Pharmacogenomics
Circadian Rhythm Dysregulation and Leukemia Development: The Role of Clock Genes as Promising Biomarkers
Int J Mol Sci. 2022 Jul 26;23(15):8212. doi: 10.3390/ijms23158212.
ABSTRACT
The circadian clock (CC) is a daily system that regulates the oscillations of physiological processes and can respond to the external environment in order to maintain internal homeostasis. For the functioning of the CC, the clock genes (CG) act in different metabolic pathways through the clock-controlled genes (CCG), providing cellular regulation. The CC's interruption can result in the development of different diseases, such as neurodegenerative and metabolic disorders, as well as cancer. Leukemias correspond to a group of malignancies of the blood and bone marrow that occur when alterations in normal cellular regulatory processes cause the uncontrolled proliferation of hematopoietic stem cells. This review aimed to associate a deregulated CC with the manifestation of leukemia, looking for possible pathways involving CG and their possible role as leukemic biomarkers.
PMID:35897788 | DOI:10.3390/ijms23158212
1,4-Naphthoquinone (CNN1) Induces Apoptosis through DNA Damage and Promotes Upregulation of <em>H2AFX</em> in Leukemia Multidrug Resistant Cell Line
Int J Mol Sci. 2022 Jul 23;23(15):8105. doi: 10.3390/ijms23158105.
ABSTRACT
The multidrug resistance (MDR) phenotype is one of the major obstacles in the treatment of chronic myeloid leukemia (CML) in advantage stages such as blast crisis. In this scenario, more patients develop resistance mechanisms during the course of the disease, making tyrosine kinase inhibitors (TKIs) target therapies ineffective. Therefore, the aim of the study was to examine the pharmacological role of CNN1, a para-naphthoquinone, in a leukemia multidrug resistant cell line. First, the in vitro cytotoxic activity of Imatinib Mesylate (IM) in K-562 and FEPS cell lines was evaluated. Subsequently, membrane integrity and mitochondrial membrane potential assays were performed to assess the cytotoxic effects of CNN1 in K-562 and FEPS cell lines, followed by cell cycle, alkaline comet assay and annexin V-Alexa Fluor®&nbsp;488/propidium iodide assays (Annexin/PI) using flow cytometry. RT-qPCR was used to evaluate the H2AFX gene expression. The results demonstrate that CNN1 was able to induce apoptosis, cell membrane rupture and mitochondrial membrane depolarization in leukemia cell lines. In addition, CNN1 also induced genotoxic effects and caused DNA fragmentation, cell cycle arrest at the G2/M phase in leukemia cells. No genotoxicity was observed on peripheral blood mononuclear cells (PBMC). Additionally, CNN1 increased mRNA levels of H2AFX. Therefore, CNN1 presented anticancer properties against leukemia multidrug resistant cell line being a potential anticancer agent for the treatment of resistant CML.
PMID:35897681 | DOI:10.3390/ijms23158105
PI3K drives the de novo synthesis of coenzyme A from vitamin B5
Nature. 2022 Jul 27. doi: 10.1038/s41586-022-04984-8. Online ahead of print.
ABSTRACT
In response to hormones and growth factors, the class I phosphoinositide-3-kinase (PI3K) signalling network functions as a major regulator of metabolism and growth, governing cellular nutrient uptake, energy generation, reducing cofactor production and macromolecule biosynthesis1. Many of the driver mutations in cancer with the highest recurrence, including in receptor tyrosine kinases, Ras, PTEN and PI3K, pathologically activate PI3K signalling2,3. However, our understanding of the core metabolic program controlled by PI3K is almost certainly incomplete. Here, using mass-spectrometry-based metabolomics and isotope tracing, we show that PI3K signalling stimulates the de novo synthesis of one of the most pivotal metabolic cofactors: coenzyme A (CoA). CoA is the major carrier of activated acyl groups in cells4,5 and is synthesized from cysteine, ATP and the essential nutrient vitamin B5 (also known as pantothenate)6,7. We identify pantothenate kinase 2 (PANK2) and PANK4 as substrates of the PI3K effector kinase AKT8. Although PANK2 is known to catalyse the rate-determining first step of CoA synthesis, we find that the minimally characterized but highly conserved PANK49 is a rate-limiting suppressor of CoA synthesis through its metabolite phosphatase activity. Phosphorylation of PANK4 by AKT relieves this suppression. Ultimately, the PI3K-PANK4 axis regulates the abundance of acetyl-CoA and other acyl-CoAs, CoA-dependent processes such as lipid metabolism and proliferation. We propose that these regulatory mechanisms coordinate cellular CoA supplies with the demands of hormone/growth-factor-driven or oncogene-driven metabolism and growth.
PMID:35896750 | DOI:10.1038/s41586-022-04984-8
Immune checkpoint inhibitor-induced acquired haemophilia: A pharmacovigilance analysis of the FDA adverse event reporting system
Haemophilia. 2022 Jul 27. doi: 10.1111/hae.14632. Online ahead of print.
NO ABSTRACT
PMID:35895993 | DOI:10.1111/hae.14632
Antihypertensive drugs and brain function: mechanisms underlying therapeutically beneficial and harmful neuropsychiatric effects
Cardiovasc Res. 2022 Jul 27:cvac110. doi: 10.1093/cvr/cvac110. Online ahead of print.
ABSTRACT
A bidirectional relationship exists between hypertension and psychiatric disorders, including unipolar and bipolar depression, anxiety, post-traumatic stress disorder (PTSD), psychosis, schizophrenia, mania, and dementia/cognitive decline. Repurposing of antihypertensive drugs to treat mental disorders is thus being explored. A systematic knowledge of the mechanisms of action and clinical consequences of the use of antihypertensive agents on neuropsychiatric functions has not been achieved yet. In this article, we review the putative role of antihypertensive agents in psychiatric disorders, discuss the targets and mechanisms of action, and examine how and to what extent specific drug classes/molecules may trigger, worsen, or mitigate psychiatric symptoms. In addition, we review pharmacokinetics (brain penetration of drugs) and pharmacogenetics data that add important information to assess risks and benefits of antihypertensive drugs in neuropsychiatric settings. The scientific literature shows robust evidence of a positive effect of α1 blockers on PTSD symptoms, nightmares and sleep quality, α2 agonists on core symptoms, executive function and quality of life in Attention-Deficit/Hyperactivity Disorder, PTSD, Tourette's syndrome, and β blockers on anxiety, aggression, working memory, and social communication. Renin-angiotensin system modulators exert protective effects on cognition, depression, and anxiety, and the loop diuretic bumetanide reduced the core symptoms of autism in a subset of patients. There is no evidence of clear benefits of calcium channel blockers in mood disorders in the scientific literature. These findings are mainly from preclinical studies; clinical data are still insufficient or of anecdotal nature, and seldom systematic. The information herewith provided can support a better therapeutic approach to hypertension, tailored to patients with, or with high susceptibility to, psychiatric illness. It may prompt clinical studies exploring the potential benefit of antihypertensive drugs in selected patients with neuropsychiatric comorbidities that include outcomes of neuropsychiatric interest and specifically assess undesirable effects or interactions.
PMID:35895876 | DOI:10.1093/cvr/cvac110
Interaction study of Salvianolic acids for injection on pharmacokinetics of clopidogrel in rats by LC-MS/MS
Biomed Chromatogr. 2022 Jul 27:e5463. doi: 10.1002/bmc.5463. Online ahead of print.
ABSTRACT
Salvianolic acids for injection (SAI) is developed from traditional Chinese medicine and approved for the treatment of cardiovascular and cerebrovascular diseases. Clopidogrel is an inhibitor of platelet aggregation, which is often prescribed to patients in combination with SAI. This present study is aiming to assess the influences of SAI on the pharmacogenomics, pharmacokinetics and pharmacodynamics of clopidogrel, thereby ensuring the safety and efficacy of the co-administration. In vitro Cytochrome P450 isoenzymes assays were performed in human liver microsomes by LC-MS/MS method to assess the metabolites of CYPs substrates. The influences of SAI on the pharmacokinetics and pharmacodynamics behavior of clopidogrel were investigated in rats. The main pharmacokinetic parameters were analyzed by LC-MS/MS. Prothrombin time, activated partial thromboplastin time, bleeding time and inhibition of platelet aggregation were measured to evaluate the effects of pharmacodynamics. In our study, SAI at the clinical dose has no significant inhibitory effect on clopidogrel-related liver microsomes metabolic CYP450 isoenzymes. Moreover, SAI didn't affect the pharmacokinetics of clopidogrel both single dose and multiple dose in rats. In pharmacodynamics study, SAI has no effect on the platelet aggregation rate, PT and APTT time of clopidogrel, but could significantly prevent the risk of bleeding caused by clopidogrel.
PMID:35895507 | DOI:10.1002/bmc.5463
Dissecting the role of cell signaling versus CD8<sup>+</sup> T cell modulation in propranolol antitumor activity
J Mol Med (Berl). 2022 Jul 27. doi: 10.1007/s00109-022-02238-8. Online ahead of print.
ABSTRACT
Preclinical and early clinical mechanistic studies of antitumor activity from the beta-adrenergic receptor (β-AR) blocker propranolol have revealed both cell signaling and immune function pathway effects. Intertumoral studies were performed using propranolol, a β1-AR selective agent (atenolol), and a β2-AR selective agent (ICI 118,551) in a preclinical in vivo model, as a step to dissect the contribution of cell signaling and CD8+ immunological effects on anticancer activity. We found that repression of β2-AR but not β1-AR signaling selectively suppressed cell viability and inhibited xenograft growth in vivo. Moreover, western blot analysis indicated that the phosphorylation levels of AKT/MEK/ERK were significantly decreased following the inhibition of β2-AR. Furthermore, propranolol was found to activate the tumor microenvironment by inducing an increased intratumoral frequency of CD8+ T cells, whereas neither selective β1 nor β2-AR blockers had a significant effect on the tumor immune microenvironment. Thus, the results of this mechanistic dissection support a predominant role of tumor cell signaling, rather than the accumulation of CD8+ T cells, as the basis for propranolol antitumor activity. KEY MESSAGES : Molecular signaling of AKT/MAPK pathway contributes to propranolol caused cancer control. CD8+ T cells in tumor microenvironment were activated upon propranolol exposure. The basis for propranolol antitumor activity was predominantly dependent on cell signaling, rather than the activation of CD8+ T cells.
PMID:35895125 | DOI:10.1007/s00109-022-02238-8
Effects of liraglutide on gastrointestinal functions and weight in obesity: A randomized clinical and pharmacogenomic trial
Obesity (Silver Spring). 2022 Aug;30(8):1608-1620. doi: 10.1002/oby.23481.
ABSTRACT
OBJECTIVE: This study aimed to determine the effects of a long-acting glucagon-like peptide-1 (GLP-1) receptor agonist, liraglutide, and placebo subcutaneously over 16 weeks on weight and gastric functions and to evaluate associations of single-nucleotide polymorphisms in GLP1R (rs6923761) and TCF7L2 (rs7903146) with effects of liraglutide.
METHODS: The study conducted a randomized, parallel-group, placebo-controlled, 16-week trial of liraglutide, escalated to 3 mg subcutaneously daily in 136 otherwise healthy adults with obesity. Weight, gastric emptying of solids (GES), gastric volumes, satiation, and body composition measured at baseline and after treatment were compared in two treatment groups using analysis of covariance.
RESULTS: Liraglutide (n = 59) and placebo (n = 65) groups completed treatment. Relative to placebo, liraglutide increased weight loss at 5 and 16 weeks (both p < 0.05), slowed time to half GES (T1/2 ) at 5 and 16 weeks (both p < 0.001), and increased fasting gastric volume (p = 0.01) and satiation (p < 0.01) at 16 weeks. GES T1/2 was positively correlated with weight loss on liraglutide (both p < 0.001). After 16 weeks of liraglutide, GLP1R rs6923761 (AG/AA vs. GG) was associated with reduced percent body fat (p = 0.062), and TCF7L2 rs7903146 (CC vs. CT/TT) was associated with lower body weight (p = 0.015).
CONCLUSIONS: Liraglutide, 3 mg, induces weight loss with delay in GES T1/2 and reduces calorie intake. Slowing GES and variations in GLP1R and TCF7L2 are associated with liraglutide effects in obesity.
PMID:35894080 | DOI:10.1002/oby.23481
Genetic Polymorphisms in VEGFR Coding Genes (<em>FLT1</em>/<em>KDR</em>) on Ranibizumab Response in High Myopia and Choroidal Neovascularization Patients
Pharmaceutics. 2022 Jul 26;14(8):1555. doi: 10.3390/pharmaceutics14081555.
ABSTRACT
A severe form of myopia defined as pathologic/high myopia is the main cause of visual impairment and one of the most frequent causes of blindness worldwide. It is characterized by at least 6 diopters or axial length (AL) of eyeball >26 mm and choroidal neovascularization (CNV) in 5 to 10% of cases. Ranibizumab is a humanized recombinant monoclonal antibody fragment targeted against human vascular endothelial growth factor A (VEGF-A) used in the treatment of CNV. It acts by preventing VEGF-A from interacting with its receptors (VEGFR-1 and -2) encoded by the FLT1 and KDR genes. Several studies found that the KDR and FLT1 genotypes may represent predictive determinants of efficacy in ranibizumab-treated neovascular age-related macular degeneration (nAMD) patients. We performed a retrospective study to evaluate the association of single nucleotide polymorphisms (SNPs) in VEGFR coding genes with the response rate to ranibizumab in patients with high myopia and CNV. In the association study of genotypes in FLT1 with the response to ranibizumab, we found a significant association between two FLT1 variants (rs9582036, rs7993418) with ranibizumab efficacy at the 12-month follow-up. About the KDR gene, we found that two KDR variants (rs2305948, rs2071559) are associated with best-corrected visual acuity (BCVA) improvement and KDR (rs2239702) is associated with lower rates of BCVA worsening considering a 12-month follow-up period.
PMID:35893809 | DOI:10.3390/pharmaceutics14081555
A Guide to a Pharmacist-Led Pharmacogenetic Testing and Counselling Service in an Interprofessional Healthcare Setting
Pharmacy (Basel). 2022 Jul 19;10(4):86. doi: 10.3390/pharmacy10040086.
ABSTRACT
Genetic predisposition is one factor influencing interindividual drug response. Pharmacogenetic information can be used to guide the selection and dosing of certain drugs. However, the implementation of pharmacogenetics (PGx) in clinical practice remains challenging. Defining a formal structure, as well as concrete procedures and clearly defined responsibilities, may facilitate and increase the use of PGx in clinical practice. Over 140 patient cases from an observational study in Switzerland formed the basis for the design and refinement of a pharmacist-led pharmacogenetics testing and counselling service (PGx service) in an interprofessional setting. Herein, we defined a six-step approach, including: (1) patient referral; (2) pre-test-counselling; (3) PGx testing; (4) medication review; (5) counselling; (6) follow-up. The six-step approach supports the importance of an interprofessional collaboration and the role of pharmacists in PGx testing and counselling across healthcare settings.
PMID:35893724 | DOI:10.3390/pharmacy10040086
Investigation of Biomedical Students' Attitudes toward Pharmacogenomics and Personalized Medicine: A Cross-Sectional Study
Pharmacy (Basel). 2022 Jun 28;10(4):73. doi: 10.3390/pharmacy10040073.
ABSTRACT
BACKGROUND: The utilization of pharmacogenomics in everyday practice has shown several notable benefits. Keeping in mind the rising trend of applicability of pharmacogenomics and personalized medicine, we sought to compare the attitudes of future healthcare workers in different branches of the healthcare system.
METHODS: The present study was conducted as a questionnaire-based cross-sectional study in October of 2020. Students eligible to participate were all the students of the University of Split School of Medicine enrolled in the academic year 2020/2021.
RESULTS: The number of students that participated in the study was 503. Students were most interested in clinical examples of pharmacogenomics (31.4%) and the benefits of pharmacogenomics in clinical practice (36.4%). Furthermore, 72.6% of all students agreed that they should be able, in their future practice, to identify patients that could benefit from genetic testing.
CONCLUSION: At the present time, the lack of education and appropriate clinical guidelines appear to be the major barriers to the clinical application of pharmacogenomics, especially in Croatia. Hence, in order to support health care professionals' evidence-based therapeutic recommendations with patients' pharmacogenomic data, universities should offer more pharmacogenomics education in their curricula.
PMID:35893711 | DOI:10.3390/pharmacy10040073
Genetic and Phenotypic Factors Affecting Glycemic Response to Metformin Therapy in Patients with Type 2 Diabetes Mellitus
Genes (Basel). 2022 Jul 23;13(8):1310. doi: 10.3390/genes13081310.
ABSTRACT
Metformin is an oral hypoglycemic agent widely used in clinical practice for treatment of patients with type 2 diabetes mellitus (T2DM). The wide interindividual variability of response to metformin therapy was shown, and recently the impact of several genetic variants was reported. To assess the independent and combined effect of the genetic polymorphism on glycemic response to metformin, we performed an association analysis of the variants in ATM, SLC22A1, SLC47A1, and SLC2A2 genes with metformin response in 299 patients with T2DM. Likewise, the distribution of allele and genotype frequencies of the studied gene variants was analyzed in an extended group of patients with T2DM (n = 464) and a population group (n = 129). According to our results, one variant, rs12208357 in the SLC22A1 gene, had a significant impact on response to metformin in T2DM patients. Carriers of TT genotype and T allele had a lower response to metformin compared to carriers of CC/CT genotypes and C allele (p-value = 0.0246, p-value = 0.0059, respectively). To identify the parameters that had the greatest importance for the prediction of the therapy response to metformin, we next built a set of machine learning models, based on the various combinations of genetic and phenotypic characteristics. The model based on a set of four parameters, including gender, rs12208357 genotype, familial T2DM background, and waist-hip ratio (WHR) showed the highest prediction accuracy for the response to metformin therapy in patients with T2DM (AUC = 0.62 in cross-validation). Further pharmacogenetic studies may aid in the discovery of the fundamental mechanisms of type 2 diabetes, the identification of new drug targets, and finally, it could advance the development of personalized treatment.
PMID:35893047 | DOI:10.3390/genes13081310
Use of Pharmacogenetics to Optimize Immunosuppressant Therapy in Kidney-Transplanted Patients
Biomedicines. 2022 Jul 26;10(8):1798. doi: 10.3390/biomedicines10081798.
ABSTRACT
Immunosuppressant drugs (ISDs) are routinely used in clinical practice to maintain organ transplant survival. However, these drugs are characterized by a restricted therapeutic index, a high inter- and intra-individual pharmacokinetic variability, and a series of severe adverse effects. In particular, genetic factors have been estimated to play a role in this variability because of polymorphisms regarding genes encoding for enzymes and transporters involved in the ISDs pharmacokinetic. Several studies showed important correlations between genetic polymorphisms and ISDs blood levels in transplanted patients; therefore, this review aims to summarize the pharmacogenetics of approved ISDs. We used PubMed database to search papers on pharmacogenetics of ISDs in adults or pediatric patients of any gender and ethnicity receiving immunosuppressive therapy after kidney transplantation. We utilized as search term: "cyclosporine or tacrolimus or mycophenolic acid or sirolimus or everolimus and polymorphism and transplant". Our data showed that polymorphisms in CYP3A5, CYP3A4, ABCB1, and UGT1A9 genes could modify the pharmacokinetics of immunosuppressants, suggesting that patient genotyping could be a helpful strategy to select the ideal ISDs dose for each patient.
PMID:35892699 | DOI:10.3390/biomedicines10081798
Pharmacogenetics of Taxane-Induced Neurotoxicity in Breast Cancer: Systematic Review and Meta-Analysis
Clin Transl Sci. 2022 Jul 27. doi: 10.1111/cts.13370. Online ahead of print.
ABSTRACT
Taxane-based chemotherapy regimens are used as first-line treatment for breast cancer. Neurotoxicity, mainly taxane-induced peripheral neuropathy (TIPN), remains the most important dose-limiting adverse event. Multiple genes may be associated with TIPN; however, the strength and direction of the association remain unclear. For this reason, we systematically reviewed observational studies of TIPN pharmacogenetic markers in breast cancer treatment. We conducted a systematic search of terms alluding to breast cancer, genetic markers, taxanes, and neurotoxicity in Ovid, ProQuest, PubMed, Scopus, Virtual Health and Web of Science. We assessed the quality of evidence and bias profile. We extracted relevant variables and effect measures. Whenever possible, we performed random-effects gene meta-analyses and examined inter-study heterogeneity with meta-regression models and subgroup analyses. This study follows the PRISMA and STREGA reporting guidance. A total of 42 studies with 19,431 participants were included. These evaluated 262 single-nucleotide polymorphisms (SNPs) across 121 genes. We conducted meta-analyses on 23 genes with 60 SNPs (19 studies and 6,246 participants). Thirteen individual SNPs (ABCB1-rs2032582, ABCB1-rs3213619, BCL6/-rs1903216, /CAND1-rs17781082, CYP1B1-rs1056836, CYP2C8-rs10509681, CYP2C8-rs11572080, EPHA5-rs7349683, EPHA6-rs301927, FZD3-rs7001034, GSTP1-rs1138272, TUBB2A-rs9501929, XKR4-rs4737264) and the overall SNPs' effect in four genes (CYP3A4, EphA5, GSTP1, SLCO1B1) were statistically significantly associated with TIPN through meta-analysis. In conclusion, through systematic review and meta-analysis, we found that polymorphisms, and particularly 13 SNPs, are associated with TIPN, suggesting that genetics does play a role in interindividual predisposition. Further studies could potentially use these findings to develop individual risk profiles and guide decision making.
PMID:35892315 | DOI:10.1111/cts.13370
HYGIEIA: HYpothesizing the Genesis of Infectious Diseases and Epidemics through an Integrated Systems Biology Approach
Viruses. 2022 Jun 23;14(7):1373. doi: 10.3390/v14071373.
ABSTRACT
More than two years on, the COVID-19 pandemic continues to wreak havoc around the world and has battle-tested the pandemic-situation responses of all major global governments. Two key areas of investigation that are still unclear are: the molecular mechanisms that lead to heterogenic patient outcomes, and the causes of Post COVID condition (AKA Long-COVID). In this paper, we introduce the HYGIEIA project, designed to respond to the enormous challenges of the COVID-19 pandemic through a multi-omic approach supported by network medicine. It is hoped that in addition to investigating COVID-19, the logistics deployed within this project will be applicable to other infectious agents, pandemic-type situations, and also other complex, non-infectious diseases. Here, we first look at previous research into COVID-19 in the context of the proteome, metabolome, transcriptome, microbiome, host genome, and viral genome. We then discuss a proposed methodology for a large-scale multi-omic longitudinal study to investigate the aforementioned biological strata through high-throughput sequencing (HTS) and mass-spectrometry (MS) technologies. Lastly, we discuss how a network medicine approach can be used to analyze the data and make meaningful discoveries, with the final aim being the translation of these discoveries into the clinics to improve patient care.
PMID:35891354 | DOI:10.3390/v14071373
Clinical Impact of Functional CYP2C19 and CYP2D6 Gene Variants on Treatment with Antidepressants in Young People with Depression: A Danish Cohort Study
Pharmaceuticals (Basel). 2022 Jul 14;15(7):870. doi: 10.3390/ph15070870.
ABSTRACT
BACKGROUND: The clinical impact of the functional CYP2C19 and CYP2D6 gene variants on antidepressant treatment in people with depression is not well studied. Here, we evaluate the utility of pharmacogenetic (PGx) testing in psychiatry by investigating the association between the phenotype status of the cytochrome P450 (CYP) 2C19/2D6 enzymes and the one-year risks of clinical outcomes in patients with depression with incident new-use of (es)citalopram, sertraline, or fluoxetine.
METHODS: This study is a population-based cohort study of 17,297 individuals who were born between 1981 and 2005 with a depression diagnosis between 1996 and 2012. Using array-based single-nucleotide-polymorphism genotype data, the individuals were categorized according to their metabolizing status of CYP2C19/CYP2D6 as normal (NM, reference group), ultra-rapid- (UM), rapid- (RM), intermediate- (IM), or poor-metabolizer (PM). The outcomes were treatment switching or discontinuation, psychiatric emergency department contacts, and suicide attempt/self-harm. By using Poisson regression analyses, we have estimated the incidence rate ratios (IRR) with 95% confidence intervals (95% CI) that were adjusted for covariates and potential confounders, by age groups (<18 (children and adolescents), 19-25 (young adults), and 26+ years (adults)), comparing the outcomes in individuals with NM status (reference) versus the mutant metabolizer status. For statistically significant outcomes, we have calculated the number needed to treat (NNT) and the number needed to genotype (NNG) in order to prevent one outcome.
RESULTS: The children and adolescents who were using (es)citalopram with CYP2C19 PM status had increased risks of switching (IRR = 1.64 [95% CI: 1.10-2.43]) and suicide attempt/self-harm (IRR = 2.67 [95% CI; 1.57-4.52]). The young adults with CYP2C19 PM status who were using sertraline had an increased risk of switching (IRR = 2.06 [95% CI; 1.03-4.11]). The young adults with CYP2D6 PM status who were using fluoxetine had an increased risk of emergency department contacts (IRR = 3.28 [95% CI; 1.11-9.63]). No significant associations were detected in the adults. The NNG for preventing one suicide attempt/suicide in the children who were using (es)citalopram was 463, and the NNT was 11.
CONCLUSION: The CYP2C19 and CYP2D6 PM phenotype statuses were associated with outcomes in children, adolescents, and young adults with depression with incident new-use of (es)citalopram, sertraline, or fluoxetine, therefore indicating the utility of PGx testing, particularly in younger people, for PGx-guided antidepressant treatment.
PMID:35890168 | DOI:10.3390/ph15070870
Pharmacogenetics of Metformin Transporters Suggests No Association with Therapeutic Inefficacy among Diabetes Type 2 Mexican Patients
Pharmaceuticals (Basel). 2022 Jun 22;15(7):774. doi: 10.3390/ph15070774.
ABSTRACT
Mexico has been under official epidemiological alert due to diabetes since 2016. This study presents new information on the frequency and variants of metformin transporters OCT1, OCT2, OCT3, ABCB1, and CYP2C9 variants as well. It also reports the association with HbA1c control on 103 DMT2 patients. They were genotyped through real-time PCR (TaqMan assays) and grouped according to treatment: metformin and metformin + glibenclamide. Metformin plasmatic levels were determined through mass spectrometry. The analysis of HbA1c showed statistical significance across genotypes in polymorphisms rs72552763 (p = 0.022), rs622342 (p = 0.009), rs1128503 (p = 0.021), and rs2032582 (p = 0.009) within the monotherapy group. Bivariate analysis found no association between any polymorphism and HbA1c control. Two logistic regression models accounted for two diplotypes in OCT1 and ABCB1, including statistically significant covariates. The first model yielded significance in age (p = 0.026), treatment period [p = 0.001], BMI ≥ 25 kg/m2 (p = 0.043), and combined therapy (p < 0.001). There was no association with GAT/GAT of rs72552763 or A/A rs622342 in OCT1. The second model yielded significance in age (p = 0.017), treatment period (p = 0.001), BMI ≥ 25 kg/m2 (p = 0.042), and combined therapy (p < 0.001), finding no association with C/C of rs1128503 or G/G of rs2032582 in ABCB1. Our multinomial logistic regression results may benefit future predictive analyses in diabetic populations.
PMID:35890074 | DOI:10.3390/ph15070774
The Expression Profiles of the <em>Salvia miltiorrhiza</em>&amp;nbsp;<em>3-Hydroxy-3-methylglutaryl-coenzyme A Reductase 4</em> Gene and Its Influence on the Biosynthesis of Tanshinones
Molecules. 2022 Jul 7;27(14):4354. doi: 10.3390/molecules27144354.
ABSTRACT
Salvia miltiorrhiza is a medicinal plant that synthesises biologically-active tanshinones with numerous therapeutic properties. An important rate-limiting enzyme in the biosynthesis of their precursors is 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). This study presents the organ-specific expression profile of the S. miltiorrhiza HMGR4 gene and its sensitivity to potential regulators, viz. gibberellic acid (GA3), indole-3-acetic acid (IAA) and salicylic acid (SA). In addition, it demonstrates the importance of the HMGR4 gene, the hormone used, the plant organ, and the culture environment for the biosynthesis of tanshinones. HMGR4 overexpression was found to significantly boost the accumulation of dihydrotanshinone I (DHTI), cryptotanshinone (CT), tanshinone I (TI) and tanshinone IIA (TIIA) in roots by 0.44 to 5.39 mg/g dry weight (DW), as well as TIIA in stems and leaves. S. miltiorrhiza roots cultivated in soil demonstrated higher concentrations of the examined metabolites than those grown in vitro. GA3 caused a considerable increase in the quantity of CT (by 794.2 µg/g DW) and TIIA (by 88.1 µg/g DW) in roots. In turn, IAA significantly inhibited the biosynthesis of the studied tanshinones in root material.
PMID:35889227 | DOI:10.3390/molecules27144354
CYP2C19 and CYP2D6 Genotypes and Metabolizer Status Distribution in a Bulgarian Psychiatric Cohort
J Pers Med. 2022 Jul 21;12(7):1187. doi: 10.3390/jpm12071187.
ABSTRACT
CYP2D6 and CYP2C19 are enzymes of essential significance for the pharmacokinetics of a multitude of commonly used antidepressants, antipsychotics, antiemetics, β-blockers, opioids, antiestrogen, antacids, etc. Polymorphisms in the respective genes are well established as resulting in functional differences, which in turn can impact safety and efficacy. Importantly, the prevalence of genetic CYP2D6 and CYP2C19 variability differs drastically between populations. Drawing on the limited information concerning genotype frequencies in Bulgaria, we here analyzed 742 Bulgarian psychiatric patients predominantly diagnosed with depression and/or anxiety. Specifically, we analyzed frequencies of CYPC19*2, *4 and *17, as well as of CYP2D6*2, *3, *4, *5, *6, *10 and *41. In total, 571 out of 742 patients (77%) carried at least one variant which impacts metabolizer status. Overall, 48.6% of the studied individuals were classified as non-normal metabolizers of CYP2D6 with most exhibiting reduced function (38.2% intermediate metabolizers and 6.6% poor metabolizers). In contrast, for CYP2C19, the majority of non-normal metabolizers showed increased functionality (28.9% rapid and 5.5% ultrarapid metabolizers), while reduced activity metabolizer status accounted for 25.6% (23.8% intermediate and 1.8% poor metabolizers). These results provide an important resource to assess the genetically encoded functional variability of CYP2D6 and CYP2C19 which may have significant implications for precision medicine in Bulgarian psychiatry practice.
PMID:35887684 | DOI:10.3390/jpm12071187
Effect Modification by Social Determinants of Pharmacogenetic Medication Interactions on 90-Day Hospital Readmissions within an Integrated U.S. Healthcare System
J Pers Med. 2022 Jul 15;12(7):1145. doi: 10.3390/jpm12071145.
ABSTRACT
The present study builds on our prior work that demonstrated an association between pharmacogenetic interactions and 90-day readmission. In a substantially larger, more diverse study population of 19,999 adults tracked from 2010 through 2020 who underwent testing with a 13-gene pharmacogenetic panel, we included additional covariates to evaluate aggregate contribution of social determinants and medical comorbidity with the presence of identified gene-x-drug interactions to moderate 90-day hospital readmission (primary outcome). Univariate logistic regression analyses demonstrated that strongest associations with 90 day hospital readmissions were the number of medications prescribed within 30 days of a first hospital admission that had Clinical Pharmacogenomics Implementation Consortium (CPIC) guidance (CPIC medications) (5+ CPIC medications, odds ratio (OR) = 7.66, 95% confidence interval 5.45-10.77) (p < 0.0001), major comorbidities (5+ comorbidities, OR 3.36, 2.61-4.32) (p < 0.0001), age (65 + years, OR = 2.35, 1.77-3.12) (p < 0.0001), unemployment (OR = 2.19, 1.88-2.64) (p < 0.0001), Black/African-American race (OR 2.12, 1.47-3.07) (p < 0.0001), median household income (OR = 1.63, 1.03-2.58) (p = 0.035), male gender (OR = 1.47, 1.21-1.80) (p = 0.0001), and one or more gene-x-drug interaction (defined as a prescribed CPIC medication for a patient with a corresponding actionable pharmacogenetic variant) (OR = 1.41, 1.18-1.70). Health insurance was not associated with risk of 90-day readmission. Race, income, employment status, and gene-x-drug interactions were robust in a multivariable logistic regression model. The odds of 90-day readmission for patients with one or more identified gene-x-drug interactions after adjustment for these covariates was attenuated by 10% (OR = 1.31, 1.08-1.59) (p = 0.006). Although the interaction between race and gene-x-drug interactions was not statistically significant, White patients were more likely to have a gene-x-drug interaction (35.2%) than Black/African-American patients (25.9%) who were not readmitted (p < 0.0001). These results highlight the major contribution of social determinants and medical complexity to risk for hospital readmission, and that these determinants may modify the effect of gene-x-drug interactions on rehospitalization risk.
PMID:35887642 | DOI:10.3390/jpm12071145