Pharmacogenomics
Mice Lacking the Serotonin Transporter do not Respond to the Behavioural Effects of Psilocybin
Eur J Pharmacol. 2025 Jan 24:177304. doi: 10.1016/j.ejphar.2025.177304. Online ahead of print.
ABSTRACT
BACKGROUND AND PURPOSE: Psilocybin is a serotonergic psychedelic with therapeutic potential for several neuropsychiatric disorders, including depression and anxiety disorders. Serotonin-transporter (5-HTT) knockout mice (KO) are a well-validated mouse model of anxiety/depression and are relevant to both chronic treatment with serotonin transporter reuptake inhibitors (SSRIs) and polymorphisms in the serotonin transporter-linked polymorphic region (5-HTTLPR) associated with depression/anxiety and resistance to classic antidepressant treatments. However, there is yet to be a study assessing the effect of psilocybin in 5-HTT KO mice.
EXPERIMENTAL APPROACH: We investigated the effects of a single dose of psilocybin (1 mg/kg) on locomotor activity and the head-twitch response as well as anxiety- and depressive-like behaviour in KO versus wild-type (WT) mice using the light-dark box and Porsolt swim test respectively.
KEY RESULTS: We found that both the psilocybin-induced head-twitch and hyperlocomotor responses observed in WT mice were completely absent in KO animals. In female WT mice only, psilocybin was also able to block the weight loss observed one day after intraperitoneal injection. While psilocybin did not alter anxiety- and depression-like behaviours for both genotypes, we revealed a genotype-specific trend for a main effect of treatment for WT females (p = 0.054) in the Porsolt swim test. Finally, we found that only female KO mice exhibit anhedonia-like behaviour in the saccharin-preference test.
CONCLUSION AND IMPLICATIONS: Our findings highlight the complexity of psilocybin's effects and suggest that functional integrity of 5-HTT is essential for psilocybin's acute behavioural effects. This could also have implications for pharmacogenetics, including individuals with polymorphisms or mutations in 5-HTT.
PMID:39864573 | DOI:10.1016/j.ejphar.2025.177304
Response to azathioprine treatment in autoimmune hepatitis is dependent on glutathione transferase genotypes
Dig Liver Dis. 2025 Jan 24:S1590-8658(24)01151-4. doi: 10.1016/j.dld.2024.12.026. Online ahead of print.
ABSTRACT
BACKGROUND: Azathioprine (AZA) is part of the standard treatment for autoimmune hepatitis (AIH). The first step in the complex bioconversion of AZA to active metabolites is mediated by glutathione transferases (GSTs).
AIMS: Elucidate the association between GSTM1 and GSTT1 copy number variation (CNV), genetic variation in GSTA2, GSTP1, and inosine-triphosphate-pyrophosphatase, and the response to AZA in AIH.
METHODS: Genotyping was performed in AIH patients (n = 131) on AZA, and in a Swedish background population (n = 283). Thiopurine metabolites in blood erythrocytes were determined by high performance liquid chromatography.
RESULTS: GSTM1 and GSTT1 CNV were associated with treatment response to AZA. Gene deletion of GSTM1-but not of GSTT1-was associated with the liver transaminase levels. None of the studied genetic variants were associated with the thiopurine metabolite concentrations, suggesting non-enzymatic mechanisms of GSTM1 and GSTT1 in the context of AZA efficacy in AIH. The prevalence of GSTM1 and GSTT1 CNV genotypes was similar in AIH and in the background population.
CONCLUSION: This study shows the effects of GSTM1 and GSTT1 CNV on AZA efficacy in AIH, not previously described. It also elaborates on the impact of the definition of treatment response, on the importance of the various GSTs studied. Furthermore, the GSTM1 and GSTT1 CNV frequencies previously reported in European populations were confirmed.
PMID:39863504 | DOI:10.1016/j.dld.2024.12.026
Pharmacogenetic Testing in Admixed Populations: Frequency of the AMR PGx Working Group Tier 1 Variant Alleles in Brazilians
J Mol Diagn. 2025 Jan 23:S1525-1578(25)00018-2. doi: 10.1016/j.jmoldx.2024.12.011. Online ahead of print.
ABSTRACT
This article examines the frequency distribution of Tier 1 pharmacogenetic variants of the Association for Molecular Pathology Pharmacogenomics Working Group Recommendations in two large (>1.000 individuals) cohorts of the admixed Brazilian population, and in patients from the Brazilian Public Health System enrolled in pharmacogenetic trials. Three Tier 1 variants, all in DPYD, were consistently absent, which may justify their non-inclusion in genotyping panels for Brazilians; 13 variants had frequency < 1.0% and the remaining 21 variants ranged in frequency from 1.2% (NUDT15*3) to 76.4% (CYP3A5*3). The frequency of some CYP2C9, CYP2D6, CYP3A4 and VKORC1 variants differed significantly across the three major "race/Color" categories of the Brazilian Census (White, Brown and Black), as a consequence of different proportions of individual European and African ancestry. However, it is recommended that selection of variants for inclusion in pharmacogenetic testing panels and implementation of pharmacogenetic-informed dosing guidelines for Brazilians should not be determined by race/Color categories. Native Americans (0.4% of the Brazilian population), virtually absent from the study cohorts, display wide inter-ethnic diversity in frequency of some Tier 1 variants (e.g. NUDT15*3 and TPMT*3A) and/or differ markedly from non-Indigenous people in frequency of some variant alleles (e.g. CYP2C19*17). Collectively, the data support the notion that population diversity must be taken into account on the design and implementation of pharmacogenetic testing panels.
PMID:39863018 | DOI:10.1016/j.jmoldx.2024.12.011
CircKIAA0182 Enhances Lung Cancer Progression and Chemoresistance through Interaction with YBX1
Cancer Lett. 2025 Jan 23:217494. doi: 10.1016/j.canlet.2025.217494. Online ahead of print.
ABSTRACT
Lung cancer, particularly non-small cell lung cancer (NSCLC), remains a leading cause of cancer-related mortality. Resistance to platinum-based chemotherapy, such as cisplatin, significantly limits treatment efficacy. Circular RNAs (circRNAs) have emerged as key regulators of cancer progression and chemotherapy resistance due to their stable structure, which protects them from degradation. In this study, we focus on circKIAA0182, a circRNA identified as highly expressed in cisplatin-resistant NSCLC cells through profiling. We explore its role in cell proliferation, migration, invasion, apoptosis, and cisplatin resistance. Our findings show that circKIAA0182 promotes cisplatin resistance and tumor progression in NSCLC, in vitro and in vivo. Furthermore, we discovered that circKIAA0182 may interact with the RNA-binding protein YBX1, potentially mediating its oncogenic and cisplatin-resistant functions. The biological role of circKIAA0182 presents a promising target for developing therapeutic strategies to overcome NSCLC progression and cisplatin resistance.
PMID:39862920 | DOI:10.1016/j.canlet.2025.217494
Development and Characterization of Lyophilized Chondroitin Sulfate-Loaded Solid Lipid Nanoparticles: Encapsulation Efficiency and Stability
Pharmaceutics. 2025 Jan 10;17(1):86. doi: 10.3390/pharmaceutics17010086.
ABSTRACT
This study explores the development and characterization of lyophilized chondroitin sulfate (CHON)-loaded solid lipid nanoparticles (SLN) as an innovative platform for advanced drug delivery. Background/Objectives: Solid lipid nanoparticles are increasingly recognized for their biocompatibility, their ability to encapsulate diverse compounds, their capacity to enhance drug stability, their bioavailability, and their therapeutic efficacy. Methods: CHON, a naturally occurring glycosaminoglycan with anti-inflammatory and regenerative properties, was integrated into SLN formulations using the hot microemulsion technique. Two formulations (SLN-1 and SLN-2) were produced and optimized by evaluating critical physicochemical properties such as particle size, zeta potential, encapsulation efficiency (EE%), and stability. The lyophilization process, with the addition of various cryoprotectants, revealed trehalose to be the most effective agent in maintaining nanoparticle integrity and functional properties. Results: Morphological analyses using transmission electron microscopy (TEM) and atomic force microscopy (AFM) confirmed the dimensions of the nanoscales and their structural uniformity. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) revealed minimal excipient interaction with CHON, ensuring formulation stability. Stability studies under different environmental conditions highlighted that SLN-2 is the most stable formulation, maintaining superior encapsulation efficiency (≥88%) and particle size consistency over time. Conclusions: These findings underscore the potential of CHON-loaded SLNs as promising candidates for targeted, sustained-release therapies in the treatment of inflammatory and degenerative diseases.
PMID:39861734 | DOI:10.3390/pharmaceutics17010086
The Frequency of <em>DPYD</em> c.557A>G in the Dominican Population and Its Association with African Ancestry
Pharmaceutics. 2024 Dec 24;17(1):8. doi: 10.3390/pharmaceutics17010008.
ABSTRACT
Background/Objectives: Genetic polymorphism of the dihydropyrimidine dehydrogenase gene (DPYD) is responsible for the variability found in the metabolism of fluoropyrimidines such as 5-fluorouracil (5-FU), capecitabine, or tegafur. The DPYD genotype is linked to variability in enzyme activity, 5-FU elimination, and toxicity. Approximately 10-40% of patients treated with fluoropyrimidines develop severe toxicity. The interethnic variability of DPYD gene variants in Afro-Latin Americans is poorly studied, thereby establishing a barrier to the implementation of personalized medicine in these populations. Therefore, the present study aims to analyze the frequency of DPYD variants with clinical relevance in the Dominican population and their association with genomic ancestry components. Methods: For this study, 196 healthy volunteers from the Dominican Republic were genotyped for DPYD variants by qPCR, and individual genomic ancestry analysis was performed in 178 individuals using 90 informative ancestry markers. Data from the 1000 Genomes project were also retrieved for comparison and increased statistical power. Results and Conclusions: The c.557A>G variant (decreased dihydropyrimidine dehydrogenase function) presented a frequency of 2.6% in the Dominican population. Moreover, the frequency of this variant is positively associated with African ancestry (r2 = 0.67, p = 1 × 10-7), which implies that individuals with high levels of African ancestry are more likely to present this variant. HapB3 is completely absent in Dominican, Mexican, Peruvian, Bangladeshi, and all East Asian and African populations, which probably makes its analysis dispensable in these populations. The implementation of pharmacogenetics in oncology, specifically DPYD, in populations of Afro-Latin American ancestry should include c.557A>G, to be able to carry out the safe and effective treatment of patients treated with fluoropyrimidines.
PMID:39861660 | DOI:10.3390/pharmaceutics17010008
Thiamine and Thiamine Pyrophosphate as Non-Competitive Inhibitors of Acetylcholinesterase-Experimental and Theoretical Investigations
Molecules. 2025 Jan 19;30(2):412. doi: 10.3390/molecules30020412.
ABSTRACT
Vitamin B1 (thiamine) plays an important role in human metabolism. It is essential for the proper growth and development of the body and has a positive effect on the functioning of the digestive, cardiovascular, and nervous systems. Additionally, it stimulates the brain and improves the psycho-emotional state. In vivo, vitamin B1 occurs in free form as thiamine or as its ester with phosphate residue(s), i.e., as mono-, di-, or triphosphate. It has been proven that supportive therapy with vitamin B1 can not only provide neuroprotection but also has a positive effect on advanced neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, Wernicke-Korsakoff syndrome, or Huntington's disease. This paper presents studies on the effect of free thiamine (T) and thiamine pyrophosphate (TPP) on the activity of acetylcholinesterase (AChE), which is an enzyme considered to play an important role in the therapies for neurodegenerative diseases, especially Alzheimer's disease. The mechanisms of action of these compounds as potential inhibitors of AChE were evaluated using both experimental (enzymatic activity) as well as computational (molecular docking, molecular dynamics simulations, and MM-GBSA calculations) methods. The results of the current study indicate a non-competitive type of enzyme inhibition, in contrast to the previously published works suggesting a competitive one.
PMID:39860281 | DOI:10.3390/molecules30020412
Exploring the Pharmacogenomic Map of Croatia: PGx Clustering of 522-Patient Cohort Based on UMAP + HDBSCAN Algorithm
Int J Mol Sci. 2025 Jan 12;26(2):589. doi: 10.3390/ijms26020589.
ABSTRACT
Pharmacogenetics is a branch of genomic medicine aiming to personalize drug prescription guidelines based on individual genetic information. This concept might lead to a reduction in adverse drug reactions, which place a heavy burden on individual patients' health and the economy of the healthcare system. The aim of this study was to present insights gained from the pharmacogenetics-based clustering of over 500 patients from the Croatian population. The data used in this article were obtained by the pharmacogenetic testing of 522 patients from the Croatian population. The patients were clustered based on the genotypes of 28 pharmacologically relevant genes. Dimensionality reduction was employed using the UMAP algorithm, after which clusters were defined using HDBSCAN. Validation of clustering was performed by decision tree analysis and predictive modeling using the RandomForest, XGBoost, and ExtraTrees classification algorithms. The clustering algorithm defined six clusters of patients based on two UMAP components (silhouette score = 0.782). Decision tree analysis demonstrated CYP2D6 and SLCO1B1 genotypes as the main points of cluster determination. Predictive modeling demonstrated an excellent ability to discern the cluster of each patient based on all genes (avg. ROC-AUC = 0.998), CYP2D6 and SLCO1B1 (avg. ROC-AUC = 1.000), and CYP2D6 alone (avg. ROC-AUC = 0.910). Membership in each cluster provided clinically relevant information, in the context of ruling out certain favorable or unfavorable phenotypes. However, this study's main limitation is its cohort size. Through further research and investigation of a larger number of patients, more accurate and clinically applicable associations between pharmacogenetic genotypes and phenotypes might be discovered.
PMID:39859305 | DOI:10.3390/ijms26020589
The Rise of Fentanyl: Molecular Aspects and Forensic Investigations
Int J Mol Sci. 2025 Jan 7;26(2):444. doi: 10.3390/ijms26020444.
ABSTRACT
Fentanyl is a synthetic opioid widely used for its potent analgesic effects in chronic pain management and intraoperative anesthesia. However, its high potency, low cost, and accessibility have also made it a significant drug of abuse, contributing to the global opioid epidemic. This review aims to provide an in-depth analysis of fentanyl's medical applications, pharmacokinetics, metabolism, and pharmacogenetics while examining its adverse effects and forensic implications. Special attention is given to its misuse, polydrug interactions, and the challenges in determining the cause of death in fentanyl-related fatalities. Fentanyl misuse has escalated dramatically, driven by its substitution for heroin and its availability through online platforms, including the dark web. Polydrug use, where fentanyl is combined with substances like xylazine, alcohol, benzodiazepines, or cocaine, exacerbates its toxicity and increases the risk of fatal outcomes. Fentanyl undergoes rapid distribution, metabolism by CYP3A4 into inactive metabolites, and renal excretion. Genetic polymorphisms in CYP3A4, OPRM1, and ABCB1 significantly influence individual responses to fentanyl, affecting its efficacy and potential for toxicity. Fentanyl's side effects include respiratory depression, cardiac arrhythmias, gastrointestinal dysfunction, and neurocognitive impairments. Chronic misuse disrupts brain function, contributes to mental health disorders, and poses risks for younger and older populations alike. Fentanyl-related deaths require comprehensive forensic investigations, including judicial inspections, autopsies, and toxicological analyses. Additionally, the co-administration of xylazine presents distinct challenges for the scientific community. Histological and immunohistochemical studies are essential for understanding organ-specific damage, while pharmacogenetic testing can identify individual susceptibilities. The growing prevalence of fentanyl abuse highlights the need for robust forensic protocols, advanced research into its pharmacogenetic variability, and strategies to mitigate its misuse. International collaboration, public education, and harm reduction measures are critical for addressing the fentanyl crisis effectively.
PMID:39859160 | DOI:10.3390/ijms26020444
Involvement of HLADQA1*05 in Patients with Inflammatory Bowel Disease Treated with Anti-TNF Drugs
Medicina (Kaunas). 2025 Jan 13;61(1):102. doi: 10.3390/medicina61010102.
ABSTRACT
Background: Over the past decade, TNF inhibitors such as Infliximab and Adalimumab have become central to Inflammatory Bowel Diseases treatment, greatly enhancing patient outcomes. However, immunogenicity-where anti-drug antibodies diminish effectiveness-remains an issue, often requiring dose changes or combination therapies. Pharmacogenomics is increasingly applied in IBD to personalise treatment, especially since genetic factors like the HLA-DQA1*05 variant heighten the immunogenicity risk with IFX. This study aims to examine the relationship between the HLA-DQA1*05 variant and response loss or antibody development in patients regularly monitored on IFX or ADA. Methods: Sixty-five paediatric IBD patients were enrolled, with therapeutic drug monitoring (TDM) of IFX and ADA, conducted using immunoenzymatic assays. The presence of the HLA-DQA1*05 T>C allele variant was also tested using a Biomole HLA-DQA1 Real-time PCR kit. Results: The HLA-DQA1*05 rs2097432 T>C allele was present in 54% of patients on IFX and 69% of those on ADA. No statistically significant differences were found between HLA carriers and non-carriers across any of the three analysed groups: IFX, ADA and the overall anti-TNFα. Conclusions: Our study suggests that the HLA-DQA1*05 allele does not increase the risk of secondary loss of response to anti-TNF therapy, likely because most patients were on a combination of anti-TNF agents and immunomodulators, which can lower anti-drug antibody production. Testing for HLA-DQA105 can aid in personalising treatment and optimising therapy to minimise immunogenicity risks.
PMID:39859084 | DOI:10.3390/medicina61010102
Atypical Leber Hereditary Optic Neuropathy (LHON) Associated with a Novel MT-CYB:m.15309T>C(Ile188Thr) Variant
Genes (Basel). 2025 Jan 20;16(1):108. doi: 10.3390/genes16010108.
ABSTRACT
Background: The study presents a detailed examination and follow-up of a Slovenian patient with an Leber Hereditary Optic Neuropathy (LHON)-like phenotype and bilateral optic neuropathy in whom genetic analysis identified a novel variant MT-CYB:m.15309T>C (Ile188Thr). Methods: We provide detailed analysis of the clinical examinations of a male patient with bilateral optic neuropathy from the acute stage to 8 years of follow-up. Complete ophthalmological exam, electrophysiology and optical coherence tomography (OCT) segmentation were performed. The genotype analysis was performed with a complete screening of the mitochondrial genome. Furthermore, proteomic analysis of the protein structure and function was performed to assess the pathogenicity of a novel variant of unknown significance. Mitochondrial function analysis of the patient's peripheral blood mononuclear cells (PBMCs) was performed with the objective of evaluating the mutation effect on mitochondrial function using flow cytometry and high-resolution respirometry. Results: The patient had a profound consecutive bilateral visual loss at 19 years of age due to optic neuropathy with characteristics of LHON; however, unlike patients with typical LHON, the patient experienced a fluctuation in visual function and significant late recovery. He had a total of three visual acuity deteriorations and improvements in the left eye, with concomitant visual loss in the right eye and a final visual acuity drop reaching nadir 9 months after onset. The visual loss was characterized by centrocecal scotoma, abnormal color vision and abnormal VEP, while deterioration of PERG N95 followed with a lag of several months. The OCT examination showed retinal nerve fiber layer thinning matching disease progression. Following a two-year period of legal blindness, the patient's visual function started to improve, and over the course of 5 years, it reached 0.5 and 0.7 Snellen (0.3 and 0.15 LogMAR) visual acuity (VA). Mitochondrial sequencing identified a presumably pathogenic variant m.15309T>C in the MT-CYB gene at 65% heteroplasmy, belonging to haplogroup K. Mitochondrial function assessment of the patient's PBMCs showed a lower respiration rate, an increase in reactive oxygen species production and the presence of mitochondrial depolarization, compared to an age- and sex-matched healthy control's PBMCs. Conclusions: A novel variant in the MT-CYB:m.15309T>C (Ile188Thr) gene was identified in a patient with optic nerve damage and the LHON phenotype without any additional systemic features and atypical presentation of the disease with late onset of visual function recovery. The pathogenicity of the variant is supported by proteomic analysis and the mitochondrial dysfunction observed in the patient's PBMCs.
PMID:39858655 | DOI:10.3390/genes16010108
Recent Advances in Stroke Genetics-Unraveling the Complexity of Cerebral Infarction: A Brief Review
Genes (Basel). 2025 Jan 6;16(1):59. doi: 10.3390/genes16010059.
ABSTRACT
BACKGROUND/OBJECTIVES: Recent advances in stroke genetics have substantially enhanced our understanding of the complex genetic architecture underlying cerebral infarction and other stroke subtypes. As knowledge in this field expands, healthcare providers must remain informed about these latest developments. This review aims to provide a comprehensive overview of recent advances in stroke genetics, with a focus on cerebral infarction, and discuss their potential impact on patient care and future research directions.
METHODS: We reviewed recent literature about advances in stroke genetics, focusing on cerebral infarction, and discussed their potential impact on patient care and future research directions. Key developments include the identification of monogenic stroke syndromes, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, and cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy caused by mutations in the NOTCH3 and HTRA1 genes, respectively. In addition, the role of RNF213 in moyamoya disease and other cerebrovascular disorders, particularly in East Asian populations, has been elucidated. The development of polygenic risk scores for assessing genetic predisposition to stroke has demonstrated the potential to improve risk prediction beyond traditional factors. Genetic studies have also elucidated the distinct genetic architecture of stroke subtypes, including large artery atherosclerosis, small vessel disease, and cardioembolic stroke. Furthermore, the investigation of epigenetic modifications influencing stroke risk and its outcomes has revealed new research avenues, while advancements in pharmacogenomics highlight the potential for personalized stroke treatment based on individual genetic profiles.
CONCLUSIONS: These genetic discoveries have important clinical implications, including improved risk stratification, targeted prevention strategies, and the development of novel therapeutic approaches.
PMID:39858606 | DOI:10.3390/genes16010059
Pharmacogenetics of the Treatment of Neglected Diseases
Genes (Basel). 2025 Jan 5;16(1):54. doi: 10.3390/genes16010054.
ABSTRACT
BACKGROUND/OBJECTIVES: Pharmacogenetics (PGx) aims to identify individuals more likely to suffer from adverse reactions or therapeutic failure in drug treatments. However, despite most of the evidence in this area being from European populations, some diseases have also been neglected, such as HIV infection, malaria, and tuberculosis. With this review, we aim to emphasize which pharmacogenetic tests are ready to be implemented in treating neglected diseases that have some evidence and call attention to what is missing for these three diseases.
METHODS: A critical literature review on the PGx of HIV infection, malaria, and tuberculosis was performed.
RESULTS: There are three PGx guidelines for antiretroviral drugs used in HIV infection, one for malaria, and none for tuberculosis. Some evidence is already available, and some genes have already been identified, such as CYP2D6 for primaquine treatment and NAT2 for isoniazid. However, some barriers to the implementation are the lack of evidence due to the few studies on the diseases themselves and the admixture of the most affected populations, which must be considered, given the genetic differentiation of these populations.
CONCLUSIONS: PGx tests such as abacavir are already implemented in some places, and efavirenz/atazanavir is ready to implement if this medication is used. Other gene-drug associations were found but still do not present a clear recommendation. We call attention to the need to generate more evidence for testing treatments for other neglected diseases, such as malaria and tuberculosis, given their epidemiological importance and for the public health of less favored populations.
PMID:39858601 | DOI:10.3390/genes16010054
Association of Corticosteroid Inhaler Type with Saliva Microbiome in Moderate-to-Severe Pediatric Asthma
Biomedicines. 2025 Jan 2;13(1):89. doi: 10.3390/biomedicines13010089.
ABSTRACT
Background/Objectives: Metered-dose inhalers (MDIs) and dry powder inhalers (DPIs) are common inhaled corticosteroid (ICS) inhaler devices. The difference in formulation and administration technique of these devices may influence oral cavity microbiota composition. We aimed to compare the saliva microbiome in children with moderate-to-severe asthma using ICS via MDIs versus DPIs. Methods: Saliva samples collected from 143 children (6-17 yrs) with moderate-to-severe asthma across four European countries (The Netherlands, Germany, Spain, and Slovenia) as part of the SysPharmPediA cohort were subjected to 16S rRNA sequencing. The microbiome was compared using global diversity (α and β) between two groups of participants based on inhaler devices (MDI (n = 77) and DPI (n = 65)), and differential abundance was compared using the Analysis of Compositions of Microbiomes with the Bias Correction (ANCOM-BC) method. Results: No significant difference was observed in α-diversity between the two groups. However, β-diversity analysis revealed significant differences between groups using both Bray-Curtis and weighted UniFrac methods (adjusted p-value = 0.015 and 0.044, respectively). Significant differential abundance between groups, with higher relative abundance in the MDI group compared to the DPI group, was detected at the family level [Carnobacteriaceae (adjusted p = 0.033)] and at the genus level [Granulicatella (adjusted p = 0.021) and Aggregatibacter (adjusted p = 0.011)]. Conclusions: Types of ICS devices are associated with different saliva microbiome compositions in moderate-to-severe pediatric asthma. The causal relation between inhaler types and changes in saliva microbiota composition needs to be further evaluated, as well as whether this leads to different potential adverse effects in terms of occurrence and level of severity.
PMID:39857673 | DOI:10.3390/biomedicines13010089
How Antiretroviral Drug Concentrations Could Be Affected by Oxidative Stress, Physical Capacities and Genetics: A Focus on Dolutegravir Treated Male PLWH
Antioxidants (Basel). 2025 Jan 13;14(1):82. doi: 10.3390/antiox14010082.
ABSTRACT
High levels of reactive oxygen species (ROS) are present in people living with HIV (PLWH), produced by intense physical activity; in response, our body produces antioxidant molecules. ROS influence the expression of gene-encoding enzymes and transporters involved in drug biotransformation. In addition, pharmacogenetics can influence transporter activity, and thus drug exposure. Currently, no studies concerning this topic are present in the literature. The aim of this study was to investigate whether some antioxidant molecules, physical exercise, and genetic variants could affect dolutegravir (DTG) concentrations in PLWH, switching from triple to dual therapy. Thirty PLWH were recruited and analyzed at baseline (triple therapy), and 6 months after (dual therapy). Physical capacities were investigated using validated tools. Drug concentrations and oxidative stress biomarkers levels were evaluated through liquid chromatography coupled with tandem mass spectrometry, while genetic variants through real-time PCR. No statistical differences were suggested for drug concentrations, with the exception of intracellular DTG (p = 0.047). Statistically significant correlations between DTG plasma concentrations and white blood cells (p = 0.011; S = 0.480) and cytoplasmic N-acetyl-cysteine (p = 0.033; S = -0.419) were observed. Finally, white blood cells and BMI remained in the final multivariate regression model as predictors of DTG concentrations. This is the first study showing possible factors related to oxidative stress impacting DTG exposure.
PMID:39857416 | DOI:10.3390/antiox14010082
Hot-melt extruded-FDM 3D-printed polyethylene oxide tablets: Dissolution imaging analysis of swelling and drug release
Eur J Pharm Biopharm. 2025 Jan 22:114636. doi: 10.1016/j.ejpb.2025.114636. Online ahead of print.
ABSTRACT
Recent developments in pharmacogenetics have emphasised the importance of customised medication, driving interest in technologies like FDM 3D-printing for tailored drug delivery. FDM 3D-printing is a promising technique for the on-demand manufacturing of customised oral dosage forms, providing flexibility in terms of shape and size, dose and drug release profiles. This study investigates the fabrication and characterisation of 3D-printed oral dosage forms using PEO as the primary polymer and PEG 6 K as a plasticiser. Firstly, the printability of the PEO filaments with different propranolol hydrochloride concentrations was explored using the hot-melt extrusion technology. The influence of the propranolol hydrochloride concentrations on the mechanical properties of the filaments was examined was then examined after which surface characteristics, including roughness and wettability, were evaluated. Dissolution imaging was used to visualise the effects of drug content on the swelling and dissolution characteristics of the PEO-based 3D-printed tablets. Results showed a reduction in the flexural stress of the filaments with increasing drug load. It was also observed that increasing the drug load led to higher surface roughness and lower contact angles of the 3D-printed PEO tablets, implying increased surface hydrophilicity. The swelling behaviour of the tablets increased with higher drug concentrations, resulting in a larger gel layer formation. When comparing the drug release percentages, the release rate was higher in the 10 mg propranolol tablets, suggesting that a lower drug content led to a faster release. The greater gel layer of the 40 mg PPN tablets hindered the drug release by acting as a diffusion barrier, while the 10 mg PPN tablets, with less swelling and gel formation, experienced a faster drug release. These findings show the importance of drug content in modifying the surface properties, swelling behaviour, and drug release profiles of 3D-printed PEO tablets. The study also demonstrates the novel use of dissolution imaging for 3D-printed dosage forms, providing valuable quantitative and qualitative insights into swelling dynamics and channel formation to optimise 3D-printed tablets for drug delivery systems.
PMID:39855578 | DOI:10.1016/j.ejpb.2025.114636
Cognitive and behavioral impact of antiseizure medications, neuromodulation, ketogenic diet, and surgery in lennox-gastaut syndrome: A comprehensive review
Epilepsy Behav. 2025 Jan 23;164:110272. doi: 10.1016/j.yebeh.2025.110272. Online ahead of print.
ABSTRACT
Lennox-Gastaut syndrome (LGS) is a severe developmental and epileptic encephalopathy marked by drug-resistant seizures and profound cognitive and behavioral impairments, with nearly 95% of individuals affected by moderate to severe intellectual disability. This review comprehensively explores the cognitive and behavioral impacts of current treatment options for LGS, including antiseizure medications (ASMs), neuromodulation strategies, the ketogenic diet, and surgical interventions. Given the limited availability of LGS-specific data for several ASMs, the evidence base is supplemented with findings from general epilepsy populations and individuals with epilepsy and intellectual disabilities. The evidence reveals that ASMs exert varied cognitive and behavioral effects in LGS. Medications such as valproate, lamotrigine, cannabidiol, fenfluramine, levetiracetam, brivaracetam, felbamate, and rufinamide generally support cognitive stability, while topiramate and zonisamide are associated with cognitive challenges. Behavioral outcomes also vary: stability is observed with valproate, lamotrigine, rufinamide, cannabidiol, and fenfluramine, whereas medications like levetiracetam, perampanel, brivaracetam, clobazam, and zonisamide can increase aggression or irritability. Nonpharmacological therapies, particularly when they reduce seizure frequency, typically provide greater cognitive and behavioral stability, with some offering improvement. Early intervention-especially through surgical options-appears most beneficial for preserving cognitive function. Additionally, therapies such as the ketogenic diet and neuromodulation may provide independent cognitive benefits beyond seizure control. This review emphasizes the importance of personalized treatment strategies, integrating cognitive and behavioral evaluations in therapy selection. Key components include baseline cognitive and behavioral assessments, followed by regular follow-up evaluations, particularly after therapy changes. Consideration of minimizing ASM polytherapy, careful evaluation of drug-drug interactions, pharmacogenomic implications, and the need for therapeutic drug monitoring in cases of cognitive adverse effects is essential. Future research should focus on developing assessment tools tailored to the unique needs of individuals with LGS, utilizing connectivity measures to assess intervention impacts, and advancing precision therapeutics to improve cognitive and behavioral outcomes.
PMID:39854829 | DOI:10.1016/j.yebeh.2025.110272
Pharmacometabolomics Enables Real-World Drug Metabolism Sciences
Metabolites. 2025 Jan 10;15(1):39. doi: 10.3390/metabo15010039.
ABSTRACT
Background/Objectives: Pharmacogenomics (PGx) has revolutionized personalized medicine, notably by predicting drug responses through the study of the metabolic genotype of drug-metabolizing enzymes. However, these genotypes rely heavily on the availability and completeness of drug metabolism information and do not account for (all) "phenoconversion" factors, like drug-drug interactions and comorbidities. To address these limitations, a more phenotypic approach would be desirable, for which pharmacometabolomics (PMx) could be useful by studying and elucidating drug metabolism in patient samples, such as blood and urine. Methods: This study explored the potential of PMx to analyze real-world drug metabolite profiles of the extensively studied drug cyclosporine (CsA) using 24-h urine samples from 732 kidney and 350 liver transplant recipients included in the TransplantLines Biobank and Cohort Study (NCT identifier NCT03272841). Detected metabolites were matched with existing information on CsA metabolism gathered through a comprehensive literature review, aiming to confirm previously reported metabolites and identify potentially unreported ones. Results: Our analyses confirmed the urinary presence of CsA and six known metabolites. Additionally, we detected three known metabolites not previously reported in urine and identified one unreported metabolite, potentially suggesting the involvement of glutathione conjugation. Lastly, the observed metabolic patterns showed no notable differences between kidney and liver transplant recipients. Conclusions: Our findings demonstrate the potential of PMx to enhance the understanding of drug metabolism, even for well-studied compounds such as CsA. Moreover, this study highlights the value of PMx in real-world drug metabolism research and its potential to complement PGx in advancing personalized medicine.
PMID:39852382 | DOI:10.3390/metabo15010039
Tacrolimus- and Mycophenolate-Mediated Toxicity: Clinical Considerations and Options in Management of Post-Transplant Patients
Curr Issues Mol Biol. 2024 Dec 24;47(1):2. doi: 10.3390/cimb47010002.
ABSTRACT
Tacrolimus and mycophenolate are important immunosuppressive agents used to prevent organ rejection in post-transplant patients. While highly effective, their use is associated with significant toxicity, requiring careful management. Tacrolimus, a calcineurin inhibitor, is linked to nephrotoxicity, neurotoxicity, metabolic disturbances such as diabetes mellitus and dyslipidemia, and cardiovascular complications such as hypertension and arrhythmias. Mycophenolate, a reversible inhibitor of inosine monophosphate dehydrogenase, frequently causes gastrointestinal disturbances, including diarrhea and colitis, as well as hematologic side effects like anemia and leukopenia, which increase infection risk. Therapeutic drug monitoring (TDM) and pharmacogenomics have emerged as essential strategies for mitigating these toxicities. TDM ensures tacrolimus trough levels are maintained within a therapeutic range, minimizing the risks of nephrotoxicity and rejection. Pharmacogenomic insights, such as CYP3A5 polymorphisms, allow for personalized tacrolimus dosing based on individual metabolic profiles. For mycophenolate, monitoring inosine monophosphate dehydrogenase activity provides a pharmacodynamic approach to dose optimization, reducing gastrointestinal and hematologic toxicities. Emerging tools, including dried blood spot sampling and pharmacokinetic modeling, offer innovative methods to simplify monitoring and enhance precision in outpatient settings. Despite their utility, the toxicity profiles of these drugs, including those of early immunosuppressants such as cyclosporine and azathioprine, necessitate further consideration of alternative immunosuppressants like sirolimus, everolimus, and belatacept. Although promising, these newer agents require careful patient selection and further research. Future directions in immunosuppressive therapy include integrating individual pharmacogenetic data to refine dosing, minimize side effects, and improve long-term graft outcomes. This narrative review underscores the importance of personalized medicine and advanced monitoring in optimizing post-transplant care.
PMID:39852117 | DOI:10.3390/cimb47010002
Duvelisib is a novel NFAT inhibitor that mitigates adalimumab-induced immunogenicity
Front Pharmacol. 2025 Jan 9;15:1397995. doi: 10.3389/fphar.2024.1397995. eCollection 2024.
ABSTRACT
INTRODUCTION: TNFα inhibitor (TNFi) immunogenicity in rheumatoid arthritis (RA) is a major obstacle to its therapeutic effectiveness. Although methotrexate (MTX) can mitigate TNFi immunogenicity, its adverse effects necessitate alternative strategies. Targeting nuclear factor of activated T cells (NFAT) transcription factors may protect against biologic immunogenicity. Therefore, developing a potent NFAT inhibitor to suppress this immunogenicity may offer an alternative to MTX.
METHODS: We performed a structure-based virtual screen of the NFATC2 crystal structure to identify potential small molecules that could interact with NFATC2. For validation, we investigated the effect of the identified compound on NFAT transcriptional activity, nuclear localization, and binding to the NFAT consensus sequence. In vivo studies assessed the ability of the compound to protect against TNFi immunogenicity, while ex vivo studies evaluated its effect on CD4+ T cell proliferation and B cell antibody secretion.
RESULTS: We identified duvelisib (DV) as a novel NFATC2 and NFATC1 inhibitor that attenuates NFAT transcriptional activity without inhibiting calcineurin or NFAT nuclear localization. Our results suggest that DV inhibits NFAT independently of PI3K by interfering with nuclear NFAT binding to the NFAT consensus promoter sequence. DV significantly protected mice from adalimumab immunogenicity and attenuated ex vivo CD4+ T cell proliferation and B cell antibody secretion.
DISCUSSION: DV is a promising NFAT inhibitor that can protect against TNFi immunogenicity without inhibiting calcineurin phosphatase activity. Our results suggest that the future development of DV analogs may be of interest as agents to attenuate unwanted immune responses.
PMID:39850568 | PMC:PMC11754251 | DOI:10.3389/fphar.2024.1397995