin, thereby powering membrane protrusions that mediate cell migration. Here, using knock-down (KD) or knock-out (KO), we combine the inactivation of the Arp2/3 inhibitory protein Arpin, the Arp2/3 subunit ARPC1A and the WAVE complex subunit, CYFIP2, that all enhance the polymerization of cortical branched actin (CBA). Inactivation of the 3 CBA negative regulators increases migration persistence of human breast MCF10A cells, and of endodermal cells in the zebrafish embryo, significantly more than any single or double inactivation. In the triple KO, but not triple KD cells, the "super-migrator" phenotype was associated with a heterogenous down-regulation of vimentin expression and a lack of coordination in collective behaviors, such as wound healing and acinus morphogenesis. Re-expression of vimentin in triple KO cells restored to a large extent normal persistence of single cell migration, suggesting that vimentin down-regulation contributes to the maintenance of the super-migrator phenotype in triple KO cells. Constant excessive production of branched actin at the cell cortex thus commits cells into a motile state through changes in gene expression.
PMID:38059420 | DOI:10.1242/jcs.261332
Impact of sex on antidepressant discontinuation in groups of similar cytochrome P450 phenotypes
Ment Health Clin. 2023 Dec 1;13(6):303-310. doi: 10.9740/mhc.2023.12.303. eCollection 2023 Dec.
ABSTRACT
INTRODUCTION: Although there are studies assessing reasons for antidepressant discontinuation, little is known about the impact of sex differences or cytochrome P450 phenotypes. Our objective is to assess discontinuation rates between males and females and whether CYP450 phenotype influences discontinuation.
METHODS: This is a retrospective review of patients previously enrolled in the Right Drug, Right Dose, Right Time: Using Genomic Data to Individualize Treatment database with major depressive disorder. Patients were evaluated for antidepressants trialed between January 1, 2009, and September 30, 2019. Survival analyses with competing risks were used to analyze discontinuation reasons. A Kaplan-Meier estimation method was used to assess the time to discontinuation and discontinuation rates. Analyses were also completed to assess discontinuation between men and women by phenotypic groups. All tests were two-sided, and p-values ≤ .05 were considered statistically significant.
RESULTS: There were 620 antidepressant discontinuation events discovered from 1015 antidepressant trials included. Overall, the median time to discontinuation for males was 2.6 years and 1.9 years for females (hazard ratio [HR] 0.97 [95% confidence interval (CI): 0.80, 1.19], p = .77). The risk of discontinuation was not different between males and females in any of the phenotype groups, which was consistent in the multivariable analyses. Concomitant use of medications that inhibited or induced antidepressant metabolism increased the overall risk of discontinuation (HR 1.45, 95% CI [1.06, 1.99], p = .020) in a time-dependent analysis.
DISCUSSION: We did not detect a significant difference in risk of antidepressant discontinuation rates between males and females even when accounting for cytochrome P450 phenotype. Future studies should account for whether medications that inhibit or induce antidepressant metabolism may be a crucial factor in antidepressant discontinuation.
PMID:38058598 | PMC:PMC10696171 | DOI:10.9740/mhc.2023.12.303
Ethnopsychopharmacology: Clinical and scientific writing pearls
Ment Health Clin. 2023 Dec 1;13(6):276-288. doi: 10.9740/mhc.2023.12.276. eCollection 2023 Dec.
ABSTRACT
The concept of ethnopsychopharmacology aims to predict or explain the pharmacologic response to psychiatric medications based on the influence of biologic and nonbiologic factors. Interactions involving these factors are complex and influence patient outcomes in health care. Pharmacists and other clinicians working in patient care environments, research, or medical education should engage in lifelong learning to enhance ethnopsychopharmacologic knowledge gaps, which ultimately may improve and individualize care across diverse populations. Through two cases, this paper provides pearls on how biogeographical ancestry and cytochrome P450 status may influence pharmacotherapy selection, dosing, or response. A third scenario highlights a publication, like many other published works, with deficiencies in how data on ancestry, race, and ethnicity are collected or reported. Current recommendations on the use of inclusive language in scientific writing are reviewed, with attention to specific examples.
PMID:38058595 | PMC:PMC10696167 | DOI:10.9740/mhc.2023.12.276
Sample average treatment effect on the treated (SATT) analysis using counterfactual explanation identifies BMT and SARS-CoV-2 vaccination as protective risk factors associated with COVID-19 severity and survival in patients with multiple myeloma
Blood Cancer J. 2023 Dec 7;13(1):180. doi: 10.1038/s41408-023-00901-y.
ABSTRACT
Patients with multiple myeloma (MM), an age-dependent neoplasm of antibody-producing plasma cells, have compromised immune systems and might be at increased risk for severe COVID-19 outcomes. This study characterizes risk factors associated with clinical indicators of COVID-19 severity and all-cause mortality in myeloma patients utilizing NCATS' National COVID Cohort Collaborative (N3C) database. The N3C consortium is a large, centralized data resource representing the largest multi-center cohort of COVID-19 cases and controls nationwide (>16 million total patients, and >6 million confirmed COVID-19+ cases to date). Our cohort included myeloma patients (both inpatients and outpatients) within the N3C consortium who have been diagnosed with COVID-19 based on positive PCR or antigen tests or ICD-10-CM diagnosis code. The outcomes of interest include all-cause mortality (including discharge to hospice) during the index encounter and clinical indicators of severity (i.e., hospitalization/emergency department/ED visit, use of mechanical ventilation, or extracorporeal membrane oxygenation (ECMO)). Finally, causal inference analysis was performed using the Coarsened Exact Matching (CEM) and Propensity Score Matching (PSM) methods. As of 05/16/2022, the N3C consortium included 1,061,748 cancer patients, out of which 26,064 were MM patients (8,588 were COVID-19 positive). The mean age at COVID-19 diagnosis was 65.89 years, 46.8% were females, and 20.2% were of black race. 4.47% of patients died within 30 days of COVID-19 hospitalization. Overall, the survival probability was 90.7% across the course of the study. Multivariate logistic regression analysis showed histories of pulmonary and renal disease, dexamethasone, proteasome inhibitor/PI, immunomodulatory/IMiD therapies, and severe Charlson Comorbidity Index/CCI were significantly associated with higher risks of severe COVID-19 outcomes. Protective associations were observed with blood-or-marrow transplant/BMT and COVID-19 vaccination. Further, multivariate Cox proportional hazard analysis showed that high and moderate CCI levels, International Staging System (ISS) moderate or severe stage, and PI therapy were associated with worse survival, while BMT and COVID-19 vaccination were associated with lower risk of death. Finally, matched sample average treatment effect on the treated (SATT) confirmed the causal effect of BMT and vaccination status as top protective factors associated with COVID-19 risk among US patients suffering from multiple myeloma. To the best of our knowledge, this is the largest nationwide study on myeloma patients with COVID-19.
PMID:38057320 | DOI:10.1038/s41408-023-00901-y
Using the PharmCAT tool for Pharmacogenetic clinical decision support
Brief Bioinform. 2023 Nov 22;25(1):bbad452. doi: 10.1093/bib/bbad452.
ABSTRACT
Here, we will provide our insights into the usage of PharmCAT as part of a pharmacogenetic clinical decision support pipeline, which addresses the challenges in mapping clinical dosing guidelines to variants to be extracted from genetic datasets. After a general outline of pharmacogenetics, we describe some features of PharmCAT and how we integrated it into a pharmacogenetic clinical decision support system within a clinical information system. We conclude with promising developments regarding future PharmCAT releases.
PMID:38055839 | DOI:10.1093/bib/bbad452
Investigating the Immune Basis of Green Tea Extract Induced Liver Injury in Healthy Donors Expressing HLA-B*35:01
Chem Res Toxicol. 2023 Dec 6. doi: 10.1021/acs.chemrestox.3c00253. Online ahead of print.
ABSTRACT
Epigallocatechin-3-O-gallate (EGCG) is the major component of green tea extract, commonly found in dietary supplements, and has been associated with immune-mediated liver injury. The purpose of this study was to investigate the immunogenicity of EGCG in healthy donors expressing HLA-B*35:01, and characterize EGCG responsive T-cell clones. We have shown that EGCG can prime peripheral blood mononuclear cells and T-cells from donors with and without the HLA-B*35:01 allele. T-cell clones were CD4+ve and capable of secreting Th1, Th2, and cytolytic molecules. These data demonstrate that EGCG can activate T-cells in vitro, suggesting a significant role in the pathogenesis of green tea extract induced liver injury.
PMID:38055372 | DOI:10.1021/acs.chemrestox.3c00253