Pharmacogenomics
Impact of General Practitioner Education on Acceptance of an Adjuvanted Seasonal Influenza Vaccine among Older Adults in England
Behav Sci (Basel). 2023 Feb 2;13(2):130. doi: 10.3390/bs13020130.
ABSTRACT
Seasonal vaccination against influenza and in-pandemic COVID-19 vaccination are top public health priorities; vaccines are the primary means of reducing infections and also controlling pressures on health systems. During the 2018-2019 influenza season, we conducted a study of the knowledge, attitudes, and behaviours of 159 general practitioners (GPs) and 189 patients aged ≥65 years in England using a combination of qualitative and quantitative approaches to document beliefs about seasonal influenza and seasonal influenza vaccine. GPs were surveyed before and after a continuing medical education (CME) module on influenza disease and vaccination with an adjuvanted trivalent influenza vaccine (aTIV) designed for patients aged ≥65 years, and patients were surveyed before and after a routine visit with a GP who participated in the CME portion of the study. The CME course was associated with significantly increased GP confidence in their ability to address patients' questions and concerns about influenza disease and vaccination (p < 0.001). Patients reported significantly increased confidence in the effectiveness and safety of aTIV after meeting their GP. Overall, 82.2% of the study population were vaccinated against influenza (including 137 patients vaccinated during the GP visit and 15 patients who had been previously vaccinated), a rate higher than the English national average vaccine uptake of 72.0% that season. These findings support the value of GP-patient interactions to foster vaccine acceptance.
PMID:36829359 | PMC:PMC9952828 | DOI:10.3390/bs13020130
Development of population pharmacokinetics model and Bayesian estimation of rifampicin exposure in Indonesian patients with tuberculosis
Tuberculosis (Edinb). 2023 Feb 14;139:102325. doi: 10.1016/j.tube.2023.102325. Online ahead of print.
ABSTRACT
BACKGROUND: Interindividual variability in the pharmacokinetics (PK) of anti-tuberculosis (TB) drugs is the leading cause of treatment failure. Herein, we evaluated the influence of demographic, clinical, and genetic factors that cause variability in RIF PK parameters in Indonesian TB patients.
METHODS: In total, 210 Indonesian patients with TB (300 plasma samples) were enrolled in this study. Clinical data, solute carrier organic anion transporter family member-1B1 (SLCO1B1) haplotypes *1a, *1b, and *15, and RIF concentrations were analyzed. The population PK model was developed using a non-linear mixed effect method.
RESULTS: A one-compartment model with allometric scaling adequately described the PK of RIF. Age and SLCO1B1 haplotype *15 were significantly associated with variability in apparent clearance (CL/F). For patients in their 40s, each 10-year increase in age was associated with a 10% decrease in CL/F (7.85 L/h). Patients with the SLCO1B1 haplotype *15 had a 24% lower CL/F compared to those with the wild-type. Visual predictive checks and non-parametric bootstrap analysis indicated good model performance.
CONCLUSION: Age and SLCO1B1 haplotype *15 were significant covariates of RIF CL/F. Geriatric patients with haplotype *15 had significantly greater exposure to RIF. The model could optimize TB pharmacotherapy through its application in therapeutic drug monitoring (clinical trial no. NCT05280886).
PMID:36841141 | DOI:10.1016/j.tube.2023.102325
A real-life pilot study of the clinical application of pharmacogenomics testing on saliva in epilepsy
Epilepsia Open. 2023 Feb 25. doi: 10.1002/epi4.12717. Online ahead of print.
ABSTRACT
Response to antiseizure medications (ASMs) can be influenced by several gene polymorphisms, causing either lower efficacy or higher occurrence of adverse drug reactions (ADRs). We investigated the clinical utility of salivary pharmacogenomic testing on epilepsy patients. A commercialized pharmacogenomic salivary test was performed in a cohort of epileptic patients. Genetic variants on five genes (i.e., CYP1A2, CYP2C9, CYP2C19, EPHX1, and ABCB1) involved in common ASMs metabolism were selected. Twenty-one individuals (median age [Q1 -Q3 ]: 15 [6.5-28] years) were enrolled. Six patients harbouring the homozygous *1F allele in CYP1A2 could have reduced chance of response to stiripentol due to fast metabolism. CYP2C9 had reduced activity in 10 patients (alleles *2 and *3), potentially affecting phenytoin (PHT), phenobarbital (PB), primidone, lacosamide (LCM), and valproic acid metabolism. Seven patients, carrying the *2 allele of CYP2C19, had an increased risk of ADRs with clobazam (CLB), PB, PHT, LCM, brivaracetam; while one individual with the *17 allele in heterozygosity reported a CLB fast metabolism. Six patients showed a CC polymorphism of EPHX1 associated with the impaired efficacy of carbamazepine. ABCB1 polymorphisms related to drug-resistance (3435 CC) or drug-sensitive phenotype (CT or TT) were found in 6 out of 7 patients. Pharmacogenomic testing on saliva proved easy and safe in clinical practice to convey information for the management of epileptic patients, especially those resistant to treatment or sensitive to severe ADRs.
PMID:36840436 | DOI:10.1002/epi4.12717
Abigene, a Prospective, Multicentric Study of Abiraterone Acetate Pharmacogenetics in Metastatic Castration-Resistant Prostate Cancer
Pharmaceutics. 2023 Feb 15;15(2):651. doi: 10.3390/pharmaceutics15020651.
ABSTRACT
Abiraterone acetate (AA) is the first-in-class of drugs belonging to the second-generation of agents inhibiting androgen neosynthesis in advanced prostate cancer. A cumulative experience attests that germinal gene polymorphisms may play a role in the prediction of anticancer agent pharmacodynamics variability. In the present prospective, multicentric study, gene polymorphisms of CYP17A1 (AA direct target) and the androgen transporter genes SLCO2B1 and SLCO1B3 (potential modulators of AA activity) were confronted with AA pharmacodynamics (treatment response and toxicity) in a group of 137 advanced prostate cancer patients treated in the first line by AA. The median follow-up was 56.3 months (95% CI [52.5-61]). From multivariate analysis, rs2486758 C/C (CYP17A1) and PSA (≥10 ng/mL) were associated with a shorter 3-year biological PFS (HR = 4.05, IC95% [1.46-11.22]; p = 0.007 and HR = 2.08, IC95% [1.31-3.30]; p = 0.002, respectively). From a multivariate analysis, the rs743572 (CYP17A1) and performance status were independently associated with significant toxicity (OR = 3.78 (IC95% [1.42-9.75]; p = 0.006 and OR = 4.54; IC95% [1.46-13.61]; p = 0.007, respectively). Host genome characteristics may help to predict AA treatment efficacy and identify patients at risk for toxicity.
PMID:36839973 | DOI:10.3390/pharmaceutics15020651
Impact of Omalizumab in Patients with Severe Uncontrolled Asthma and Possible Predictive Biomarkers of Response: A Real-Life Study
Pharmaceutics. 2023 Feb 4;15(2):523. doi: 10.3390/pharmaceutics15020523.
ABSTRACT
Most patients with asthma can control their symptoms with a basic standard of medical care and with maintenance and rescue medication. However, between 5% and 10% of asthmatics worldwide do not achieve control of their symptoms and have recurrent exacerbations and respiratory difficulties. The objective of the study was the real-life evaluation of the clinical improvement of patients with severe eosinophilic asthma treated with omalizumab, together with the search for biomarkers associated with the response. An observational retrospective cohort study was conducted that included patients with severe uncontrolled allergic asthma being treated with omalizumab. Three types of response were evaluated: lower use of oral corticosteroids, improvement in lung function, and reduction in exacerbations. A total of 110 patients under treatment with omalizumab were included, with a mean age of 48 ± 16 years. After 12 months had elapsed, significant reductions were found in the number of exacerbations, use of oral cortico-steroids and doses of inhaled corticosteroids (p < 0.001). Lung function and asthma control improved significantly (p < 0.001; p = 0.004) and eosinophil levels were significantly reduced (p = 0.004). Low scores in the Asthma Control Test were associated with the oral corticosteroid-saving effect; lower previous FEV1 levels and absence of chronic obstructive pulmonary disease (COPD) were related to improvement in lung function, and prior FEV1 values higher than 80% and absence of gastroesophageal reflux disease (GERD) with a reduction in exacerbations. The results of this study confirm the clinical benefit obtained after the introduction of omalizumab and the possible predictive biomarkers of response to the treatment.
PMID:36839845 | DOI:10.3390/pharmaceutics15020523
Genetic Variation in <em>CYP2D6</em> and <em>SLC22A1</em> Affects Amlodipine Pharmacokinetics and Safety
Pharmaceutics. 2023 Jan 25;15(2):404. doi: 10.3390/pharmaceutics15020404.
ABSTRACT
Amlodipine is an antihypertensive drug with unknown pharmacogenetic biomarkers. This research is a candidate gene study that looked for associations between amlodipine pharmacokinetics and safety and pharmacogenes. Pharmacokinetic and safety data were taken from 160 volunteers from eight bioequivalence trials. In the exploratory step, 70 volunteers were genotyped for 44 polymorphisms in different pharmacogenes. CYP2D6 poor metabolizers (PMs) showed higher half-life (t1/2) (univariate p-value (puv) = 0.039, multivariate p-value (pmv) = 0.013, β = -5.31, R2 = 0.176) compared to ultrarapid (UMs), normal (NMs) and intermediate metabolizers (IMs). SLC22A1 rs34059508 G/A genotype was associated with higher dose/weight-corrected area under the curve (AUC72/DW) (puv = 0.025; pmv = 0.026, β = 578.90, R2 = 0.060) compared to the G/G genotype. In the confirmatory step, the cohort was increased to 160 volunteers, who were genotyped for CYP2D6, SLC22A1 and CYP3A4. In addition to the previous associations, CYP2D6 UMs showed a lower AUC72/DW (puv = 0.046, pmv = 0.049, β = -68.80, R2 = 0.073) compared to NMs, IMs and PMs and the SLC22A1 rs34059508 G/A genotype was associated with thoracic pain (puv = 0.038) and dizziness (puv = 0.038, pmv = 0.014, log OR = 10.975). To our knowledge, this is the first work to report a strong relationship between amlodipine and CYP2D6 and SLC22A1. Further research is needed to gather more evidence before its application in clinical practice.
PMID:36839726 | DOI:10.3390/pharmaceutics15020404
Intuitive Eating Behaviour among Young Malay Adults in Malaysian Higher Learning Institutions
Nutrients. 2023 Feb 8;15(4):869. doi: 10.3390/nu15040869.
ABSTRACT
Despite the significance of dietary knowledge interventions, there is a lack of established studies on intuitive eating behaviour among young Malay adults in Malaysia. This cross-sectional study aimed to determine the intuitive eating score, identify the intuitive eating factors, and determine the association of intuitive eating with weight-control behaviours and binge eating. A total of 367 respondents completed self-administered questionnaires on sociodemographic characteristics, namely the Intuitive Eating Scale (IES-2) and The Diabetes Eating Problems Survey (DEPS). The findings reported IES-2 mean scores of 3.52 ± 0.32 and 3.47 ± 0.35 for both men and women. No difference in total IES-2 scores was found between genders for Unconditional Permission to Eat (UPE) and Reliance on Hunger and Satiety Cue (RHSC) subscales (p > 0.05). However, among all four subscales of IES-2, there was a gender difference in the mean EPR and B-FCC subscale scores (p < 0.05). A statistically significant difference was found in intuitive eating, which refers to a belief in one's body's ability to tell one how much to eat, in women across living areas (p < 0.05). The result shows that there is a relationship between weight-control behaviour and binge eating and dieting, with the coefficient of the relationship (R2) of 0.34. As a result, intuitive eating throughout young adulthood is likely to be related to a decreased prevalence of obesity, dieting, poor weight-management behaviours, and binge eating.
PMID:36839227 | DOI:10.3390/nu15040869
Association between Single Nucleotide Polymorphisms Related to Vitamin D Metabolism and the Risk of Developing Asthma
Nutrients. 2023 Feb 5;15(4):823. doi: 10.3390/nu15040823.
ABSTRACT
Asthma is a chronic non-communicable disease that affects all age groups. The main challenge this condition poses is its heterogeneity. The role of vitamin D in asthma has aroused great interest, correlating low vitamin D levels and polymorphisms in the genes involved in its metabolic pathway with the risk of asthma. The aim of this study was to evaluate the influence of 13 single nucleotide polymorphisms (SNPs) related to the vitamin D metabolism on the susceptibility to asthma. An observational case-control study was performed, including 221 patients with asthma and 442 controls of Caucasian origin from southern Spain. The SNPs CYP24A1 (rs6068816, rs4809957), CYP27B1 (rs10877012, rs4646536, rs703842, rs3782130), GC (rs7041), CYP2R1 (rs10741657) and VDR (ApaI, BsmI, FokI, Cdx2, TaqI) were analyzed by real-time PCR, using TaqMan probes. The logistic regression model adjusted for body mass index revealed that in the genotype model, carriers of the Cdx2 rs11568820-AA genotype were associated with a higher risk of developing asthma (p = 0.005; OR = 2.73; 95% CI = 1.36-5.67; AA vs. GG). This association was maintained in the recessive model (p = 0.004). The haplotype analysis revealed an association between the ACTATGG haplotype and higher risk of asthma for the rs1544410, rs7975232, rs731236, rs4646536, rs703842, rs3782130 and rs10877012 genetic polymorphisms (p = 0.039). The other SNPs showed no effect on risk of developing asthma. The Cdx2 polymorphism was significantly associated with the susceptibility of asthma and could substantially act as a predictive biomarker of the disease.
PMID:36839181 | DOI:10.3390/nu15040823
Regulation of Human Endogenous Metabolites by Drug Transporters and Drug Metabolizing Enzymes: An Analysis of Targeted SNP-Metabolite Associations
Metabolites. 2023 Jan 24;13(2):171. doi: 10.3390/metabo13020171.
ABSTRACT
Drug transporters and drug-metabolizing enzymes are primarily known for their role in the absorption, distribution, metabolism, and excretion (ADME) of small molecule drugs, but they also play a key role in handling endogenous metabolites. Recent cross-tissue co-expression network analyses have revealed a "Remote Sensing and Signaling Network" of multispecific, oligo-specific, and monospecific transporters and enzymes involved in endogenous metabolism. This includes many proteins from families involved in ADME (e.g., SLC22, SLCO, ABCC, CYP, UGT). Focusing on the gut-liver-kidney axis, we identified the endogenous metabolites potentially regulated by this network of ~1000 proteins by associating SNPs in these genes with the circulating levels of thousands of small, polar, bioactive metabolites, including free fatty acids, eicosanoids, bile acids, and other signaling metabolites that act in part via G-protein coupled receptors (GPCRs), nuclear receptors, and kinases. We identified 77 genomic loci associated with 7236 unique metabolites. This included metabolites that were associated with multiple, distinct loci, indicating coordinated regulation between multiple genes (including drug transporters and drug-metabolizing enzymes) of specific metabolites. We analyzed existing pharmacogenomic data and noted SNPs implicated in endogenous metabolite handling (e.g., rs4149056 in SLCO1B1) also affecting drug ADME. The overall results support the existence of close relationships, via interactions with signaling metabolites, between drug transporters and drug-metabolizing enzymes that are part of the Remote Sensing and Signaling Network, and with GPCRs and nuclear receptors. These analyses highlight the potential for drug-metabolite interactions at the interfaces of the Remote Sensing and Signaling Network and the ADME protein network.
PMID:36837791 | DOI:10.3390/metabo13020171
Long COVID: Clinical Framing, Biomarkers, and Therapeutic Approaches
J Pers Med. 2023 Feb 15;13(2):334. doi: 10.3390/jpm13020334.
ABSTRACT
More than two years after the onset of the COVID-19 pandemic, healthcare providers are facing an emergency within an emergency, the so-called long COVID or post-COVID-19 syndrome (PCS). Patients diagnosed with PCS develop an extended range of persistent symptoms and/or complications from COVID-19. The risk factors and clinical manifestations are many and various. Advanced age, sex/gender, and pre-existing conditions certainly influence the pathogenesis and course of this syndrome. However, the absence of precise diagnostic and prognostic biomarkers may further complicate the clinical management of patients. This review aimed to summarize recent evidence on the factors influencing PCS, possible biomarkers, and therapeutic approaches. Older patients recovered approximately one month earlier than younger patients, with higher rates of symptoms. Fatigue during the acute phase of COVID-19 appears to be an important risk factor for symptom persistence. Female sex, older age, and active smoking are associated with a higher risk of developing PCS. The incidence of cognitive decline and the risk of death are higher in PCS patients than in controls. Complementary and alternative medicine appears to be associated with improvement in symptoms, particularly fatigue. The heterogeneous nature of post-COVID symptoms and the complexity of patients with PCS, who are often polytreated due to concomitant clinical conditions, suggest a holistic and integrated approach to provide useful guidance for the treatment and overall management of long COVID.
PMID:36836568 | DOI:10.3390/jpm13020334
Clinical Impact of the <em>CYP2C19</em> Gene on Diazepam for the Management of Alcohol Withdrawal Syndrome
J Pers Med. 2023 Feb 3;13(2):285. doi: 10.3390/jpm13020285.
ABSTRACT
Diazepam is a benzodiazepine widely prescribed for the management of patients with severe alcohol withdrawal syndrome to prevent agitation, withdrawal seizures, and delirium tremens. Despite standard dosing of diazepam, a subset of patients experience refractory withdrawal syndromes or adverse drug reactions, such as impaired motor coordination, dizziness, and slurred speech. The CYP2C19 and CYP3A4 enzymes play a key role in the biotransformation of diazepam. Given the highly polymorphic nature of the CYP2C19 gene, we reviewed the clinical impact of variants in the CYP2C19 gene on both the pharmacokinetics of diazepam and treatment outcomes related to the management of alcohol withdrawal syndrome.
PMID:36836519 | DOI:10.3390/jpm13020285
Pharmacokinetics of Tamoxifen and Its Major Metabolites and the Effect of the African Ancestry Specific CYP2D6*17 Variant on the Formation of the Active Metabolite, Endoxifen
J Pers Med. 2023 Jan 31;13(2):272. doi: 10.3390/jpm13020272.
ABSTRACT
Tamoxifen (TAM) is widely used in the treatment of hormone receptor-positive breast cancer. TAM is metabolized into the active secondary metabolite endoxifen (ENDO), primarily by CYP2D6. We aimed to investigate the effects of an African-specific CYP2D6 variant allele, CYP2D6*17, on the pharmacokinetics (PK) of TAM and its active metabolites in 42 healthy black Zimbabweans. Subjects were grouped based on CYP2D6 genotypes as CYP2D6*1/*1 or *1/*2 or *2/*2 (CYP2D6*1 or *2), CYP2D6*1/*17 or 2*/*17, and CYP2D6*17/*17. PK parameters for TAM and three metabolites were determined. The pharmacokinetics of ENDO showed statistically significant differences among the three groups. The mean ENDO AUC0-∞ in CYP2D6*17/*17 subjects was 452.01 (196.94) h·*ng/mL, and the AUC0-∞ in CYP2D6*1/*17 subjects was 889.74 h·ng/mL, which was 5-fold and 2.8-fold lower than in CYP2D6*1 or *2 subjects, respectively. Individuals who were heterozygous or homozygous for CYP2D6*17 alleles showed a 2- and 5-fold decrease in Cmax, respectively, compared to the CYP2D6*1 or *2 genotype. CYP2D6*17 gene carriers have significantly lower ENDO exposure levels than CYP2D6*1 or *2 gene carriers. Pharmacokinetic parameters of TAM and the two primary metabolites, N-desmethyl tamoxifen (NDT) and 4-hydroxy tamoxifen (4OHT), did not show any significant difference in the three genotype groups. The African-specific CYP2D6*17 variant had effects on ENDO exposure levels that could potentially have clinical implications for patients homozygous for this variant.
PMID:36836506 | DOI:10.3390/jpm13020272
Tumor Microenvironment and Genes Affecting the Prognosis of Temozolomide-Treated Glioblastoma
J Pers Med. 2023 Jan 20;13(2):188. doi: 10.3390/jpm13020188.
ABSTRACT
Glioblastoma (GBM) is the most frequent primary brain tumor in adults and has a poor prognosis due to its resistance to Temozolomide (TMZ). However, there is limited research regarding the tumor microenvironment and genes related to the prognosis of TMZ-treated GBM patients. This study aimed to identify putative transcriptomic biomarkers with predictive value in patients with GBM who were treated with TMZ. Publicly available datasets from The Cancer Genome Atlas and Gene Expression Omnibus were analyzed using CIBERSORTx and Weighted Gene Co-expression Network Analysis (WGCNA) to obtain types of highly expressed cell types and gene clusters. Differentially Expressed Genes analysis was performed and was intersected with the WGCNA results to obtain a candidate gene list. Cox proportional-hazard survival analysis was performed to acquire genes related to the prognosis of TMZ-treated GBM patients. Inflammatory microglial cells, dendritic cells, myeloid cells, and glioma stem cells were highly expressed in GBM tissue, and ACP7, EPPK1, PCDHA8, RHOD, DRC1, ZIC3, and PRLR were significantly associated with survival. While the listed genes have been previously reported to be related to glioblastoma or other types of cancer, ACP7 was identified as a novel gene related to the prognosis of GBM. These findings may have potential implications for developing a diagnostic tool to predict GBM resistance and optimize treatment decisions.
PMID:36836422 | DOI:10.3390/jpm13020188
Establishing a Prediction Model for the Efficacy of Platinum-Based Chemotherapy in NSCLC Based on a Two Cohorts GWAS Study
J Clin Med. 2023 Feb 7;12(4):1318. doi: 10.3390/jcm12041318.
ABSTRACT
Platinum drugs combined with other agents have been the first-line treatment for non-small cell lung cancer (NSCLC) in the past decades. To better evaluate the efficacy of platinum-based chemotherapy in NSCLC, we establish a platinum chemotherapy response prediction model. Here, a total of 217 samples from Xiangya Hospital of Central South University were selected as the discovery cohort for a genome-wide association analysis (GWAS) to select SNPs. Another 216 samples were genotyped as a validation cohort. In the discovery cohort, using linkage disequilibrium (LD) pruning, we extract a subset that does not contain correlated SNPs. The SNPs with p < 10-3 and p < 10-4 are selected for modeling. Subsequently, we validate our model in the validation cohort. Finally, clinical factors are incorporated into the model. The final model includes four SNPs (rs7463048, rs17176196, rs527646, and rs11134542) as well as two clinical factors that contributed to the efficacy of platinum chemotherapy in NSCLC, with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.726.
PMID:36835855 | DOI:10.3390/jcm12041318
<em>MTHFR</em> c.665C>T and c.1298A>C Polymorphisms in Tailoring Personalized Anti-TNF-α Therapy for Rheumatoid Arthritis
Int J Mol Sci. 2023 Feb 18;24(4):4110. doi: 10.3390/ijms24044110.
ABSTRACT
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease with a prevalence of 1%. Currently, RA treatment aims to achieve low disease activity or remission. Failure to achieve this goal causes disease progression with a poor prognosis. When treatment with first-line drugs fails, treatment with tumor necrosis factor-α (TNF-α) inhibitors may be prescribed to which many patients do not respond adequately, making the identification of response markers urgent. This study investigated the association of two RA-related genetic polymorphisms, c.665C>T (historically referred to as C677T) and c.1298A>C, in the MTHFR gene as response markers to an anti-TNF-α therapy. A total of 81 patients were enrolled, 60% of whom responded to the therapy. Analyses showed that both polymorphisms were associated with a response to therapy in an allele dose-dependent manner. The association for c.665C>T was significant for a rare genotype (p = 0.01). However, the observed opposite trend of association for c.1298A>C was not significant. An analysis revealed that c.1298A>C, unlike c.665C>T, was also significantly associated with the drug type (p = 0.032). Our preliminary results showed that the genetic polymorphisms in the MTHFR gene were associated with a response to anti-TNF-α therapy, with a potential significance for the anti-TNF-α drug type. This evidence suggests a role for one-carbon metabolism in anti-TNF-α drug efficacy and contributes to further personalized RA interventions.
PMID:36835522 | DOI:10.3390/ijms24044110
Using Zebrafish Animal Model to Study the Genetic Underpinning and Mechanism of Arrhythmogenic Cardiomyopathy
Int J Mol Sci. 2023 Feb 18;24(4):4106. doi: 10.3390/ijms24044106.
ABSTRACT
Arrhythmogenic cardiomyopathy (ACM) is largely an autosomal dominant genetic disorder manifesting fibrofatty infiltration and ventricular arrhythmia with predominantly right ventricular involvement. ACM is one of the major conditions associated with an increased risk of sudden cardiac death, most notably in young individuals and athletes. ACM has strong genetic determinants, and genetic variants in more than 25 genes have been identified to be associated with ACM, accounting for approximately 60% of ACM cases. Genetic studies of ACM in vertebrate animal models such as zebrafish (Danio rerio), which are highly amenable to large-scale genetic and drug screenings, offer unique opportunities to identify and functionally assess new genetic variants associated with ACM and to dissect the underlying molecular and cellular mechanisms at the whole-organism level. Here, we summarize key genes implicated in ACM. We discuss the use of zebrafish models, categorized according to gene manipulation approaches, such as gene knockdown, gene knock-out, transgenic overexpression, and CRISPR/Cas9-mediated knock-in, to study the genetic underpinning and mechanism of ACM. Information gained from genetic and pharmacogenomic studies in such animal models can not only increase our understanding of the pathophysiology of disease progression, but also guide disease diagnosis, prognosis, and the development of innovative therapeutic strategies.
PMID:36835518 | DOI:10.3390/ijms24044106
A Receptor Tyrosine Kinase Inhibitor Sensitivity Prediction Model Identifies AXL Dependency in Leukemia
Int J Mol Sci. 2023 Feb 14;24(4):3830. doi: 10.3390/ijms24043830.
ABSTRACT
Despite incredible progress in cancer treatment, therapy resistance remains the leading limiting factor for long-term survival. During drug treatment, several genes are transcriptionally upregulated to mediate drug tolerance. Using highly variable genes and pharmacogenomic data for acute myeloid leukemia (AML), we developed a drug sensitivity prediction model for the receptor tyrosine kinase inhibitor sorafenib and achieved more than 80% prediction accuracy. Furthermore, by using Shapley additive explanations for determining leading features, we identified AXL as an important feature for drug resistance. Drug-resistant patient samples displayed enrichment of protein kinase C (PKC) signaling, which was also identified in sorafenib-treated FLT3-ITD-dependent AML cell lines by a peptide-based kinase profiling assay. Finally, we show that pharmacological inhibition of tyrosine kinase activity enhances AXL expression, phosphorylation of the PKC-substrate cyclic AMP response element binding (CREB) protein, and displays synergy with AXL and PKC inhibitors. Collectively, our data suggest an involvement of AXL in tyrosine kinase inhibitor resistance and link PKC activation as a possible signaling mediator.
PMID:36835239 | DOI:10.3390/ijms24043830
Impact of <em>ABCG2</em> and <em>ABCB1</em> Polymorphisms on Imatinib Plasmatic Exposure: An Original Work and Meta-Analysis
Int J Mol Sci. 2023 Feb 7;24(4):3303. doi: 10.3390/ijms24043303.
ABSTRACT
Adequate imatinib plasma levels are necessary to guarantee an efficacious and safe treatment in gastrointestinal stromal tumor (GIST) and chronic myeloid leukemia (CML) patients. Imatinib is a substrate of the drug transporters ATP-binding cassette subfamily B member 1 (ABCB1) and ATP-binding cassette subfamily G member 2 (ABCG2) that can affect its plasma concentration. In the present study, the association between three genetic polymorphisms in ABCB1 (rs1045642, rs2032582, rs1128503) and one in ABCG2 (rs2231142) and the imatinib plasma trough concentration (Ctrough) was investigated in 33 GIST patients enrolled in a prospective clinical trial. The results of the study were meta-analyzed with those of other seven studies (including a total of 649 patients) selected from the literature through a systematic review process. The ABCG2 c.421C>A genotype demonstrated, in our cohort of patients, a borderline association with imatinib plasma trough levels that became significant in the meta-analysis. Specifically, homozygous carriers of the ABCG2 c.421 A allele showed higher imatinib plasma Ctrough with respect to the CC/CA carriers (Ctrough, 1463.2 ng/mL AA, vs. 1196.6 ng/mL CC + AC, p = 0.04) in 293 patients eligible for the evaluation of this polymorphism in the meta-analysis. The results remained significant under the additive model. No significant association could be described between ABCB1 polymorphisms and imatinib Ctrough, neither in our cohort nor in the meta-analysis. In conclusion, our results and the available literature studies sustain an association between ABCG2 c.421C>A and imatinib plasma Ctrough in GIST and CML patients.
PMID:36834713 | DOI:10.3390/ijms24043303
Insulin Metabolism in Polycystic Ovary Syndrome: Secretion, Signaling, and Clearance
Int J Mol Sci. 2023 Feb 5;24(4):3140. doi: 10.3390/ijms24043140.
ABSTRACT
Polycystic ovary syndrome (PCOS) is the most common endocrine and metabolic disorder in women of reproductive age. Its heterogeneous clinical presentation is characterized by hyperandrogenemia, reproductive changes, polycystic ovary morphology, and insulin resistance (IR). The primary pathophysiological process in its multifactorial etiology has not yet been identified. However, the two most proposed core etiologies are the disruption of insulin metabolism and hyperandrogenemia, both of which begin to intertwine and propagate each other in the later stages of the disease. Insulin metabolism can be viewed as the interconnectedness of beta cell function, IR or insulin sensitivity, and insulin clearance. Previous studies of insulin metabolism in PCOS patients have yielded conflicting results, and literature reviews have focused mainly on the molecular mechanisms and clinical implications of IR. In this narrative review, we comprehensively explored the role of insulin secretion, clearance, and decreased sensitivity in target cells as a potential primary insult in PCOS pathogenesis, along with the molecular mechanism behind IR in PCOS.
PMID:36834549 | DOI:10.3390/ijms24043140
Relationship between Hypoxic and Immune Pathways Activation in the Progression of Neuroinflammation: Role of HIF-1α and Th17 Cells
Int J Mol Sci. 2023 Feb 4;24(4):3073. doi: 10.3390/ijms24043073.
ABSTRACT
Neuroinflammation is a common event in degenerative diseases of the central and peripheral nervous system, triggered by alterations in the immune system or inflammatory cascade. The pathophysiology of these disorders is multifactorial, whereby the therapy available has low clinical efficacy. This review propounds the relationship between the deregulation of T helper cells and hypoxia, mainly Th17 and HIF-1α molecular pathways, events that are involved in the occurrence of the neuroinflammation. The clinical expression of neuroinflammation is included in prevalent pathologies such as multiple sclerosis, Guillain-Barré syndrome, and Alzheimer's disease, among others. In addition, therapeutic targets are analyzed in relation to the pathways that induced neuroinflammation.
PMID:36834484 | DOI:10.3390/ijms24043073