Pharmacogenomics
Cholecalciferol Supplementation Induced Up-Regulation of <em>SARAF</em> Gene and Down-Regulated miR-155-5p Expression in Slovenian Patients with Multiple Sclerosis
Genes (Basel). 2023 Jun 8;14(6):1237. doi: 10.3390/genes14061237.
ABSTRACT
Multiple sclerosis is a common immune-mediated inflammatory and demyelinating disease. Lower cholecalciferol levels are an established environmental risk factor in multiple sclerosis. Although cholecalciferol supplementation in multiple sclerosis is widely accepted, optimal serum levels are still debated. Moreover, how cholecalciferol affects pathogenic disease mechanisms is still unclear. In the present study, we enrolled 65 relapsing-remitting multiple sclerosis patients who were double-blindly divided into two groups with low and high cholecalciferol supplementation, respectively. In addition to clinical and environmental parameters, we obtained peripheral blood mononuclear cells to analyze DNA, RNA, and miRNA molecules. Importantly, we investigated miRNA-155-5p, a previously published pro-inflammatory miRNA in multiple sclerosis known to be correlated to cholecalciferol levels. Our results show a decrease in miR-155-5p expression after cholecalciferol supplementation in both dosage groups, consistent with previous observations. Subsequent genotyping, gene expression, and eQTL analyses reveal correlations between miR-155-5p and the SARAF gene, which plays a role in the regulation of calcium release-activated channels. As such, the present study is the first to explore and suggest that the SARAF miR-155-5p axis hypothesis might be another mechanism by which cholecalciferol supplementation might decrease miR-155 expression. This association highlights the importance of cholecalciferol supplementation in multiple sclerosis and encourages further investigation and functional cell studies.
PMID:37372417 | DOI:10.3390/genes14061237
The Distribution of the Genotypes of <em>ABCB1</em> and <em>CES1</em> Polymorphisms in Kazakhstani Patients with Atrial Fibrillation Treated with DOAC
Genes (Basel). 2023 May 29;14(6):1192. doi: 10.3390/genes14061192.
ABSTRACT
Nowadays, direct oral anticoagulants (DOACs) are the first-line anticoagulant strategy in patients with non-valvular atrial fibrillation (NVAF). We aimed to identify the influence of polymorphisms of the genes encoding P-glycoprotein (ABCB1) and carboxylesterase 1 (CES1) on the variability of plasma concentrations of DOACs in Kazakhstani patients with NVAF. We analyzed polymorphisms rs4148738, rs1045642, rs2032582 and rs1128503 in ABCB1 and rs8192935, rs2244613 and rs71647871 CES1 genes and measured the plasma concentrations of dabigatran/apixaban and biochemical parameters in 150 Kazakhstani NVAF patients. Polymorphism rs8192935 in the CES1 gene (p = 0.04), BMI (p = 0.01) and APTT level (p = 0.01) were statistically significant independent factors of trough plasma concentration of dabigatran. In contrast, polymorphisms rs4148738, rs1045642, rs2032582 and rs1128503 in ABCB1 and rs8192935, rs2244613 and rs71647871 CES1 genes did not show significant influence on plasma concentrations of dabigatran/apixaban drugs (p > 0.05). Patients with GG genotype (138.8 ± 100.1 ng/mL) had higher peak plasma concentration of dabigatran than with AA genotype (100.9 ± 59.6 ng/mL) and AG genotype (98.7 ± 72.3 ng/mL) (Kruskal-Wallis test, p = 0.25). Thus, CES1 rs8192935 is significantly associated with plasma concentrations of dabigatran in Kazakhstani NVAF patients (p < 0.05). The level of the plasma concentration shows that biotransformation of the dabigatran processed faster in individual carriers of GG genotype rs8192935 in the CES1 gene than with AA genotype.
PMID:37372371 | DOI:10.3390/genes14061192
Anti-TNF Biologicals Enhance the Anti-Inflammatory Properties of IgG N-Glycome in Crohn's Disease
Biomolecules. 2023 Jun 7;13(6):954. doi: 10.3390/biom13060954.
ABSTRACT
Crohn's disease (CD) is a chronic inflammation of the digestive tract that significantly impairs patients' quality of life and well-being. Anti-TNF biologicals revolutionised the treatment of CD, yet many patients do not adequately respond to such therapy. Previous studies have demonstrated a pro-inflammatory pattern in the composition of CD patients' immunoglobulin G (IgG) N-glycome compared to healthy individuals. Here, we utilised the high-throughput UHPLC method for N-glycan analysis to explore the longitudinal effect of the anti-TNF drugs infliximab and adalimumab on N-glycome composition of total serum IgG in 198 patients, as well as the predictive potential of IgG N-glycans at baseline to detect primary non-responders to anti-TNF therapy in 1315 patients. We discovered a significant decrease in IgG agalactosylation and an increase in monogalactosylation, digalactosylation and sialylation during the 14 weeks of anti-TNF treatment, regardless of therapy response, all of which suggested a diminished inflammatory environment in CD patients treated with anti-TNF therapy. Furthermore, we observed that IgG N-glycome might contain certain information regarding the anti-TNF therapy outcome before initiating the treatment. However, it is impossible to predict future primary non-responders to anti-TNF therapy based solely on IgG N-glycome composition at baseline.
PMID:37371534 | DOI:10.3390/biom13060954
Pharmacogenomic Analyses Implicate B Cell Developmental Status and <em>MKL1</em> as Determinants of Sensitivity toward Anti-CD20 Monoclonal Antibody Therapy
Cells. 2023 Jun 7;12(12):1574. doi: 10.3390/cells12121574.
ABSTRACT
Monoclonal antibody (mAb) therapy directed against CD20 is an important tool in the treatment of B cell disorders. However, variable patient response and acquired resistance remain important clinical challenges. To identify genetic factors that may influence sensitivity to treatment, the cytotoxic activity of three CD20 mAbs: rituximab; ofatumumab; and obinutuzumab, were screened in high-throughput assays using 680 ethnically diverse lymphoblastoid cell lines (LCLs) followed by a pharmacogenomic assessment. GWAS analysis identified several novel gene candidates. The most significant SNP, rs58600101, in the gene MKL1 displayed ethnic stratification, with the variant being significantly more prevalent in the African cohort and resulting in reduced transcript levels as measured by qPCR. Functional validation of MKL1 by shRNA-mediated knockdown of MKL1 resulted in a more resistant phenotype. Gene expression analysis identified the developmentally associated TGFB1I1 as the most significant gene associated with sensitivity. qPCR among a panel of sensitive and resistant LCLs revealed immunoglobulin class-switching as well as differences in the expression of B cell activation markers. Flow cytometry showed heterogeneity within some cell lines relative to surface Ig isotype with a shift to more IgG+ cells among the resistant lines. Pretreatment with prednisolone could partly reverse the resistant phenotype. Results suggest that the efficacy of anti-CD20 mAb therapy may be influenced by B cell developmental status as well as polymorphism in the MKL1 gene. A clinical benefit may be achieved by pretreatment with corticosteroids such as prednisolone followed by mAb therapy.
PMID:37371044 | DOI:10.3390/cells12121574
Dose Optimization in Oncology Drug Development: The Emerging Role of Pharmacogenomics, Pharmacokinetics, and Pharmacodynamics
Cancers (Basel). 2023 Jun 18;15(12):3233. doi: 10.3390/cancers15123233.
ABSTRACT
Drugs' safety and effectiveness are evaluated in randomized, dose-ranging trials in most therapeutic areas. However, this is only sometimes feasible in oncology, and dose-ranging studies are mainly limited to Phase 1 clinical trials. Moreover, although new treatment modalities (e.g., small molecule targeted therapies, biologics, and antibody-drug conjugates) present different characteristics compared to cytotoxic agents (e.g., target saturation limits, wider therapeutic index, fewer off-target side effects), in most cases, the design of Phase 1 studies and the dose selection is still based on the Maximum Tolerated Dose (MTD) approach used for the development of cytotoxic agents. Therefore, the dose was not optimized in some cases and was modified post-marketing (e.g., ceritinib, dasatinib, niraparib, ponatinib, cabazitaxel, and gemtuzumab-ozogamicin). The FDA recognized the drawbacks of this approach and, in 2021, launched Project Optimus, which provides the framework and guidance for dose optimization during the clinical development stages of anticancer agents. Since dose optimization is crucial in clinical development, especially of targeted therapies, it is necessary to identify the role of pharmacological tools such as pharmacogenomics, therapeutic drug monitoring, and pharmacodynamics, which could be integrated into all phases of drug development and support dose optimization, as well as the chances of positive clinical outcomes.
PMID:37370844 | DOI:10.3390/cancers15123233
Personalizing Personalized Medicine: The Confluence of Pharmacogenomics, a Person's Medication Experience and Ethics
Pharmacy (Basel). 2023 Jun 15;11(3):101. doi: 10.3390/pharmacy11030101.
ABSTRACT
Truly personalized precision medicine combines pharmacogenomics (PGx), a person's lived medication experiences and ethics; person-centeredness lies at the confluence of these considerations. A person-centered perspective can help inform PGx-related treatment guidelines, shared decision-making for PGx-related therapeutics and PGx-related healthcare policy. This article examines the interplay between these components of person-centered PGx-related care. Ethics concepts addressed include privacy, confidentiality, autonomy, informed consent, fiduciary responsibility, respect, the burden of pharmacogenomics knowledge for both the patient and healthcare provider and the pharmacist's ethical role in PGx-testing. Incorporating the patient's lived medication experience and ethics principles into PGx-based discussions of treatment can optimize the ethical, person-centered application of PGx testing to patient care.
PMID:37368427 | DOI:10.3390/pharmacy11030101
Gene Expression Profiles of Methyltransferases and Demethylases Associated with Metastasis, Tumor Invasion, CpG73 Methylation, and HPV Status in Head and Neck Squamous Cell Carcinoma
Curr Issues Mol Biol. 2023 May 27;45(6):4632-4646. doi: 10.3390/cimb45060294.
ABSTRACT
Epigenetic studies on the role of DNA-modifying enzymes in HNSCC tumorigenesis have focused on a single enzyme or a group of enzymes. To acquire a more comprehensive insight into the expression profile of methyltransferases and demethylases, in the present study, we examined the mRNA expression of the DNA methyltransferases DNMT1, DNMT3A, and DNMT3B, the DNA demethylases TET1, TET2, TET3, and TDG, and the RNA methyltransferase TRDMT1 by RT-qPCR in paired tumor-normal tissue samples from HNSCC patients. We characterized their expression patterns in relation to regional lymph node metastasis, invasion, HPV16 infection, and CpG73 methylation. Here, we show that tumors with regional lymph node metastases (pN+) exhibited decreased expression of DNMT1, 3A and 3B, and TET1 and 3 compared to non-metastatic tumors (pN0), suggesting that metastasis requires a distinct expression profile of DNA methyltransferases/demethylases in solid tumors. Furthermore, we identified the effect of perivascular invasion and HPV16 on DNMT3B expression in HNSCC. Finally, the expression of TET2 and TDG was inversely correlated with the hypermethylation of CpG73, which has previously been associated with poorer survival in HNSCC. Our study further confirms the importance of DNA methyltransferases and demethylases as potential prognostic biomarkers as well as molecular therapeutic targets for HNSCC.
PMID:37367043 | DOI:10.3390/cimb45060294
Tobacco Smoking is Associated with Combined Pulmonary Fibrosis and Emphysema and Worse Outcomes in Interstitial Lung Disease
Am J Physiol Lung Cell Mol Physiol. 2023 Jun 27. doi: 10.1152/ajplung.00083.2023. Online ahead of print.
ABSTRACT
BACKGROUND: Tobacco smoking is an established cause of pulmonary disease whose contribution to interstitial lung disease (ILD) is incompletely characterized. We hypothesized that compared to non-smokers, subjects who smoked tobacco would differ in their clinical phenotype and have greater mortality.
METHODS: We performed a retrospective cohort study of tobacco smoking in ILD. We evaluated demographic and clinical characteristics, time to clinically meaningful lung function decline (LFD) and mortality in patients stratified by tobacco smoking status (ever-versus-never) within a tertiary center ILD registry (2006-2021) and replicated mortality outcomes across four non-tertiary medical centers. Data was analyzed by two-sided t-tests, Poisson generalized linear models, and Cox proportional hazard models adjusted for age, sex, forced vital capacity (FVC), diffusing capacity (DLCO), ILD subtype, antifibrotic therapy, and hospital center.
RESULTS: Of 1163 study participants, 651 were tobacco smokers. Smokers were more likely to be older, male, have idiopathic pulmonary fibrosis (PF), coronary artery disease, CT honeycombing and emphysema, higher FVC, and lower DLCO than non-smokers(P<0.01). Time to LFD in smokers was shorter(19.7±20 months vs. 24.8±29 months;P=0.038] and survival time was decreased [10.75(10.08-11.50) years vs. 20(18.67-21.25) years; adjusted mortality HR=1.50, 95%CI 1.17-1.92;P<0.0001] compared to non-smokers. Smokers had 12% greater odds of death for every additional ten-pack-years of smoking(P<0.0001). Mortality outcomes remained consistent in the non-tertiary cohort (HR=1.51, 95%CI=1.03-2.23;P=0.036).
CONCLUSIONS: Tobacco smokers with ILD have a distinct clinical phenotype strongly associated with the syndrome of combined PF and emphysema, shorter time to LFD, and decreased survival. Smoking prevention may improve ILD outcomes.
PMID:37366539 | DOI:10.1152/ajplung.00083.2023
Risk-conferring <em>HLA</em> variants in an epilepsy cohort: benefits of multifaceted use of whole genome sequencing in clinical practice
J Neurol Neurosurg Psychiatry. 2023 Jun 26:jnnp-2023-331419. doi: 10.1136/jnnp-2023-331419. Online ahead of print.
ABSTRACT
BACKGROUND: Whole genome sequencing is increasingly used in healthcare, particularly for diagnostics. However, its clinically multifaceted potential for individually customised diagnostic and therapeutic care remains largely unexploited. We used existing whole genome sequencing data to screen for pharmacogenomic risk factors related to antiseizure medication-induced cutaneous adverse drug reactions (cADRs), such as human leucocyte antigen HLA-B*15:02, HLA-A*31:01 variants.
METHODS: Genotyping results, generated from the Genomics England UK 100 000 Genomes Project primarily for identification of disease-causing variants, were used to additionally screen for relevant HLA variants and other pharmacogenomic variants. Medical records were retrospectively reviewed for clinical and cADR phenotypes for HLA variant carriers. Descriptive statistics and the χ2 test were used to analyse phenotype/genotype data for HLA carriers and compare frequencies of additional pharmacogenomic variants between HLA carriers with and without cADRs, respectively.
RESULTS: 1043 people with epilepsy were included. Four HLA-B*15:02 and 86 HLA-A*31:01 carriers were identified. One out of the four identified HLA-B*15:02 carriers had suffered antiseizure medication-induced cADRs; the point prevalence of cADRs was 16.9% for HLA-A*31:01 carriers of European origin (n=46) and 14.4% for HLA-A*31:01 carriers irrespective of ancestry (n=83).
CONCLUSIONS: Comprehensive utilisation of genetic data spreads beyond the search for causal variants alone and can be extended to additional clinical benefits such as identifying pharmacogenomic biomarkers, which can guide pharmacotherapy for genetically-susceptible individuals.
PMID:37364985 | DOI:10.1136/jnnp-2023-331419
Qing-Kai-Ling oral liquid alleviated pneumonia via regulation of intestinal flora and metabolites in rats
Front Microbiol. 2023 Jun 9;14:1194401. doi: 10.3389/fmicb.2023.1194401. eCollection 2023.
ABSTRACT
BACKGROUND: Qing-Kai-Ling (QKL) oral liquid, evolving from a classical Chinese formula known as An-Gong-Niu-Huang pills, is a well-established treatment for pneumonia with its mechanism remaining muddled. Studies have shown that the regulation of both intestinal flora and host-microbiota co-metabolism may contribute to preventing and treating pneumonia. The study aimed to investigate the potential mechanism by which QKL alleviates pneumonia from the perspective of 'microbiota-metabolites-host' interaction.
METHODS: We evaluated the therapeutic effects of QKL on lipopolysaccharide (LPS)-induced pneumonia rats. To explore the protective mechanism of QKL treatment, a multi-omics analysis that included 16S rDNA sequencing for disclosing the key intestinal flora, the fecal metabolome to discover the differential metabolites, and whole transcriptome sequencing of lung tissue to obtain the differentially expressed genes was carried out. Then, a Spearman correlation was employed to investigate the association between the intestinal flora, the fecal metabolome and inflammation-related indices.
RESULTS: The study demonstrated that pneumonia symptoms were significantly attenuated in QKL-treated rats, including decreased TNF-α, NO levels and increased SOD level. Furthermore, QKL was effective in alleviating pneumonia and provided protection equivalent to that of the positive drug dexamethasone. Compared with the Model group, QKL treatment significantly increased the richness and αlpha diversity of intestinal flora, and restored multiple intestinal genera (e.g., Bifidobacterium, Ruminococcus_torques_group, Dorea, Mucispirillum, and Staphylococcus) that were correlated with inflammation-related indices. Interestingly, the intestinal flora demonstrated a strong correlation with several metabolites impacted by QKL. Furthermore, metabolome and transcriptome analyses showed that enrichment of several host-microbiota co-metabolites [arachidonic acid, 8,11,14-eicosatrienoic acid, LysoPC (20:0/0:0), LysoPA (18:0e/0:0), cholic acid, 7-ketodeoxycholic acid and 12-ketodeoxycholic acid] levels and varying lung gene (Pla2g2a, Pla2g5, Alox12e, Cyp4a8, Ccl19, and Ccl21) expression were observed in the QKL group. Moreover, these metabolites and genes were involved in arachidonic acid metabolism and inflammation-related pathways.
CONCLUSION: Our findings indicated that QKL could potentially modulate intestinal flora dysbiosis, improve host-microbiota co-metabolism dysregulation and regulate gene expression in the lungs, thereby mitigating LPS-induced pneumonia in rats. The study may provide new ideas for the clinical application and further development of QKL.
PMID:37362920 | PMC:PMC10288885 | DOI:10.3389/fmicb.2023.1194401
The impact of <em>CYP2C19</em> genotype on phenoconversion by concomitant medication
Front Pharmacol. 2023 Jun 8;14:1201906. doi: 10.3389/fphar.2023.1201906. eCollection 2023.
ABSTRACT
Introduction: Pharmacogenetics-informed drug prescribing is increasingly applied in clinical practice. Typically, drug metabolizing phenotypes are determined based on genetic test results, whereupon dosage or drugs are adjusted. Drug-drug-interactions (DDIs) caused by concomitant medication can however cause mismatches between predicted and observed phenotypes (phenoconversion). Here we investigated the impact of CYP2C19 genotype on the outcome of CYP2C19-dependent DDIs in human liver microsomes. Methods: Liver samples from 40 patients were included, and genotyped for CYP2C19*2, *3 and *17 variants. S-mephenytoin metabolism in microsomal fractions was used as proxy for CYP2C19 activity, and concordance between genotype-predicted and observed CYP2C19 phenotype was examined. Individual microsomes were subsequently co-exposed to fluvoxamine, voriconazole, omeprazole or pantoprazole to simulate DDIs. Results: Maximal CYP2C19 activity (Vmax) in genotype-predicted intermediate metabolizers (IMs; *1/*2 or *2/*17), rapid metabolizers (RMs; *1/*17) and ultrarapid metabolizers (UMs; *17/*17) was not different from Vmax of predicted normal metabolizers (NMs; *1/*1). Conversely, CYP2C19*2/*2 genotyped-donors exhibited Vmax rates ∼9% of NMs, confirming the genotype-predicted poor metabolizer (PM) phenotype. Categorizing CYP2C19 activity, we found a 40% concordance between genetically-predicted CYP2C19 phenotypes and measured phenotypes, indicating substantial phenoconversion. Eight patients (20%) exhibited CYP2C19 IM/PM phenotypes that were not predicted by their CYP2C19 genotype, of which six could be linked to the presence of diabetes or liver disease. In subsequent DDI experiments, CYP2C19 activity was inhibited by omeprazole (-37% ± 8%), voriconazole (-59% ± 4%) and fluvoxamine (-85% ± 2%), but not by pantoprazole (-2 ± 4%). The strength of CYP2C19 inhibitors remained unaffected by CYP2C19 genotype, as similar percental declines in CYP2C19 activity and comparable metabolism-dependent inhibitory constants (Kinact/KI) of omeprazole were observed between CYP2C19 genotypes. However, the consequences of CYP2C19 inhibitor-mediated phenoconversion were different between CYP2C19 genotypes. In example, voriconazole converted 50% of *1/*1 donors to a IM/PM phenotype, but only 14% of *1/*17 donors. Fluvoxamine converted all donors to phenotypic IMs/PMs, but *1/*17 (14%) were less likely to become PMs than *1/*1 (50%) or *1/*2 and *2/*17 (57%). Conclusion: This study suggests that the differential outcome of CYP2C19-mediated DDIs between genotypes are primarily dictated by basal CYP2C19 activity, that may in part be predicted by CYP2C19 genotype but likely also depends on disease-related factors.
PMID:37361233 | PMC:PMC10285291 | DOI:10.3389/fphar.2023.1201906
Comparison of pharmacogenomic information for drug approvals provided by the national regulatory agencies in Korea, Europe, Japan, and the United States
Front Pharmacol. 2023 Jun 8;14:1205624. doi: 10.3389/fphar.2023.1205624. eCollection 2023.
ABSTRACT
Pharmacogenomics, which is defined as the study of changes in the properties of DNA and RNA associated with drug response, enables the prediction of the efficacy and adverse effects of drugs based on patients' specific genetic mutations. For the safe and effective use of drugs, it is important that pharmacogenomic information is easily accessible to clinical experts and patients. Therefore, we examined the pharmacogenomic information provided on drug labels in Korea, Europe, Japan, and the United States (US). The selection of drugs that include pharmacogenomic information was based on the drug list that includes genetic information from the Korea Ministry of Food and Drug Safety (MFDS) and US Food and Drug Administration (FDA) websites. Drug labels were retrieved from the sites of MFDS, FDA, European Medicines Agency, and Japanese Pharmaceuticals and Medical Devices Agency. Drugs were classified as per the Anatomical Therapeutic Chemical code, and the biomarkers, labeling sections, and necessity of genetic tests were determined. In total, 348 drugs were selected from 380 drugs with available pharmacogenomic information in Korea and the US after applying the inclusion and exclusion criteria. Of these drugs, 137, 324, 169, and 126 were with pharmacogenomics information in Korea, the US, Europe, and Japan, respectively. The most commonly represented drug class was antineoplastic and immunomodulating agents. Regarding the classification as per the mentioned biomarkers, the cytochrome P450 enzyme was the most frequently mentioned information, and the targeted anticancer drugs most commonly required genetic biomarker testing. The reasons for differences in drug labeling information based on country include differences in mutant alleles according to ethnicity, frequencies at which drug lists are updated, and pharmacogenomics-related guidelines. Clinical experts must continuously strive to identify and report mutations that can explain drug efficacy or side effects for safe drug use.
PMID:37361213 | PMC:PMC10285385 | DOI:10.3389/fphar.2023.1205624
Editorial: Ovarian cancer-targeted medication: PARP inhibitors, anti-angiogenic drugs, immunotherapy, and more
Front Pharmacol. 2023 Jun 9;14:1222209. doi: 10.3389/fphar.2023.1222209. eCollection 2023.
NO ABSTRACT
PMID:37361211 | PMC:PMC10289147 | DOI:10.3389/fphar.2023.1222209
Transmodulation of Dopaminergic Signaling to Mitigate Hypodopminergia and Pharmaceutical Opioid-Induced Hyperalgesia
Curr Psychopharmacol. 2020;9(3):164-184. doi: 10.2174/2211556009999200628093231.
ABSTRACT
Neuroscientists and psychiatrists working in the areas of "pain and addiction" are asked in this perspective article to reconsider the current use of dopaminergic blockade (like chronic opioid agonist therapy), and instead to consider induction of dopamine homeostasis by putative pro-dopamine regulation. Pro-dopamine regulation could help pharmaceutical opioid analgesic agents to mitigate hypodopaminergia-induced hyperalgesia by inducing transmodulation of dopaminergic signaling. An optimistic view is that early predisposition to diagnosis based on genetic testing, (pharmacogenetic/pharmacogenomic monitoring), combined with appropriate urine drug screening, and treatment with pro-dopamine regulators, could conceivably reduce stress, craving, and relapse, enhance well-being and attenuate unwanted hyperalgesia. These concepts require intensive investigation. However, based on the rationale provided herein, there is a good chance that combining opioid analgesics with genetically directed pro-dopamine-regulation using KB220 (supported by 43 clinical studies). This may become a front-line technology with the potential to overcome, in part, the current heightened rates of chronic opioid-induced hyperalgesia and concomitant Reward Deficiency Syndrome (RDS) behaviors. Current research does support the hypothesis that low or hypodopaminergic function in the brain may predispose individuals to low pain tolerance or hyperalgesia.
PMID:37361136 | PMC:PMC10288629 | DOI:10.2174/2211556009999200628093231
Investigating the Use of Pharmacogenetic and Pharmacometabolomic Markers to Predict Haloperidol Efficacy and Safety Rates
Hosp Pharm. 2023 Aug;58(4):363-367. doi: 10.1177/00185787231155842. Epub 2023 Feb 22.
ABSTRACT
Background: Haloperidol is commonly prescribed to patients with alcohol-induced psychotic disorder (AIPD). Notably however, individuals differ extensively with regards to therapeutic response and adverse drug reactions (ADRs). Previous studies have shown that haloperidol biotransformation is mainly metabolized by CYP2D6. Objective: The objective of our study was to investigate the use of pharmacogenetic (CYP2D6*4 genetic polymorphism) and pharmacometabolomic biomarkers to predict haloperidol efficacy and safety rates. Material and Methods: The study enrolled 150 patients with AIPD. Therapy included haloperidol in a daily dose of 5 to 10 mg/day by injections for 5 days. Efficacy and safety of treatment were evaluated using the validated psychometric scales PANSS, UKU, and SAS. Results: No association of the urinary 6-НО-ТНВС/pinoline ratio values which could be evidence of the CYP2D6 activity level with both the efficacy and safety rates of haloperidol was demonstrated. However, a statistically significant association between haloperidol safety profile and CYP2D6*4 genetic polymorphism was demonstrated (P < .001). Conclusion: To predict haloperidol efficacy and safety rates, utilization of pharmacogenetic testing that defines CYP2D6*4 genetic polymorphism is found preferable over the use of the pharmacometabolomic marker in a clinical setting.
PMID:37360210 | PMC:PMC10288459 | DOI:10.1177/00185787231155842
One Rare Warfarin Resistance Case and Possible Mechanism Exploration
Pharmgenomics Pers Med. 2023 Jun 20;16:609-615. doi: 10.2147/PGPM.S404474. eCollection 2023.
ABSTRACT
One 59-year-old female patient with deep venous thrombosis (DVT) and pulmonary embolism (PE) was treated with 6 mg warfarin once daily as an anticoagulant. Before taking warfarin, her international normalized ratio (INR) was 0.98. Two days after warfarin treatment, her INR did not change from baseline. Due to the high severity of the PE, the patient needed to reach her target range (INR goal = 2.5, range = 2~3) rapidly, so the dose of warfarin was increased from 6 mg daily to 27 mg daily. However, the patient's INR did not improve with the dose escalation, still maintaining an INR of 0.97-0.98. We drew a blood sample half an hour before administering 27 mg warfarin and detected single nucleotide polymorphism for the following genes, which were identified to be relevant with warfarin resistance: CYP2C9 rs1799853, rs1057910, VKORC1 rs9923231, rs61742245, rs7200749, rs55894764, CYP4F2 rs2108622, and GGCX rs2592551. The trough plasma concentration of warfarin was 196.2 ng/mL after 2 days of warfarin administration with 27 mg QD, which was much lower than the therapeutic drug concentration ranges of warfarin (500-3,000 ng/mL). The genotype results demonstrate that the CYP4F2gene has rs2108622 mutation which can explain some aspect of warfarin resistance. Further investigations are necessary to fully characterize other pharmacogenomics or pharmacodynamics determinants of warfarin dose-response in Chinese.
PMID:37359384 | PMC:PMC10290475 | DOI:10.2147/PGPM.S404474
Editorial: The role of pharmacogenomics in addressing health disparities: the path, the promise, and the barriers
Front Genet. 2023 Jun 8;14:1233045. doi: 10.3389/fgene.2023.1233045. eCollection 2023.
NO ABSTRACT
PMID:37359365 | PMC:PMC10289261 | DOI:10.3389/fgene.2023.1233045
Core issues, case studies, and the need for expanded Legacy African American genomics
Front Genet. 2023 Jun 8;14:843209. doi: 10.3389/fgene.2023.843209. eCollection 2023.
ABSTRACT
Introduction: Genomic studies of Legacy African Americans have a tangled and convoluted history in western science. In this review paper, core issues affecting African American genomic studies are addressed and two case studies, the New York African Burial Ground and the Gullah Geechee peoples, are presented to highlight the current status of genomic research among Africa Americans. Methods: To investigate our target population's core issues, a metadatabase derived from 22 publicly accessible databases were reviewed, evaluated, and synthesized to identify the core bioethical issues prevalent during the centuries of the African American presence in North America. The sequence of metadatabase development included 5 steps: identification of information, record screening and retention of topic relevant information, identification of eligibility via synthesis for concept identifications, and inclusion of studies used for conceptual summaries and studies used for genetic and genomic summaries. To these data we added our emic perspectives and specific insights from our case studies. Results: Overall, there is a paucity of existing research on underrepresent African American genomic diversity. In every category of genomic testing (i.e., diagnostic, clinical predictive, pharmacogenomic, direct-to-consumer, and tumor testing), African Americans are disproportionately underrepresented compared to European Americans. The first of our case studies is from the New York African Burial Ground Project where genomic studies of grave soil derived aDNA yields insights into the causes of death of 17th and 18th Century African Americans. In the second of our case studies, research among the Gullah Geechee people of the Carolina Lowcountry reveals a connection between genomic studies and health disparities. Discussion: African Americans have historically borne the brunt of the earliest biomedical studies used to generate and refine primitive concepts in genetics. As exploited victims these investigations, African American men, women, and children were subjected to an ethics-free western science. Now that bioethical safeguards have been added, underrepresented and marginalized people who were once the convenient targets of western science, are now excluded from its health-related benefits. Recommendations to enhance the inclusion of African Americans in global genomic databases and clinical trials should include the following: emphasis on the connection of inclusion to advances in precision medicine, emphasis on the relevance of inclusion to fundamental questions in human evolutionary biology, emphasis on the historical relevance of inclusion for Legacy African Americans, emphasis on the ability of inclusion to foster expanded scientific expertise in the target population, ethical engagement with their descendants, and increase the number of science researchers from these communities.
PMID:37359364 | PMC:PMC10287052 | DOI:10.3389/fgene.2023.843209
A scoping review of smoking cessation pharmacogenetic studies to advance future research across racial, ethnic, and ancestral populations
Front Genet. 2023 Jun 8;14:1103966. doi: 10.3389/fgene.2023.1103966. eCollection 2023.
ABSTRACT
Abstinence rates among smokers attempting to quit remain low despite the wide availability and accessibility of pharmacological smoking cessation treatments. In addition, the prevalence of cessation attempts and abstinence differs by individual-level social factors such as race and ethnicity. Clinical treatment of nicotine dependence also continues to be challenged by individual-level variability in effectiveness to promote abstinence. The use of tailored smoking cessation strategies that incorporate information on individual-level social and genetic factors hold promise, although additional pharmacogenomic knowledge is still needed. In particular, genetic variants associated with pharmacological responses to smoking cessation treatment have generally been conducted in populations with participants that self-identify as White race or who are determined to be of European genetic ancestry. These results may not adequately capture the variability across all smokers as a result of understudied differences in allele frequencies across genetic ancestry populations. This suggests that much of the current pharmacogenetic study results for smoking cessation may not apply to all populations. Therefore, clinical application of pharmacogenetic results may exacerbate health inequities by racial and ethnic groups. This scoping review examines the extent to which racial, ethnic, and ancestral groups that experience differences in smoking rates and smoking cessation are represented in the existing body of published pharmacogenetic studies of smoking cessation. We will summarize results by race, ethnicity, and ancestry across pharmacological treatments and study designs. We will also explore current opportunities and challenges in conducting pharmacogenomic research on smoking cessation that encourages greater participant diversity, including practical barriers to clinical utilization of pharmacological smoking cessation treatment and clinical implementation of pharmacogenetic knowledge.
PMID:37359362 | PMC:PMC10285878 | DOI:10.3389/fgene.2023.1103966
Gene expression profiling in whole blood stimulated ex vivo with lipopolysaccharide as a tool to predict post-stroke depressive symptoms: Proof-of-concept study
J Neurochem. 2023 Jun 26. doi: 10.1111/jnc.15902. Online ahead of print.
ABSTRACT
Prediction of post-stroke depressive symptoms (DSs) is challenging in patients without a history of depression. Gene expression profiling in blood cells may facilitate the search for biomarkers. The use of an ex vivo stimulus to the blood helps to reveal differences in gene profiles by reducing variation in gene expression. We conducted a proof-of-concept study to determine the usefulness of gene expression profiling in lipopolysaccharide (LPS)-stimulated blood for predicting post-stroke DS. Out of 262 enrolled patients with ischemic stroke, we included 96 patients without a pre-stroke history of depression and not taking any anti-depressive medication before or during the first 3 months after stroke. We assessed DS at 3 months after stroke using the Patient Health Questionnaire-9. We used RNA sequencing to determine the gene expression profile in LPS-stimulated blood samples taken on day 3 after stroke. We constructed a risk prediction model using a principal component analysis combined with logistic regression. We diagnosed post-stroke DS in 17.7% of patients. Expression of 510 genes differed between patients with and without DS. A model containing 6 genes (PKM, PRRC2C, NUP188, CHMP3, H2AC8, NOP10) displayed very good discriminatory properties (area under the curve: 0.95) with the sensitivity of 0.94 and specificity of 0.85. Our results suggest the potential utility of gene expression profiling in whole blood stimulated with LPS for predicting post-stroke DS. This method could be useful for searching biomarkers of post-stroke depression.
PMID:37358014 | DOI:10.1111/jnc.15902