Pharmacogenomics
<em>GNB3</em> c.825C&gt;T (rs5443) Polymorphism and Risk of Acute Cardiovascular Events after Renal Allograft Transplant
Int J Mol Sci. 2022 Aug 29;23(17):9783. doi: 10.3390/ijms23179783.
ABSTRACT
The c.825C>T single-nucleotide polymorphism (rs5443) of the guanine nucleotide-binding protein subunit β3 (GNB3) results in increased intracellular signal transduction via G-proteins. The present study investigated the effect of the GNB3 c.825C>T polymorphism on cardiovascular events among renal allograft recipients posttransplant. Our retrospective study involved 436 renal allograft recipients who were followed up for up to 8 years after transplant. The GNB3 c.825C>T polymorphism was detected with restriction fragment length polymorphism (RFLP) polymerase chain reaction (PCR). The GNB3 TT genotype was detected in 43 (10%) of 436 recipients. Death due to an acute cardiovascular event occurred more frequently among recipients with the TT genotype (4 [9%]) than among those with the CC/CT genotypes (7 [2%]; p = 0.003). The rates of myocardial infarction (MI)-free survival (p = 0.003) and acute peripheral artery occlusive disease (PAOD)-free survival (p = 0.004) were significantly lower among T-homozygous patients. A multivariate analysis showed that homozygous GNB3 c.825C>T polymorphism exerted only a mild effect for the occurrence of myocardial infarction (relative risk, 2.2; p = 0.065) or acute PAOD (relative risk, 2.4; p = 0.05) after renal transplant. Our results suggest that the homozygous GNB3 T allele exerts noticeable effects on the risk of MI and acute PAOD only in the presence of additional nonheritable risk factors.
PMID:36077181 | DOI:10.3390/ijms23179783
A Longitudinal Study of the Association between the <em>LEPR</em> Polymorphism and Treatment Response in Patients with Bipolar Disorder
Int J Mol Sci. 2022 Aug 25;23(17):9635. doi: 10.3390/ijms23179635.
ABSTRACT
Patients with bipolar disorder (BD) exhibit individual variability in the treatment outcome, and genetic background could contribute to BD itself and the treatment outcome. Leptin levels significantly change in BD patients treated with valproate (VPA), but whether LEPR polymorphisms are associated with treatment response is still unknown. This longitudinal study aimed to investigate the associations between LEPR polymorphisms and VPA treatment response in BD patients who were drug naïve at their first diagnosis of BD. The single-nucleotide polymorphisms (SNPs) of LEPR (rs1137101, rs1137100, rs8179183, and rs12145690) were assayed, and the LEPR polymorphism frequencies of alleles and genotypes were not significantly different between the controls (n = 77) and BD patients (n = 130). In addition, after the 12-week course of VPA treatment in BD patients, the LEPR polymorphisms showed significant effects on changes in disease severity. Moreover, considering the effect of the LEPR haplotype, the frequency of the CAGG haplotype in BD patients was higher than that in the controls (9.3 vs. 2.9%, p = 0.016), and the LEPR CAGG haplotype was associated with a better treatment response than the other haplotypes in BD patients receiving VPA treatment. Therefore, LEPR polymorphisms might serve as mediators involved in the therapeutic action of VPA treatment.
PMID:36077028 | DOI:10.3390/ijms23179635
Polymorphisms in the Genes Coding for TLRs, NLRs and RLRs Are Associated with Clinical Parameters of Patients with Acute Myeloid Leukemia
Int J Mol Sci. 2022 Aug 24;23(17):9593. doi: 10.3390/ijms23179593.
ABSTRACT
Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) are major elements of the innate immune system that recognize pathogen-associated molecular patterns. Single-nucleotide polymorphisms (SNPs) in the TLR, NLR, and RLR genes may lead to an imbalance in the production of pro- and anti-inflammatory cytokines, changes in susceptibility to infections, the development of diseases, and carcinogenesis. Acute myeloid leukemia (AML) is a bone marrow malignancy characterized by uncontrolled proliferation of transformed myeloid precursors. We retrospectively analyzed 90 AML patients. We investigated the effect of fifteen SNPs located in the genes coding for RLR1 (rs9695310, rs10738889, rs10813831), NOD1 (rs2075820, rs6958571), NOD2 (rs2066845, rs2066847, rs2066844), TLR3 (rs5743305, rs3775296, 3775291), TLR4 (rs4986791, rs4986790), and TLR9 (rs187084, rs5743836). We observed that TLR4 rs4986791, TLR9 rs5743836, and NOD2 rs2066847 were associated with CRP levels, while RLR-1 rs10738889 was associated with LDH level. Furthermore, we found TLR3 rs5743305 AA to be more common in patients with infections. We also found TLR9 rs187084 C to be associated with more favorable risk, and RLR-1 rs9695310 GG with higher age at diagnosis. In conclusion, the current study showed that SNPs in the genes encoding TLRs, NLRs, and RLRs may be potential biomarkers in patients with AML.
PMID:36076988 | DOI:10.3390/ijms23179593
Pharmacogenetics of siponimod: A systematic review
Biomed Pharmacother. 2022 Sep;153:113536. doi: 10.1016/j.biopha.2022.113536. Epub 2022 Aug 12.
ABSTRACT
Multiple sclerosis is a chronic inflammatory neurological disease, and siponimod (Mayzent) is the first oral treatment option for adult patients with secondary progressive multiple sclerosis. We performed a systematic review of the pharmacogenetics of Siponimod, and we found that (430 C>T; rs1799853) and CYP2C9 * 3 (1075 A>C; rs1057910), both translated no-function alleles, have been related to a lower metabolism of siponimod by CYP2C9 enzyme. The FDA-approved drug label and EMA risk management plan for siponimod require testing patients for CYP2C9 genotype before treatment starts. The FDA drug label states that siponimod is contraindicated in patients carrying a CYP2C9 * 3/* 3 genotype, and a daily maintenance dose of 1 mg in patients with CYP2C9 * 1/* 3 and * 2/* 3 genotypes. The EMA reported the potential long-term safety implications in CYP2C9 poor metabolizer patients treated with this drug. Based on this systematic review we concluded that CYP2C9 SNPs influence on siponimod response might be stated by assessing not only CYP2C9 * 2 and CYP2C9 * 3 but other genetic variants resulting in CYP2C9 IM/PM status. CYP2C9 IM phenotype translated from the CYP2C9 * 2 genotype should be revised since it is contradictory compared to other CYP2C9 no-function alleles, and CYP2C9 * 2 might be excluded from PGx testing recommendation before treatment starts with siponimod since it is not translated into a therapeutic recommendation.
PMID:36076616 | DOI:10.1016/j.biopha.2022.113536
Pharmacogenomics polygenic risk score for drug response prediction using PRS-PGx methods
Nat Commun. 2022 Sep 8;13(1):5278. doi: 10.1038/s41467-022-32407-9.
ABSTRACT
Polygenic risk scores (PRS) have been successfully developed for the prediction of human diseases and complex traits in the past years. For drug response prediction in randomized clinical trials, a common practice is to apply PRS built from a disease genome-wide association study (GWAS) directly to a corresponding pharmacogenomics (PGx) setting. Here, we show that such an approach relies on stringent assumptions about the prognostic and predictive effects of the selected genetic variants. We propose a shift from disease PRS to PGx PRS approaches by simultaneously modeling both the prognostic and predictive effects and further make this shift possible by developing a series of PRS-PGx methods, including a novel Bayesian regression approach (PRS-PGx-Bayes). Simulation studies show that PRS-PGx methods generally outperform the disease PRS methods and PRS-PGx-Bayes is superior to all other PRS-PGx methods. We further apply the PRS-PGx methods to PGx GWAS data from a large cardiovascular randomized clinical trial (IMPROVE-IT) to predict treatment related LDL cholesterol reduction. The results demonstrate substantial improvement of PRS-PGx-Bayes in both prediction accuracy and the capability of capturing the treatment-specific predictive effects while compared with the disease PRS approaches.
PMID:36075892 | DOI:10.1038/s41467-022-32407-9
Review of the application of Kirchhoff's Laws of series and parallel flows to pharmacology: Defining organ clearance
Pharmacol Ther. 2022 Sep 5:108278. doi: 10.1016/j.pharmthera.2022.108278. Online ahead of print.
ABSTRACT
Dosing rate decisions for drugs and changes in dosing in a patient due to disease states, drug interactions and pharmacogenomics are all based on clearance, a measure of the body's ability to eliminate drug. The primary organs of elimination are the liver and the kidney. Clearance for each of these organs is a summative composition of biologic processes. In 1857, Gustav Kirchhoff first developed his laws to describe the "motion of electricity in conductors... [and] ...in wires", recognizing that summative processes occur either in parallel or in series. Since then, Kirchhoff's Laws have also been applied to heat transfer, diffusion and drag force on falling objects, but not to pharmacology. Although not previously recognized, renal clearance always follow Kirchhoff's Laws, as does hepatic clearance for drugs where basolateral transporters are not clinically relevant. However, when basolateral transporters are clinically relevant, we demonstrate that the present accepted approach is inconsistent with recognized drug disposition processes. However, this clearance relationship can be easily corrected using Kirchhoff's Laws. The purpose of this review is to demonstrate that Kirchhoff's Laws, which define how to approach rate processes that occur in parallel versus processes that occur in series, can be applicable to pharmacology in addition to the over 160-year recognition of their use in physical sciences. We anticipate that the application to clearance will be only the first of many such pharmacological analyses.
PMID:36075300 | DOI:10.1016/j.pharmthera.2022.108278
Cerebrovascular G<sub>i</sub> Proteins Protect Against Brain Hypoperfusion and Collateral Failure in Cerebral Ischemia
Mol Imaging Biol. 2022 Sep 8. doi: 10.1007/s11307-022-01764-8. Online ahead of print.
ABSTRACT
Cerebral hypoperfusion and vascular dysfunction are closely related to common risk factors for ischemic stroke such as hypertension, dyslipidemia, diabetes, and smoking. The role of inhibitory G protein-dependent receptor (GiPCR) signaling in regulating cerebrovascular functions remains largely elusive. We examined the importance of GiPCR signaling in cerebral blood flow (CBF) and its stability after sudden interruption using various in vivo high-resolution magnetic resonance imaging techniques. To this end, we induced a functional knockout of GiPCR signaling in the brain vasculature by injection of pertussis toxin (PTX). Our results show that PTX induced global brain hypoperfusion and microvascular collapse. When PTX-pretreated animals underwent transient unilateral occlusion of one common carotid artery, CBF was disrupted in the ipsilateral hemisphere resulting in the collapse of the cortically penetrating microvessels. In addition, pronounced stroke features in the affected brain regions appeared in both MRI and histological examination. Our findings suggest an impact of cerebrovascular GiPCR signaling in the maintenance of CBF, which may be useful for novel pharmacotherapeutic approaches to prevent and treat cerebrovascular dysfunction and stroke.
PMID:36074223 | DOI:10.1007/s11307-022-01764-8
Analysis of the difference in <em>SLCO1B1</em> and <em>APOE</em> gene polymorphisms between Mongolian and Han populations
Pharmacogenomics. 2022 Sep 8. doi: 10.2217/pgs-2022-0072. Online ahead of print.
ABSTRACT
Objective: To analyze SLCO1B1 and APOE polymorphisms and their clinical significance in the Mongolian and Han populations in Ordos, Inner Mongolia. Methods: Mongolian patients (n = 200) with cardiovascular disease admitted to our hospital from January 2018 to December 2020 were selected as the Mongolian population group. Han patients (n = 200) with cardiovascular diseases admitted during the same period were selected as the Han population group. Mutations in SLCO1B1 and APOE were detected by real-time fluorescence qPCR, and the differences between the two groups were analyzed. Results: The nucleotide polymorphisms of SLCO1B1 and APOE in the Mongolian and Han populations were consistent with the Hardy-Weinberg law. There were significant differences in gender, age, BMI, hypertension, alcohol consumption, dyslipidemia and low-density lipoprotein cholesterol levels between the two groups. APOE genotypes were classified according to those related to the efficacy of statins and the risk of atherosclerosis, and there was a significant difference between the two groups. Conclusion: There were differences in SLCO1B1 and APOE polymorphisms between the Mongolian and Han populations in Ordos. These may explain the differences in the incidence of cardiovascular diseases and the lipid-lowering efficacy of statins between the two populations.
PMID:36073969 | DOI:10.2217/pgs-2022-0072
Towards Personalized Medicine in Psoriasis: Current Progress
Psoriasis (Auckl). 2022 Sep 1;12:231-250. doi: 10.2147/PTT.S328460. eCollection 2022.
ABSTRACT
Although innovative targeted therapies have positively revolutionized psoriasis treatment shifting treatment goals to complete or almost complete skin clearance, primary or secondary lack of efficacy is still possible. Hence, identifying robust biomarkers that reflect the various clinical psoriasis phenotypes would allow stratify patients in subgroups or endotypes, and tailor treatments according to the characteristics of each individual (precision medicine). To sum up the current progress in personalized medicine for psoriasis, we performed a review on the available evidence on biomarkers predictive of response to psoriasis treatments, with focus on phototherapy and systemic agents. Relevant literature published in English was searched for using the following databases from the last five years up to March 20, 2022: PubMed, Embase, Google Scholar, EBSCO, MEDLINE, and the Cochrane library. Currently, more evidence exists towards biologicals, as justified by the huge health care costs as compared to phototherapy or conventional systemic drugs. Among them, most of the studies focused on anti-TNF and IL12/23, with still few on IL17 (mainly secukinumab). The most discussed biomarker gene is the HLA-C*02:06 status that has been shown to be associated with psoriasis, and also differential response to biologicals. Although its positivity is associated with great response to MTX, debatable results were retrieved concerning both anti-TNF and IL12/23 while it seems not to affect secukinumab response. Personalized treatment in psoriasis would provide excellent outcome minimizing the risk of side effects. To date, although several candidates were proposed and assessed, the scarcity and heterogeneity of the results do not allow the identification of the gold-standard biomarker per each treatment. Anyway, the creation of a more comprehensive panel would be more reliable for the treatment decision process.
PMID:36071793 | PMC:PMC9444142 | DOI:10.2147/PTT.S328460
Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention
Nat Genet. 2022 Sep 7. doi: 10.1038/s41588-022-01165-1. Online ahead of print.
ABSTRACT
Although physical activity and sedentary behavior are moderately heritable, little is known about the mechanisms that influence these traits. Combining data for up to 703,901 individuals from 51 studies in a multi-ancestry meta-analysis of genome-wide association studies yields 99 loci that associate with self-reported moderate-to-vigorous intensity physical activity during leisure time (MVPA), leisure screen time (LST) and/or sedentary behavior at work. Loci associated with LST are enriched for genes whose expression in skeletal muscle is altered by resistance training. A missense variant in ACTN3 makes the alpha-actinin-3 filaments more flexible, resulting in lower maximal force in isolated type IIA muscle fibers, and possibly protection from exercise-induced muscle damage. Finally, Mendelian randomization analyses show that beneficial effects of lower LST and higher MVPA on several risk factors and diseases are mediated or confounded by body mass index (BMI). Our results provide insights into physical activity mechanisms and its role in disease prevention.
PMID:36071172 | DOI:10.1038/s41588-022-01165-1
Pharmacogenomic landscape of head and neck squamous cell carcinoma informs precision oncology therapy
Sci Transl Med. 2022 Sep 7;14(661):eabo5987. doi: 10.1126/scitranslmed.abo5987. Epub 2022 Sep 7.
ABSTRACT
Head and neck squamous cell carcinoma (HNSCC) is a common and frequently lethal cancer with few therapeutic options. In particular, there are few effective targeted therapies. Development of highly effective therapeutic strategies tailored to patients with HNSCC remains a pressing challenge. To address this, we present a pharmacogenomic study to facilitate precision treatments for patients with HNSCC. We established a large collection of 56 HNSCC patient-derived cells (PDCs), which recapitulated the molecular features of the original tumors. Pharmacological assessment of HNSCCs was conducted using a three-tiered high-throughput drug screening using 2248 compounds across these PDC models and an additional 18 immortalized cell lines. We integrated genomic, transcriptomic, and pharmacological analysis to predict biomarkers, gene-drug associations, and validated biomarkers. These results supported drug repurposing for multiple HNSCC subtypes, including the JAK2 inhibitor fedratinib, for low KRT18-expressing HNSCC cases, and the topoisomerase inhibitor mitoxantrone, for IL6R-activated HNSCC cases. Our results demonstrated concordance between susceptibility predictions from the PDCs and the matched patients' responses to standard clinical medication. Moreover, we identified and experimentally confirmed that high expression of ITGB1 elicited therapeutic resistance to docetaxel and high SOD1 expression conferred resistance to afatinib. We further validated ITGB1 as a predictive biomarker for the efficacy of docetaxel therapy in a phase 2 clinical trial. In summary, our study shows that this HNSCC cell resource, as well as the resulting pharmacogenomic profiles, is effective for biomarker discovery and for guiding precision oncology therapies in HNSCCs.
PMID:36070368 | DOI:10.1126/scitranslmed.abo5987
Genome-wide association study of liver enzyme elevation in an extended cohort of rheumatoid arthritis patients starting low-dose methotrexate
Pharmacogenomics. 2022 Sep 7. doi: 10.2217/pgs-2022-0074. Online ahead of print.
ABSTRACT
Aim: A follow-up genome-wide association study (GWAS) in an extended cohort of rheumatoid arthritis (RA) patients starting low-dose methotrexate (MTX) treatment was performed to identify further genetic variants associated with alanine aminotransferase (ALT) elevation. Patients & methods: A GWAS was performed on 346 RA patients. Two outcomes within the first 6 months of MTX treatment were assessed: ALT >1.5-times the upper level of normal (ULN) and maximum level of ALT. Results: SPATA9 (rs72783407) was significantly associated with maximum level of ALT (p = 2.58 × 10-8) and PLCG2 (rs60427389) was tentatively associated with ALT >1.5 × ULN. Conclusion: Associations with SNPs in genes related to male fertility (SPATA9) and inflammatory processes (PLCG2) were identified.
PMID:36070248 | DOI:10.2217/pgs-2022-0074
Effects of Enzyme Induction and Polymorphism on the Pharmacokinetics of Isoniazid and Rifampin in Tuberculosis/HIV Patients
Antimicrob Agents Chemother. 2022 Sep 7:e0227721. doi: 10.1128/aac.02277-21. Online ahead of print.
ABSTRACT
Tuberculosis is the most common cause of death in HIV-infected individuals. Rifampin and isoniazid are the backbones of the current first-line antitubercular therapy. The aim of the present study was to describe the time-dependent pharmacokinetics and pharmacogenetics of rifampin and isoniazid and to quantitatively evaluate the drug-drug interaction between rifampin and isoniazid in patients coinfected with HIV. Plasma concentrations of isoniazid, acetyl-isoniazid, isonicotinic acid, rifampin, and 25-desacetylrifampin from 40 HIV therapy-naive patients were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) after the first dose and at steady state of antitubercular therapy. Patients were genotyped for determination of acetylator status and CYP2C19 phenotype. Nonlinear mixed-effects models were developed to describe the pharmacokinetic data. The model estimated an autoinduction of both rifampin bioavailability (0.5-fold) and clearance (2.3-fold). 25-Desacetylrifampin clearance was 2.1-fold higher at steady state than after the first dose. Additionally, ultrarapid CYP2C19 metabolizers had a 2-fold-higher rifampin clearance at steady state than intermediate or extensive metabolizers. An induction of isonicotinic acid formation from isoniazid dependent on total rifampin dose was estimated. Simulations indicated a 30% lower isoniazid exposure at steady state during administration of standard rifampin doses than isoniazid exposure in noninduced individuals. Rifampin exposure was correlated with CYP2C19 polymorphism, and rifampin administration may increase exposure to toxic metabolites by isoniazid in patients. Both findings may influence the risk of treatment failure, resistance development, and toxicity and require further investigation, especially with regard to ongoing high-dose rifampin trials.
PMID:36069614 | DOI:10.1128/aac.02277-21
Genetic Ancestry Inference for Pharmacogenomics
Methods Mol Biol. 2022;2547:595-609. doi: 10.1007/978-1-0716-2573-6_21.
ABSTRACT
Genetic ancestry inference can be used to stratify patient cohorts and to model pharmacogenomic variation within and between populations. We provide a detailed guide to genetic ancestry inference using genome-wide genetic variant datasets, with an emphasis on two widely used techniques: principal components analysis (PCA) and ADMIXTURE analysis. PCA can be used for patient stratification and categorical ancestry inference, whereas ADMIXTURE is used to characterize genetic ancestry as a continuous variable. Visualization methods are critical for the interpretation of genetic ancestry inference methods, and we provide instructions for how the results of PCA and ADMIXTURE can be effectively visualized.
PMID:36068478 | DOI:10.1007/978-1-0716-2573-6_21
Pharmacogenomics in Children
Methods Mol Biol. 2022;2547:569-593. doi: 10.1007/978-1-0716-2573-6_20.
ABSTRACT
Historically genetics has not been considered when prescribing drugs for children. However, it is clear that genetics are not only an important determinant of disease in children but also of drug response for many important drugs that are core agents used in the therapy of common problems in children. Advances in therapy and in the ethical construct of children's research have made pharmacogenomic assessment for children much easier to pursue. It is likely that pharmacogenomics will become part of the therapeutic decision-making process for children, notably in areas such as childhood cancer where weighing benefits and risks of therapy is crucial.
PMID:36068477 | DOI:10.1007/978-1-0716-2573-6_20
Pharmacogenetics of Drug Therapies in Rheumatoid Arthritis
Methods Mol Biol. 2022;2547:527-567. doi: 10.1007/978-1-0716-2573-6_19.
ABSTRACT
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disorder that can lead to severe joint damage and is often associated with a high morbidity and disability. Disease-modifying anti-rheumatic drugs (DMARDs) are the mainstay of treatment in RA. DMARDs not only relieve the clinical signs and symptoms of RA but also inhibit the radiographic progression of disease and reduce the effects of chronic systemic inflammation. Since the introduction of biologic DMARDs in the late 1990s, the therapeutic range of options for the management of RA has significantly expanded. However, patients' response to these agents is not uniform with considerable variability in both efficacy and toxicity. There are no reliable means of predicting an individual patient's response to a given DMARD prior to initiation of therapy. In this chapter, the current published literature on the pharmacogenetics of traditional DMARDS and the newer biologic DMARDs in RA is highlighted. Pharmacogenetics may help individualize drug therapy in patients with RA by providing reliable biomarkers to predict medication toxicity and efficacy.
PMID:36068476 | DOI:10.1007/978-1-0716-2573-6_19
The Role of Pharmacogenomics in Postoperative Pain Management
Methods Mol Biol. 2022;2547:505-526. doi: 10.1007/978-1-0716-2573-6_18.
ABSTRACT
Pharmacogenomics can improve pain management by considering individual variations in pain perception and susceptibility and sensitivity to medicines related to genetic diversity. Due to the subjective nature of pain and the fact that people respond differently to medicines, it can be challenging to develop a consistent and successful regimen for pain disorders. Numerous factors influence the outcome of pain treatment programs, but two stand out: altered perception of pain and varying responsiveness to analgesic medicines. Numerous polymorphisms in genes such as CYP2D6, OPRM1, and ABCB1 have been identified, culminating in a heterogeneous response to pain medication in people who have these genetic polymorphisms. Improved treatment regimens that factor in pharmacogenetic differences in patients would help reduce the risk of opioid dependency and help effectively treat postoperative pain.
PMID:36068475 | DOI:10.1007/978-1-0716-2573-6_18
Pharmacogenomics of Opioid Treatment for Pain Management
Methods Mol Biol. 2022;2547:491-504. doi: 10.1007/978-1-0716-2573-6_17.
ABSTRACT
Pain affects approximately 100 million Americans. Pain harms quality of life and costs patients billions of dollars per year. Clinically, nonpharmacologic and pharmacologic therapies can alleviate acute and chronic pain suffering. Opioids are one type of medication used to manage pain. However, opioids can potentially create dependence and substance abuse, and the effects are not consistent in all patients. Pharmacogenomics is the study of the genome to understand the effects of drugs on individual patients based on their genetic information. Through pharmacogenomics, researchers can investigate genetic polymorphisms related to pain that maximize individual patient drug responses and minimize toxicity. This chapter discusses the pharmacogenomics of opioids to treat pain, including individual genetic differences to opioid treatments, opioid pharmacokinetics and pharmacodynamics, and the genetic polymorphisms associated with individual opioid medications.
PMID:36068474 | DOI:10.1007/978-1-0716-2573-6_17
Pharmacogenetics of Addiction Therapy
Methods Mol Biol. 2022;2547:437-490. doi: 10.1007/978-1-0716-2573-6_16.
ABSTRACT
Drug addiction is a serious relapsing disease that has high costs to society and to the individual addicts. Treatment of these addictions is still in its nascency, with only a few examples of successful therapies. Therapeutic response depends upon genetic, biological, social, and environmental components. A role for genetic makeup in the response to treatment has been shown for several addiction pharmacotherapies with response to treatment based on individual genetic makeup. In this chapter, we will discuss the role of genetics in pharmacotherapies, specifically for cocaine, alcohol, and opioid dependences. The continued elucidation of the role of genetics should aid in the development of new treatments and increase the efficacy of existing treatments.
PMID:36068473 | DOI:10.1007/978-1-0716-2573-6_16
The Pharmacogenetic Impact on the Pharmacokinetics of ADHD Medications
Methods Mol Biol. 2022;2547:427-436. doi: 10.1007/978-1-0716-2573-6_15.
ABSTRACT
ADHD is a common condition in both children and adults. The most prescribed medications for the treatment of ADHD include methylphenidate, mixed amphetamine salts, atomoxetine, guanfacine, and clonidine. While each of these medications have their own distinct pharmacokinetic profile, the extent to which pharmacogenetics effects their pharmacokinetic parameters is best described in atomoxetine, followed by methylphenidate. Atomoxetine is predominantly metabolized by cytochrome p450 2D6 (CYP2D6), while methylphenidate is metabolized by carboxylesterase 1 (CES1). Both CYP2D6 and CES1 have multiple variants resulting in varying levels of enzyme activity; however, to date, the functional consequence of variants and alleles for CYP2D6 is better characterized as compared to CES1. Regarding CYP2D6, individuals who are poor metabolizers prescribed atomoxetine experience up to ten-fold higher exposure as compared to normal metabolizers at comparable dosing. Additionally, individuals prescribed methylphenidate with the rs71647871 variant may experience up to 2.5-fold higher exposure as compared to those without. Having this pharmacogenetic information available may aid clinicians and patients when choosing medications and doses to treat ADHD.
PMID:36068472 | DOI:10.1007/978-1-0716-2573-6_15