Pharmacogenomics
Improvement of Mueller-Kauffman Tetrathionate-Novobiocin (MKTTn) enrichment medium for the detection of Salmonella enterica by the addition of ex situ-generated tetrathionate
J Microbiol Methods. 2022 Jun 19:106524. doi: 10.1016/j.mimet.2022.106524. Online ahead of print.
ABSTRACT
The detection of Salmonella in food is based on the use of a selective enrichment broth such as Muller-Kauffman Tetrathionate-Novobiocin (MKTTn), in which tetrathionate plays a key role by providing Salmonella with a growth advantage. As sodium tetrathionate is unstable, it is generated in situ by the addition of iodine (Lugol's solution) before seeding. This step is cumbersome as the solution is easily spilled, compromising the performance of the medium and hindering the work of technicians. The aim of this study was to optimize MKTTn broth by generating tetrathionate ex situ through an external reaction between iodine and thiosulphate followed by lyophilization. Quality control procedures were performed to compare the modified and original media, testing pure productivity (enrichment with 50-120 CFU of Salmonella Thyphimurim ATCC 14028 and Salmonella Enteritidis ATCC 13076 and plating on Xylose Lysine Deoxycholate agar, XLD), mixed productivity (50-120 CFU of Salmonella strains and Pseudomonas aeruginosa and Escherichia coli at ≥104 CFU and XLD plating) and selectivity (≥104 CFU of P. aeruginosa and Enterococcus faecalis and plating on Tryptone Casein Soy agar, TSA). The modified MKTTn medium (S/L) performed comparably with the original medium in terms of growth of both Salmonella strains (>300 colonies in XLD), alone or with P. aeruginosa and E. coli. Quantitative assays showed no statistically significant differences in the number of colonies grown on XLD after 10-5 dilution (p = 0.7015 with S. Thyphimurim ATCC 14028 and p = 0.2387 with S. enteritidis ATCC 13076; ANOVA test). MKTTn medium (S/L) was also selective against E. coli (≤100 colonies) and E. faecalis (<10 colonies). These results suggest that adding tetrathionate as a lyophilisate (S/L) is a feasible alternative to the use of Lugol's solution for the preparation of MKTTn enrichment broth and does not affect the properties of the medium.
PMID:35732231 | DOI:10.1016/j.mimet.2022.106524
Drugs-associated with red man syndrome: An integrative approach using disproportionality analysis and Pharmip
J Clin Pharm Ther. 2022 Jun 22. doi: 10.1111/jcpt.13716. Online ahead of print.
ABSTRACT
WHAT IS KNOWN AND OBJECTIVE: Red man syndrome (RMS) is a non-IgE-mediated anaphylactoid adverse event frequently witnessed after a rapid infusion of vancomycin. This study aims to unravel drugs and associated off-label targets that induce RMS by exploiting FDA Adverse Event Reporting System (FAERS) and Pharmacovigilance/Pharmacogenomics Insilico Pipeline (PHARMIP).
METHODS: The case/non-case retrospective observational study was conducted in the FAERS database. Reporting odds ratio (ROR) and proportional reporting ratio (PRR) data mining algorithms were used to evaluate the strength of the signal. The off-label targets of the drugs with potential signals were obtained using online servers by applying a similarity ensemble approach and a reverse pharmacophore database, which was further validated by molecular docking studies.
RESULTS AND DISCUSSION: Oritavancin exhibited a strong positive signal (PRR:1185.20 and ROR:1256), which suggests a higher risk for causing RMS. The literature search revealed the involvement of the MRGPRX2 gene in the development of RMS. PHARMIP study unearthed Carbonic anhydrase II (CA2) as the common off-label target among the drugs causing RMS. The results obtained from molecular docking studies reinforced the findings as mentioned earlier, wherein the highest docking score was disinterred for oritavancin (-9.4 for MRGPRX2 and - 8.7 for CA2).
WHAT IS NEW AND CONCLUSION: Many antibiotics and other classes of medications have been discovered in the quest for drugs that may induce RMS, although a causal relationship could not be established. The implication of MRGPX2 and CA2 in the initial stages of pathogenesis necessitates the development of inhibitors that could be used as potential therapeutic agents against RMS.
PMID:35730973 | DOI:10.1111/jcpt.13716
<em>ABCB1</em> and <em>OPRM1</em> single-nucleotide polymorphisms collectively modulate chronic shoulder pain and dysfunction in South African breast cancer survivors
Pharmacogenomics. 2022 Jun 21. doi: 10.2217/pgs-2022-0020. Online ahead of print.
ABSTRACT
Background: Chronic shoulder pain/disability is a well-recognized side effect of treatment for breast cancer, with ∼40% of patients experiencing this, despite receiving pain management. To manage acute and chronic pain, several opioids are commonly prescribed. Pharmacogenomics have implicated genes within the opioid signaling pathway, including ABCB1 and OPRM1, to contribute to an individual's variable response to opioids. Aim: To evaluate ABCB1 (rs1045642 G>A, rs1128503 G>A) and OPRM1 (rs1799971 A>G, rs540825 T>A) single-nucleotide polymorphisms (SNPs) in chronic shoulder pain/disability in BCS. Materials and methods: TaqManTM assays were used to genotype ABCB1 and OPRM1 SNPs within the BCS (N = 252) cohort. The Shoulder Pain and Disability Index was used to evaluate pain and disability features associated with shoulder pathologies. Participants end scores for each feature (pain, disability and combined [pain and disability]) were categorized into no-low (>30%) and moderate-high (≥30%) scores. Statistical analysis was applied, and significance was accepted at p < 0.05. Results: 27.0, 19.0 and 22.0% of participants reported moderate-high pain, disability and combined (pain and disability) scores, respectively. ABCB1:rs1045642-(A/A) genotype was significantly associated with disability (p = 0.028: no-low [14.9%] vs mod-high [4.3%]) and combined (pain and disability) (p = 0.011: no-low [15.9%] vs mod-high [5.7%]). The ABCB1:rs1045642-(A) allele was significantly associated with disability (p = 0.015: no-low [37.9%] vs mod-high [23.9%]) and combined (pain and disability) (p = 0.003: no-low [38.5%] vs mod-high [23.6%]). The inferred ABCB1 (rs1045642 G>A-rs1128503 G>A): A-G (p = 0.029; odds ratio [OR]: 0.0; 95% CI: 0.0-0.0) and the OPRM1 (rs1799971 A>G - rs540825 T>A): G-T (p = 0.019; OR: 0.33; 95% CI: 0.14-0.75) haplotypes were associated with disability and pain, respectively. Gene-gene interactions showed the ABCB1 (rs1045642 G>A) - OPRM1 (rs540825 T>A) combinations, (A-T) (p = 0.019; OR: 0.62; 95% CI: 0.33-1.16) and (G-A) (p = 0.021; OR: 1.57; 95% CI: 0.30-3.10) were associated with disability. Conclusion: The study implicated ABCB1 with shoulder pain and disability; and haplotype analyses identified specific genetic intervals within ABCB1 and OPRM1 to associate with chronic shoulder pain and disability. Evidence suggests that potentially gene-gene interactions between ABCB1 and OPRM1 contribute to chronic shoulder pain and disability experienced in this SA cohort.
PMID:35727214 | DOI:10.2217/pgs-2022-0020
Effective percutaneous coronary intervention against compression by primitive mediastinal myxoid liposarcoma
Seizure medication and planned pregnancy: balancing the risks and outcomes
Expert Rev Neurother. 2022 Jun 21. doi: 10.1080/14737175.2022.2093107. Online ahead of print.
ABSTRACT
INTRODUCTION: : The therapeutic management of women with epilepsy (WWE) of childbearing age can be complicated by the need to balance maternal/fetal risks related to seizure occurrence during gestation with the potential teratogenic risks related to the use of anti-seizure medications (ASMs).
AREAS COVERED: : The authors review clinical evidence on seizure-related and ASM-related risks during pregnancy. Current regulatory indications are discussed, evaluating their impact on clinical practice, and ethical implications of pharmacological decisions are debated.
EXPERT OPINION: : If properly informed about the maternal/fetal risks carried by different pharmacological choices, WWE can become the final decision makers regarding their care in every phase of their life. Over the coming years, analysis of aggregated pregnancy registry data on the structural impact, on the fetus, of low doses of valproate and of newer ASMs, together with analysis of the main population study data on functional (cognitive and behavioral) outcomes, could lead to huge advances, making choosing an ASM a less complex process for the clinician and a less painful decision for the woman. Future objectives should include identification of the potential role of the pharmacogenomic profile of WWE in determining the risk of fetal malformations.
PMID:35726788 | DOI:10.1080/14737175.2022.2093107
Development of Physiology Based Pharmacokinetic Model to Predict the Drug Interactions of Voriconazole and Venetoclax
Pharm Res. 2022 Jun 21. doi: 10.1007/s11095-022-03289-9. Online ahead of print.
ABSTRACT
PURPOSE: Venetoclax (VEN), an anti-tumor drug that is a substrate of cytochrome P450 3A enzyme (CYP3A4), is used to treat leukemia. Voriconazole (VCZ) is an antifungal medication that inhibits CYP3A4. The goal of this study is to predict the effect of VCZ on VEN exposure.
METHOD: Two physiological based pharmacokinetics (PBPK) models were developed for VCZ and VEN using the bottom-up and top-down method. VCZ model was also developed to describe the effect of CYP2C19 polymorphism on its pharmacokinetics (PK). The reversible inhibition constant (Ki) of VCZ for CYP3A4 was calibrated using drug-drug interaction (DDI) data of midazolam and VCZ. The clinical verified VCZ and VEN model were used to predict the DDI of VCZ and VEN at clinical dosing scenario.
RESULT: VCZ model predicted VCZ exposure in the subjects of different CYP2C19 genotype and DDI related fold changes of sensitive CYP3A substrate with acceptable prediction error. VEN model can capture PK of VEN with acceptable prediction error. The DDI PBPK model predicted that VCZ increased the exposure of VEN by 4.5-9.6 fold. The increase in VEN exposure by VCZ was influenced by subject's CYP2C19 genotype. According to the therapeutic window, VEN dose should be reduced to 100 mg when co-administered with VCZ.
CONCLUSION: The PBPK model developed here could support individual dose adjustment of VEN and DDI risk assessment. Predictions using the robust PBPK model confirmed that the 100 mg dose adjustment is still applicable in the presence of VCZ with high inter-individual viability.
PMID:35725843 | DOI:10.1007/s11095-022-03289-9
miRNAs as potential diagnostic biomarkers and pharmacogenomic indicators in psychiatric disorders
Pharmacogenomics J. 2022 Jun 20. doi: 10.1038/s41397-022-00283-7. Online ahead of print.
ABSTRACT
The heterogeneity of psychiatric disorders and the lack of reliable biomarkers for prediction and treatments follow-up pose difficulties towards recognition and understanding of the molecular basis of psychiatric diseases. However, several studies based on NGS approaches have shown that miRNAs could regulate gene expression during onset and disease progression and could serve as potential diagnostic and pharmacogenomics biomarkers during treatment. We provide herein a detailed overview of circulating miRNAs and their expression profiles as biomarkers in schizophrenia, bipolar disorder and major depressive disorder and their role in response to specific treatments. Bioinformatics analysis of miR-34a, miR-106, miR-134 and miR-132, which are common among SZ, BD and MDD patients, showed brain enrichment and involvement in the modulation of critical signaling pathways, which are often deregulated in psychiatric disorders. We propose that specific miRNAs support accurate diagnosis and effective precision treatment of psychiatric disorders.
PMID:35725816 | DOI:10.1038/s41397-022-00283-7
Methotrexate: Implications of pharmacogenetics in the treatment of patients with Rheumatoid Arthritis
ARP Rheumatol. 2022 Feb 27. Online ahead of print.
ABSTRACT
BACKGROUND: Methotrexate (MTX) is an anti-folate drug with anti-proliferative and anti-inflammatory effects. MTX proved to be the most highly effective, fast-acting disease modifying anti-rheumatic drug (DMARD), being widely used for the treatment of rheumatoid arthritis (RA). This review aims to describe the main genetic variants identified concerning proteins that play a role in methotrexate's kinetics and efficiency profile.
METHODS: A literature review was conducted since January of 2000 until December 2020, by searching the PubMed and Embase bibliographic databases, employing the following MeSH terms: methotrexate, pharmacogenetics, pharmacokinetics, and rheumatoid arthritis. The search was limited to articles in English language. Two independent reviewers screened the titles and abstracts followed by a full-text review to assess papers regarding their eligibility. A total of 48 articles matched the research criteria and were analyzed.
RESULTS: Reduced folate carrier 1 (RFC1), a constitutively expressed folate transport protein that has high affinity for MTX is responsible, almost exclusively, for the transport of folate and MTX into the cell. The most studied variant of the gene is the 80G>A variant, mapped within exon 2, on chromosome 21. It seems to improve RA responses to MTX, clinical efficacy with long disease remission. ABC transporters are involved in the efflux of MTX from cells. An increased expression and function of these transporters should decrease MTX concentrations in target cells, resulting in lack of therapeutic response. ABCB1 3435 C/T is a high frequency polymorphism, significantly associated with RA good responses, symptom remission and reduced adverse events, due to MTX treatment. Thymidylate synthase (TYMS) is involved in thymidine synthesis. MTX decreases TYMS activity by inhibition and decreasing the access to tetrahydrofolate (THF) cofactors. The most common genetic variant of the TYMS gene consists of a 28 bp tandem repeat, with double and triple number of repeats (2R and 3R). The 3R allele genotype was associated with decreased efficacy and increased toxicity. The 5,10-methylenetetrahydrofolate reductase (MTHFR) enzyme is indirectly inhibited by MTX. The most common SNPs of the MTHFR gene are C677T and A1298C. Both are associated with a decreased efficacy and an increased toxicity of MTX.
CONCLUSION: MTX response is affected by many gene variants; the effect of each variant separately is likely to be small. Additionally, gene-gene interaction seems to enhance the potential role of linkage disequilibrium. This shows the emerging need for a better gene characterization and to improve the knowledge about variants distribution according to ethnicity, to explain different responses to MTX at an individual level.
PMID:35724450
Soluble CD147 (BSG) as a Prognostic Marker in Multiple Myeloma
Curr Issues Mol Biol. 2022 Jan 14;44(1):350-359. doi: 10.3390/cimb44010026.
ABSTRACT
CD147 (basigin, BSG) is a membrane-bound glycoprotein involved in energy metabolism that plays a role in cancer cell survival. Its soluble form is a promising marker of some diseases, but it is otherwise poorly studied. CD147 is overexpressed in multiple myeloma (MM) and is known to affect MM progression, while its genetic variants are associated with MM survival. In the present study, we aimed to assess serum soluble CD147 (sCD147) expression as a potential marker in MM. We found that sCD147 level was higher in MM patients compared to healthy individuals. It was also higher in patients with more advanced disease (ISS III) compared to both patients with less advanced MM and healthy individuals, while its level was observed to drop after positive response to treatment. Patients with high sCD147 were characterized by worse progression-free survival. sCD147 level did not directly correlate with bone marrow CD147 mRNA expression. In conclusion, this study suggests that serum sCD147 may be a prognostic marker in MM.
PMID:35723405 | DOI:10.3390/cimb44010026
Comparison of Next-Generation Sequencing and Polymerase Chain Reaction for Personalized Treatment-Related Genomic Status in Patients with Metastatic Colorectal Cancer
Curr Issues Mol Biol. 2022 Apr 5;44(4):1552-1563. doi: 10.3390/cimb44040106.
ABSTRACT
Personalized treatments based on the genetic profiles of tumors can simultaneously optimize efficacy and minimize toxicity, which is beneficial for improving patient outcomes. This study aimed to integrate gene alterations associated with predictive and prognostic outcomes in patients with metastatic colorectal cancer (mCRC) with polymerase chain reaction (PCR) and in-house next-generation sequencing (NGS) to detect KRAS, NRAS, and BRAF mutations. In the present study, 41 patients with mCRC were assessed between August 2017 and June 2019 at a single institution. The overall concordance between NGS and PCR results for detecting KRAS, NRAS, and BRAF mutations was considerably high (87.8-92.7%), with only 15 discrepant results between PCR and NGS. Our companion diagnostic test analyzes KRAS, NRAS, and BRAF as a panel of CRC molecular targets; therefore, it has the advantages of requiring fewer specimens and being more time and cost efficient than conventional testing for separate analyses, allowing for the simultaneous analysis of multiple genes.
PMID:35723364 | DOI:10.3390/cimb44040106
The role of direct oral anticoagulants in the era of COVID-19: are antiviral therapy and pharmacogenetics limiting factors?
Croat Med J. 2022 Jun 22;63(3):287-294.
ABSTRACT
In patients with COVID-19, thromboinflammation is one of the main causes of morbidity and mortality, which makes anticoagulation an integral part of treatment. However, pharmacodynamic and pharmacokinetic properties of direct oral anticoagulants (DOACs) limit the use of this class of anticoagulants in COVID-19 patients due to a significant interference with antiviral agents. DOACs use in COVID-19 hospitalized patients is currently not recommended. Furthermore, patients already on oral anticoagulant drugs should be switched to heparin at hospital admission. Nevertheless, outpatients with a confirmed diagnosis of COVID-19 are recommended to continue prior DOAC therapy. More studies are required to clarify the pathogenesis of COVID-19-induced derangement of the coagulation system in order to recommend an appropriate anticoagulant treatment.
PMID:35722697
Experience with comprehensive pharmacogenomic multi-gene panel in clinical practice: a retrospective single-center study
Croat Med J. 2022 Jun 22;63(3):257-264.
ABSTRACT
AIM: To assess the prevalence of actionable pharmacogenetic interventions in patients who underwent pharmacogenetic testing with a multi-gene panel.
METHODS: We retrospectively reviewed single-center electronic health records. A total of 319 patients were enrolled who underwent pharmacogenomic testing with the RightMed test panel using TaqMan quantitative real-time PCR method and copy number variation analysis to determine the SNPs in the 27 target genes.
RESULTS: Actionable drug-gene pairs were found in 235 (73.7%) patients. Relevant guidelines on genotype-based prescribing were available for 133 (56.7%) patients at the time of testing. Based on the patients' genotype, 139 (43.6%) patients were using at least one drug with significant pharmacogenetic interactions.
CONCLUSION: Two out of three patients had at least one drug-gene pair in their therapy. Further studies should assess the clinical effectiveness of integrating pharmacogenomic data into patients' electronic health records.
PMID:35722694
Exploration of Potential Ewing Sarcoma Drugs from FDA-Approved Pharmaceuticals through Computational Drug Repositioning, Pharmacogenomics, Molecular Docking, and MD Simulation Studies
ACS Omega. 2022 Jun 1;7(23):19243-19260. doi: 10.1021/acsomega.2c00518. eCollection 2022 Jun 14.
ABSTRACT
Novel drug development is a time-consuming process with relatively high debilitating costs. To overcome this problem, computational drug repositioning approaches are being used to predict the possible therapeutic scaffolds against different diseases. In the current study, computational drug repositioning approaches were employed to fetch the promising drugs from the pool of FDA-approved drugs against Ewing sarcoma. The binding interaction patterns and conformational behaviors of screened drugs within the active region of Ewing sarcoma protein (EWS) were confirmed through molecular docking profiles. Furthermore, pharmacogenomics analysis was employed to check the possible associations of selected drugs with Ewing sarcoma genes. Moreover, the stability behavior of selected docked complexes (drugs-EWS) was checked by molecular dynamics simulations. Taken together, astemizole, sulfinpyrazone, and pranlukast exhibited a result comparable to pazopanib and can be used as a possible therapeutic agent in the treatment of Ewing sarcoma.
PMID:35721972 | PMC:PMC9202290 | DOI:10.1021/acsomega.2c00518
p53/NF-kB Balance in SARS-CoV-2 Infection: From OMICs, Genomics and Pharmacogenomics Insights to Tailored Therapeutic Perspectives (COVIDomics)
Front Pharmacol. 2022 May 27;13:871583. doi: 10.3389/fphar.2022.871583. eCollection 2022.
ABSTRACT
SARS-CoV-2 infection affects different organs and tissues, including the upper and lower airways, the lung, the gut, the olfactory system and the eye, which may represent one of the gates to the central nervous system. Key transcriptional factors, such as p53 and NF-kB and their reciprocal balance, are altered upon SARS-CoV-2 infection, as well as other key molecules such as the virus host cell entry mediator ACE2, member of the RAS-pathway. These changes are thought to play a central role in the impaired immune response, as well as in the massive cytokine release, the so-called cytokine storm that represents a hallmark of the most severe form of SARS-CoV-2 infection. Host genetics susceptibility is an additional key side to consider in a complex disease as COVID-19 characterized by such a wide range of clinical phenotypes. In this review, we underline some molecular mechanisms by which SARS-CoV-2 modulates p53 and NF-kB expression and activity in order to maximize viral replication into the host cells. We also face the RAS-pathway unbalance triggered by virus-ACE2 interaction to discuss potential pharmacological and pharmacogenomics approaches aimed at restoring p53/NF-kB and ACE1/ACE2 balance to counteract the most severe forms of SARS-CoV-2 infection.
PMID:35721196 | PMC:PMC9201997 | DOI:10.3389/fphar.2022.871583
Construction of m6A-Related lncRNA Prognostic Signature Model and Immunomodulatory Effect in Glioblastoma Multiforme
Front Oncol. 2022 Jun 2;12:920926. doi: 10.3389/fonc.2022.920926. eCollection 2022.
ABSTRACT
BACKGROUND: Glioblastoma multiforme (GBM), the most prevalent and aggressive of primary malignant central nervous system tumors (grade IV), has a poor clinical prognosis. This study aimed to assess and predict the survival of GBM patients by establishing an m6A-related lncRNA signaling model and to validate its validity, accuracy and applicability.
METHODS: RNA sequencing data and clinical data of GBM patients were obtained from TCGA data. First, m6A-associated lncRNAs were screened and lncRNAs associated with overall survival in GBM patients were obtained. Subsequently, the signal model was established using LASSO regression analysis, and its accuracy and validity are further verified. Finally, GO enrichment analysis was performed, and the influence of this signature on the immune regulation response and anticancer drug sensitivity of GBM patients was discussed.
RESULTS: The signature constructed by four lncRNAs AC005229.3, SOX21-AS1, AL133523.1, and AC004847.1 is obtained. Furthermore, the signature proved to be effective and accurate in predicting and assessing the survival of GBM patients and could function independently of other clinical characteristics (Age, Gender and IDH1 mutation). Finally, Immunosuppression-related factors, including APC co-inhibition, T-cell co-inhibition, CCR and Check-point, were found to be significantly up-regulated in GBM patients in the high-risk group. Some chemotherapeutic drugs (Doxorubicin and Methotrexate) and targeted drugs (AZD8055, BI.2536, GW843682X and Vorinostat) were shown to have higher IC50 values in patients in the high-risk group.
CONCLUSION: We constructed an m6A-associated lncRNA risk model to predict the prognosis of GBM patients and provide new ideas for the treatment of GBM. Further biological experiments can be conducted on this basis to validate the clinical value of the model.
PMID:35719945 | PMC:PMC9201336 | DOI:10.3389/fonc.2022.920926
Multicenter Evaluation of the Idylla GeneFusion in Non-Small-Cell Lung Cancer
J Mol Diagn. 2022 Jun 16:S1525-1578(22)00162-3. doi: 10.1016/j.jmoldx.2022.05.004. Online ahead of print.
ABSTRACT
Targeted therapy in lung cancer requires the assessment of multiple oncogenic driver alterations, including fusion genes. This retrospective study evaluated the Idylla GeneFusion prototype, an automated and ease-of-use (<2 minutes) test, with a short turnaround time (3 hours) to detect fusions involving ALK, ROS1, RET and NTRK1/2/3 genes and MET exon 14 skipping. This multicenter study (18 centers) included 313 FFPE tissue samples from lung cancer patients with 97 ALK, 44 ROS1, 20 RET, 5 NTRKs fusions, 32 MET exon 14 skipping and 115 wild-type samples, previously identified with reference methods (RNA-based NGS/FISH/qPCR). Valid results were obtained for 306 cases (98%), the overall concordance between Idylla and reference methods was 89% (273/306), the overall sensitivity and specificity were 85% (165/193) and 96% (108/113), respectively. Discordances were observed in 28 samples, where Idylla did not detect the alteration identified by the reference methods; and 5 samples where Idylla identified an alteration (by expression imbalance only) not detected by the reference methods. All of the ALK, ROS1 and RET specific fusions and MET exon 14 skipping identified by Idylla GeneFusion were confirmed by reference method. To conclude, Idylla GeneFusion is a clinically valuable test that does not require a specific infrastructure, allowing a rapid result. The absence of alteration or the detection of expression imbalance only requires additional testing by orthogonal methods.
PMID:35718095 | DOI:10.1016/j.jmoldx.2022.05.004
Ct-OATP1B3 promotes high-grade serous ovarian cancer metastasis by regulation of fatty acid beta-oxidation and oxidative phosphorylation
Cell Death Dis. 2022 Jun 18;13(6):556. doi: 10.1038/s41419-022-05014-1.
ABSTRACT
High-grade serous ovarian cancer (HGSOC) is the most lethal gynecologic malignancy mainly due to its extensive metastasis. Cancer-type organic anion transporting polypeptide 1B3 (Ct-OATP1B3), a newly discovered splice variant of solute carrier organic anion transporter family member 1B3 (SLCO1B3), has been reported to be overexpressed in several types of cancer. However, the biological function of Ct-OATP1B3 remains largely unknown. Here, we reveal that Ct-OATP1B3 is overexpressed in HGSOC and promotes the metastasis of HGSOC in vivo and in vitro. Mechanically, Ct-OATP1B3 directly interacts with insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), an RNA-binding protein, which results in enhancement of the mRNA stability and expression of carnitine palmitoyltransferase 1A (CPT1A) and NADH:Ubiquinone Oxidoreductase Subunit A2 (NDUFA2), leading to increased mitochondrial fatty acid beta-oxidation (FAO) and oxidative phosphorylation (OXPHOS) activities. The increased FAO and OXPHOS activities further facilitate adenosine triphosphate (ATP) production and cellular lamellipodia formation, which is the initial step in the processes of tumor cell migration and invasion. Taken together, our study provides an insight into the function and underlying mechanism of Ct-OATP1B3 in HGSOC metastasis, and highlights Ct-OATP1B3 as a novel prognostic marker as well as therapeutic target in HGSOC.
PMID:35717493 | DOI:10.1038/s41419-022-05014-1
Low-dose colchicine and high-sensitivity C-reactive protein after myocardial infarction: A combined analysis using individual patient data from the COLCOT and LoDoCo-MI studies
Int J Cardiol. 2022 Jun 15:S0167-5273(22)00926-3. doi: 10.1016/j.ijcard.2022.06.028. Online ahead of print.
ABSTRACT
BACKGROUND: Low-dose colchicine is effective in reducing the risks of recurrent cardiovascular events following an acute myocardial infarction (MI). However, the influence of colchicine on inflammation remains inconclusive. In the current study, we conducted a pooled analysis using individual patient data from the COLCOT and LoDoCo-MI trials to assess the effect of low-dose colchicine on high-sensitivity C reactive protein (hs-CRP) in patients with acute MI.
METHODS: We performed a combined analysis of individual patient data from two clinical trials (COLCOT, LoDoCo-MI). Paired pre-treatment and post-treatment hs-CRP (mg/L) were available in 222 patients for LoDoCo-MI and 207 patients for COLCOT (npooled = 429). We evaluated the effect of colchicine vs. placebo on post-treatment hs-CRP coded continuously and ≤ 1.0 mg/L in adjusted mixed-model multi-level regression analyses.
RESULTS: Colchicine was not significantly associated with post-treatment hs-CRP when it was considered as a continuous variable (beta: -0.41, P = 0.429). However, the intervention was significantly associated with increased odds of achieving post-treatment hs-CRP values ≤1.0 mg/L compared to placebo (odds ratio: 1.64, 95% confidence interval: 1.07 to 2.51, P = 0.024).
CONCLUSIONS: Reduction of inflammation may be a key component in the clinical efficacy of low-dose colchicine with respect to decreased risk of recurrent cardiovascular events following MI. Systematic sampling of hs-CRP before and after treatment with colchicine may be relevant.
PMID:35716932 | DOI:10.1016/j.ijcard.2022.06.028
Oxycodone/naloxone versus tapentadol in real-world chronic non-cancer pain management: an observational and pharmacogenetic study
Sci Rep. 2022 Jun 16;12(1):10126. doi: 10.1038/s41598-022-13085-5.
ABSTRACT
Tapentadol (TAP) and oxycodone/naloxone (OXN) potentially offer an improved opioid tolerability. However, real-world studies in chronic non-cancer pain (CNCP) remain scarce. Our aim was to compare effectiveness and security in daily pain practice, together with the influence of pharmacogenetic markers. An observational study was developed with ambulatory test cases under TAP (n = 194) or OXN (n = 175) prescription with controls (prescribed with other opioids (control), n = 216) CNCP patients. Pain intensity and relief, quality of life, morphine equivalent daily doses (MEDD), concomitant analgesic drugs, adverse events (AEs), hospital frequentation and genetic variants of OPRM1 (rs1799971, A118G) and COMT (rs4680, G472A) genes, were analysed. Test CNCP cases evidenced a significantly higher pain relief predictable due to pain intensity and quality of life (R2 = 0.3), in front of controls. Here, OXN achieved the greatest pain relief under a 28% higher MEDD, 8-13% higher use of pregabalin and duloxetine, and 23% more prescription change due to pain, compared to TAP. Whilst, TAP yielded a better tolerability due the lower number of 4 [0-6] AEs/patient, in front of OXN. Furthermore, OXN COMT-AA homozygotes evidenced higher rates of erythema and vomiting, especially in females. CNCP real-world patients achieved higher pain relief than other traditional opioids with a better tolerability for TAP. Further research is necessary to clarify the potential influence of COMT and sex on OXN side-effects.
PMID:35710811 | DOI:10.1038/s41598-022-13085-5
CRISPR/Cas9‑induced saturated mutagenesis identifies <em>Rad51</em> haplotype as a marker of PARP inhibitor sensitivity in breast cancer
Mol Med Rep. 2022 Aug;26(2):258. doi: 10.3892/mmr.2022.12774. Epub 2022 Jun 17.
ABSTRACT
Breast cancer treatment with poly(ADP‑ribose)polymerase (PARP) inhibitors is currently limited to cells defective in the homologous recombination repair (HRR) pathway. The chemical inhibition of many HRR deficiency genes may sensitize cancer cells to PARP inhibitors. In the present study, Rad51, a central player in the HRR pathway, was selected to explore additional low variation and highly representative markers for PARP inhibitor activity. A CRISPR/Cas9‑based saturated mutation approach for the Rad51 WALKER domain was used to evaluate the sensitivity of the PARP inhibitor olaparib. Five amino acid mutation sites were identified in olaparib‑resistant cells. Two Rad51 haplotypes were assembled from the mutations, and may represent useful pharmacogenomic markers of PARP inhibitor sensitivity.
PMID:35713220 | DOI:10.3892/mmr.2022.12774