Pharmacogenomics
Pharmacogenomics: A Step forward Precision Medicine in Childhood Asthma
Genes (Basel). 2022 Mar 28;13(4):599. doi: 10.3390/genes13040599.
ABSTRACT
Personalized medicine, an approach to care in which individual characteristics are used for targeting interventions and maximizing health outcomes, is rapidly becoming a reality for many diseases. Childhood asthma is a heterogeneous disease and many children have uncontrolled symptoms. Therefore, an individualized approach is needed for improving asthma outcomes in children. The rapidly evolving fields of genomics and pharmacogenomics may provide a way to achieve asthma control and reduce future risks in children with asthma. In particular, pharmacogenomics can provide tools for identifying novel molecular mechanisms and biomarkers to guide treatment. Emergent high-throughput technologies, along with patient pheno-endotypization, will increase our knowledge of several molecular mechanisms involved in asthma pathophysiology and contribute to selecting and stratifying appropriate treatment for each patient.
PMID:35456405 | DOI:10.3390/genes13040599
Chronic Myelogenous Leukemia with Double Philadelphia Chromosome and Coexpression of p210 and p190 Fusion Transcripts
Genes (Basel). 2022 Mar 25;13(4):580. doi: 10.3390/genes13040580.
ABSTRACT
The Philadelphia (Ph+) chromosome, t(9;22)(q34;q11.2), originates from a chimeric gene called BCR-ABL and is present in more than 90% of CML patients. Most patients with CML express the protein p210 BCR-ABL and, with a frequency lower than 5%, express rare isoforms, the main one being p190. In the transition from the chronic phase to the blast phase (BP), additional chromosomal abnormalities, such as the presence of the double Ph+ chromosome, are revealed. Of the 1132 patients analyzed via molecular biology in this study, two patients (0.17%) showed the co-expression of the p210 and p190 isoforms for the BCR-ABL transcript, with the concomitant presence of a double Ph+ chromosome, which was observed via conventional cytogenetics and confirmed by fluorescent in situ hybridization. The BCR-ABL/ABL% p210 and p190 ratio increased in these two patients from diagnosis to progression to blast crisis. To our knowledge, this is the first report in the literature of patients who co-expressed the two main BCR-ABL transcript isoforms and concomitantly presented Ph+ chromosome duplication. The evolution from the chronic phase to BP often occurs within 5 to 7 years, and, in this study, the evolution to BP was earlier, since disease-free survival was on average 4.5 months and overall survival was on average 9.5 months. The presence of the p190 transcript and the double Ph+ chromosome in CML may be related to the vertiginous progression of the disease.
PMID:35456386 | DOI:10.3390/genes13040580
Target Hopping from Protein Kinases to PXR: Identification of Small-Molecule Protein Kinase Inhibitors as Selective Modulators of Pregnane X Receptor from TüKIC Library
Cells. 2022 Apr 12;11(8):1299. doi: 10.3390/cells11081299.
ABSTRACT
Small-molecule protein kinase inhibitors are used for the treatment of cancer, but off-target effects hinder their clinical use. Especially off-target activation of the pregnane X receptor (PXR) has to be considered, as it not only governs drug metabolism and elimination, but also can promote tumor growth and cancer drug resistance. Consequently, PXR antagonism has been proposed for improving cancer drug therapy. Here we aimed to identify small-molecule kinase inhibitors of the Tübingen Kinase Inhibitor Collection (TüKIC) compound library that would act also as PXR antagonists. By a combination of in silico screen and confirmatory cellular reporter gene assays, we identified four novel PXR antagonists and a structurally related agonist with a common phenylaminobenzosuberone scaffold. Further characterization using biochemical ligand binding and cellular protein interaction assays classified the novel compounds as mixed competitive/noncompetitive, passive antagonists, which bind PXR directly and disrupt its interaction with coregulatory proteins. Expression analysis of prototypical PXR target genes ABCB1 and CYP3A4 in LS174T colorectal cancer cells and HepaRG hepatocytes revealed novel antagonists as selective receptor modulators, which showed gene- and tissue-specific effects. These results demonstrate the possibility of dual PXR and protein kinase inhibitors, which might represent added value in cancer therapy.
PMID:35455978 | DOI:10.3390/cells11081299
Pharmacogenetic Profiling in High-Risk Soft Tissue Sarcomas Treated with Neoadjuvant Chemotherapy
J Pers Med. 2022 Apr 11;12(4):618. doi: 10.3390/jpm12040618.
ABSTRACT
Neoadjuvant chemotherapy based on anthracyclines and ifosfamide for high-risk soft tissue sarcomas (STS) of the extremities and trunk is a controversial treatment option. There are substantial interindividual differences in clinical outcomes in patients treated with neoadjuvant chemotherapy. The aim of this study was to evaluate, as biomarkers, polymorphisms in genes encoding drug-metabolizing enzymes, drug transporters, or drug targets and their association with toxicity and survival in STS patients treated with neoadjuvant chemotherapy. We analysed variants in genes involved in anthracycline metabolism (ABCB1, ABCC2, NQO1, CBR3, and SLC22A16) and in ifosfamide catabolism (ALDH1A1) in 79 treated patients. Two genes showed significant association after adjusted multivariate analysis: ABCC2 and ALDH1A1. In patients treated with anthracyclines, ABCC2 rs3740066 was associated with risk of febrile neutropenia (p = 0.031), and with decreased overall survival (OS) (p = 0.024). ABCC2 rs2273697 was associated with recurrence-free survival (RFS) (p = 0.024). In patients treated with ifosfamide, ALDH1A1 rs3764435 was associated with RFS (p = 0.046). Our pharmacogenetic study shows for the first time that variants in genes regulating the metabolism of neoadjuvant chemotherapy may be helpful to predict toxicity and survival benefit in high-risk STS treated with neoadjuvant chemotherapy. Further validation studies are needed to establish their clinical utility.
PMID:35455734 | DOI:10.3390/jpm12040618
Multidisciplinary Consulting Team for Complicated Cases of Neurodevelopmental and Neurobehavioral Disorders: Assessing the Opportunities and Challenges of Integrating Pharmacogenomics into a Team Setting
J Pers Med. 2022 Apr 8;12(4):599. doi: 10.3390/jpm12040599.
ABSTRACT
Neurodevelopmental disorders have steadily increased in incidence in the United States. Over the past decade, there have been significant changes in clinical diagnoses and treatments some of which are due to the increasing adoption of pharmacogenomics (PGx) by clinicians. In this pilot study, a multidisciplinary team at the Arkansas Children's Hospital North West consulted on 27 patients referred for difficult-to-manage neurodevelopmental and/or neurobehavioral disorders. The 27 patients were evaluated by the team using records review, team discussion, and pharmacogenetic testing. OneOme RightMed® (Minneapolis, MN, USA) and the Arkansas Children's Hospital comprehensive PGx test were used for drug prescribing guidance. Of the 27 patients' predicted phenotypes, the normal metabolizer was 11 (40.8%) for CYP2C19 and 16 (59.3%) for CYP2D6. For the neurodevelopmental disorders, the most common comorbid conditions included attention-deficit hyperactivity disorder (66.7%), anxiety disorder (59.3%), and autism (40.7%). Following the team assessment and PGx testing, 66.7% of the patients had actionable medication recommendations. This included continuing current therapy, suggesting an appropriate alternative medication, starting a new therapy, or adding adjunct therapy (based on their current medication use). Moreover, 25.9% of patients phenoconverted to a CYP2D6 poor metabolizer. This retrospective chart review pilot study highlights the value of a multidisciplinary treatment approach to deliver precision healthcare by improving physician clinical decisions and potentially impacting patient outcomes. It also shows the feasibility to implement PGx testing in neurodevelopmental/neurobehavioral disorders.
PMID:35455715 | DOI:10.3390/jpm12040599
The Influence of the <em>CES1</em> Genotype on the Pharmacokinetics of Enalapril in Patients with Arterial Hypertension
J Pers Med. 2022 Apr 5;12(4):580. doi: 10.3390/jpm12040580.
ABSTRACT
The angiotensin-converting enzyme inhibitor enalapril is hydrolysed to an active metabolite, enalaprilat, in the liver via carboxylesterase 1 (CES1). Previous studies show that variant rs71647871 in the CES1 gene affects the pharmacokinetics of enalapril on liver samples as well as healthy volunteers. This study included 286 Caucasian patients with arterial hypertension who received enalapril. The concentrations of enalapril and enalaprilat were determined before subsequent intake of the drug and 4 h after it with high-performance liquid chromatography (HPLC) and mass spectrometric detection. The study included genetic markers as follows: rs2244613, rs71647871 (c.428G>A, p.G143E) and three SNPs indicating the presence of a subtype CES1A1c (rs12149368, rs111604615 and rs201577108). Mean peak and trough enalaprilat concentrations, adjusted by clinical variables, were significantly lower in CES1 rs2244613 heterozygotes (by 16.6% and 19.6%) and in CC homozygotes (by 32.7% and 41.4%) vs. the AA genotype. In CES1A1c homozygotes, adjusted mean enalaprilat concentrations were 75% lower vs. heterozygotes and wild-type (WT) homozygotes. Pharmacogenetic markers of the CES1 gene may be a promising predictor for individualisation when prescribing enalapril.
PMID:35455696 | DOI:10.3390/jpm12040580
Analyzing Precision Medicine Utilization with Real-World Data: A Scoping Review
J Pers Med. 2022 Apr 1;12(4):557. doi: 10.3390/jpm12040557.
ABSTRACT
Precision medicine (PM), specifically genetic-based testing, is currently used in over 140,000 individual tests to inform the clinical management of disease. Though several databases (e.g., the NIH Genetic Testing Registry) demonstrate the availability of these sequencing-based tests, we do not currently understand the extent to which these tests are used. There exists a need to synthesize the body of real-world data (RWD) describing the use of sequencing-based tests to inform their appropriate use. To accomplish this, we performed a scoping review to examine what RWD sources have been used in studies of PM utilization between January 2015 and August 2021 to characterize the use of genome sequencing (GS), exome sequencing (ES), tumor sequencing (TS), next-generation sequencing-based panels (NGS), gene expression profiling (GEP), and pharmacogenomics (PGx) panels. We abstracted variables describing the use of these types of tests and performed a descriptive statistical analysis. We identified 440 articles in our search and included 72 articles in our study. Publications based on registry databases were the most common, followed by studies based on private insurer administrative claims. Slightly more than one-third (38%) used integrated datasets. Two thirds (67%) of the studies focused on the use of tests for oncological clinical applications. We summarize the RWD sources used in peer-reviewed literature on the use of PM. Our findings will help improve future study design by encouraging the use of centralized databases and registries to track the implementation and use of PM.
PMID:35455673 | DOI:10.3390/jpm12040557
Impact of the Genotype and Phenotype of CYP3A and P-gp on the Apixaban and Rivaroxaban Exposure in a Real-World Setting
J Pers Med. 2022 Mar 24;12(4):526. doi: 10.3390/jpm12040526.
ABSTRACT
Apixaban and rivaroxaban are the two most prescribed direct factor Xa inhibitors. With the increased use of DOACs in real-world settings, safety and efficacy concerns have emerged, particularly regarding their concomitant use with other drugs. Increasing evidence highlights drug-drug interactions with CYP3A/P-gp modulators leading to adverse events. However, current recommendations for dose adjustment do not consider CYP3A/P-gp genotype and phenotype. We aimed to determine their impact on apixaban and rivaroxaban blood exposure. Three-hundred hospitalized patients were included. CYP3A and P-gp phenotypic activities were assessed by the metabolic ratio of midazolam and AUC0-6h of fexofenadine, respectively. Relevant CYP3A and ABCB1 genetic polymorphisms were also tested. Capillary blood samples collected at four time-points after apixaban or rivaroxaban administration allowed the calculation of pharmacokinetic parameters. According to the developed multivariable linear regression models, P-gp activity (p < 0.001) and creatinine clearance (CrCl) (p = 0.01) significantly affected apixaban AUC0-6h. P-gp activity (p < 0.001) also significantly impacted rivaroxaban AUC0-6h. The phenotypic switch (from normal to poor metabolizer) of P-gp led to an increase of apixaban and rivaroxaban AUC0-6h by 16% and 25%, respectively, equivalent to a decrease of 38 mL/min in CrCl according to the apixaban model. CYP3A phenotype and tested SNPs of CYP3A/P-gp had no significant impact. In conclusion, P-gp phenotypic activity, rather than known CYP3A/P-gp polymorphisms, could be relevant for dose adjustment.
PMID:35455642 | DOI:10.3390/jpm12040526
WGCNA-Based DNA Methylation Profiling Analysis on Allopurinol-Induced Severe Cutaneous Adverse Reactions: A DNA Methylation Signature for Predisposing Drug Hypersensitivity
J Pers Med. 2022 Mar 24;12(4):525. doi: 10.3390/jpm12040525.
ABSTRACT
BACKGROUND: The role of aberrant DNA methylation in allopurinol-induced severe cutaneous adverse reactions (SCARs) is incompletely understood. To fill the gap, we analyze the DNA methylation profiling in allopurinol-induced Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) patients and identify the DNA methylation signature for predisposing allopurinol hypersensitivity.
METHODS: Genome-scale methylation analysis was conducted using the Illumina® HumanMethylation450 BeadChip. Weighted Gene Co-Expression Network Analysis (WGCNA) was utilized to analyze the data.
RESULTS: A total of 21,497 annotated promoter regions were analyzed. Ten modules were identified between allopurinol hypersensitivity and tolerance, with turquoise and yellow modules being the most significant correlation. ATG13, EPM2AIP1, and SRSF11 were the top three hub genes in the turquoise module. MIR412, MIR369, and MIR409 were the top three hub genes in the yellow module. Gene Ontology (GO) analysis revealed that the turquoise module was related to the metabolic process in intracellular organelles and the binding of various compounds, proteins, or nucleotides. The yellow module, however, was related to stimulus sensory perception in cytoskeletal elements and the activity of the receptor or transducer.
CONCLUSION: DNA methylation plays a vital role in allopurinol-induced SCARs. DNA methylation profiling of SJS/TEN is significantly related to autophagy and microRNAs (miRNAs).
PMID:35455641 | DOI:10.3390/jpm12040525
The Challenge and Importance of Integrating Drug-Nutrient-Genome Interactions in Personalized Cardiovascular Healthcare
J Pers Med. 2022 Mar 22;12(4):513. doi: 10.3390/jpm12040513.
ABSTRACT
Despite the rich armamentarium of available drugs against different forms of cardiovascular disease (CVD), major challenges persist in their safe and effective use. These include high rates of adverse drug reactions, increased heterogeneity in patient responses, suboptimal drug efficacy, and in some cases limited compliance. Dietary elements (including food, beverages, and supplements) can modulate drug absorption, distribution, metabolism, excretion, and action, with significant implications for drug efficacy and safety. Genetic variation can further modulate the response to diet, to a drug, and to the interaction of the two. These interactions represent a largely unexplored territory that holds considerable promise in the field of personalized medicine in CVD. Herein, we highlight examples of clinically relevant drug-nutrient-genome interactions, map the challenges faced to date, and discuss their future perspectives in personalized cardiovascular healthcare in light of the rapid technological advances.
PMID:35455629 | DOI:10.3390/jpm12040513
Deciphering the Role of the rs2651899, rs10166942, and rs11172113 Polymorphisms in Migraine: A Meta-Analysis
Medicina (Kaunas). 2022 Mar 29;58(4):491. doi: 10.3390/medicina58040491.
ABSTRACT
The genetic basis of migraine is rather complex. The rs2651899 in the PR/SET domain 16 (PRDM16) gene, the rs10166942 near the transient receptor potential cation channel subfamily M member 8 (TRPM8) gene, and the rs11172113 in the LDL receptor-related protein 1 (LRP1) gene, have been associated with migraine in a genome-wide association study (GWAS). However, data from subsequent studies examining the role of these variants and their relationship with migraine remain inconclusive. The aim of the present study was to meta-analyze the published data assessing the role of these polymorphisms in migraine, migraine with aura (MA), and migraine without aura (MO). We performed a search in the PubMed, Scopus, Web of Science, and Public Health Genomics and Precision Health Knowledge Base (v7.7) databases. In total, eight, six, and six studies were included in the quantitative analysis, for the rs2651899, rs10166942, and rs11172113, respectively. Cochran's Q and I2 tests were used to calculate the heterogeneity. The random effects (RE) model was applied when high heterogeneity was observed; otherwise, the fixed effects (FE) model was applied. The odds ratios (ORs) and the respective 95% confidence intervals (CIs) were calculated to estimate the effect of each variant on migraine. Funnel plots were created to graphically assess publication bias. A significant association was revealed for the CC genotype of the rs2651899, with the overall migraine group (RE model OR: 1.32; 95% CI: 1.02-1.73; p-value = 0.04) and the MA subgroup (FE model OR: 1.40; 95% CI: 1.12-1.74; p-value = 0.003). The rs10166942 CT genotype was associated with increased migraine risk (FE model OR: 1.36; 95% CI: 1.18-1.57; p-value < 0.0001) and increased MO risk (FE model OR: 1.41; 95% CI: 1.17-1.69; p-value = 0.0003). No association was detected for the rs11172113. The rs2651899 and the rs10166942 have an effect on migraine. Larger studies are needed to dissect the role of these variants in migraine.
PMID:35454329 | DOI:10.3390/medicina58040491
Darling: A Web Application for Detecting Disease-Related Biomedical Entity Associations with Literature Mining
Biomolecules. 2022 Mar 30;12(4):520. doi: 10.3390/biom12040520.
ABSTRACT
Finding, exploring and filtering frequent sentence-based associations between a disease and a biomedical entity, co-mentioned in disease-related PubMed literature, is a challenge, as the volume of publications increases. Darling is a web application, which utilizes Name Entity Recognition to identify human-related biomedical terms in PubMed articles, mentioned in OMIM, DisGeNET and Human Phenotype Ontology (HPO) disease records, and generates an interactive biomedical entity association network. Nodes in this network represent genes, proteins, chemicals, functions, tissues, diseases, environments and phenotypes. Users can search by identifiers, terms/entities or free text and explore the relevant abstracts in an annotated format.
PMID:35454109 | DOI:10.3390/biom12040520
Dynamic Changes of Platelet and Factors Related Dengue Haemorrhagic Fever: A Retrospective Study in Indonesian
Diagnostics (Basel). 2022 Apr 11;12(4):950. doi: 10.3390/diagnostics12040950.
ABSTRACT
Dengue is a viral infection caused by the dengue virus (DENV). Dengue infection is a self-limited acute febrile illness caused by four serotypes of DENV (DENV-1~4). Early recognition of high-risk patients would be helpful to reduce mortality rates and prevent severe dengue. Our study aimed to identify factors related to dengue hemorrhagic fever (DHF) based on admission-day data, and further to understand the distribution of biochemical laboratory data in dengue patients. This retrospective study was conducted in hospitals in Yogyakarta city, Indonesia, and involved febrile patients who were admitted to the hospital with a diagnosis of dengue during 2018 and 2020. Logistic regression models were used to identify variables related to DHF. In this study, 1087 patients were included as suspected dengue patients, among them 468 had dengue fever (DF) and 619 had DHF. Over half of the DHF patients were males (55.9%) with an average age of 17.9 years, and with a secondary infection (71.3%). By a multivariate analysis, on-admission laboratory data of thrombocytopenia and hemoglobin showed significant association with DHF. Furthermore, DHF patients had significantly prolonged hospitalizations compared to DF patients. In conclusion, on-admission platelet counts and hemoglobin laboratory data are useful as predictors of DHF especially for suspected dengue patients with the limitations of diagnostic tests.
PMID:35453998 | DOI:10.3390/diagnostics12040950
Integrated In Silico Analyses Identify PUF60 and SF3A3 as New Spliceosome-Related Breast Cancer RNA-Binding Proteins
Biology (Basel). 2022 Mar 22;11(4):481. doi: 10.3390/biology11040481.
ABSTRACT
More women are diagnosed with breast cancer (BC) than any other type of cancer. Although large-scale efforts have completely redefined cancer, a cure remains unattainable. In that respect, new molecular functions of the cell should be investigated, such as post-transcriptional regulation. RNA-binding proteins (RBPs) are emerging as critical post-transcriptional modulators of tumorigenesis, but only a few have clear roles in BC. To recognize new putative breast cancer RNA-binding proteins, we performed integrated in silico analyses of all human RBPs (n = 1392) in three major cancer databases and identified five putative BC RBPs (PUF60, TFRC, KPNB1, NSF, and SF3A3), which showed robust oncogenic features related to their genomic alterations, immunohistochemical changes, high interconnectivity with cancer driver genes (CDGs), and tumor vulnerabilities. Interestingly, some of these RBPs have never been studied in BC, but their oncogenic functions have been described in other cancer types. Subsequent analyses revealed PUF60 and SF3A3 as central elements of a spliceosome-related cluster involving RBPs and CDGs. Further research should focus on the mechanisms by which these proteins could promote breast tumorigenesis, with the potential to reveal new therapeutic pathways along with novel drug-development strategies.
PMID:35453681 | DOI:10.3390/biology11040481
Influence of Receptor Polymorphisms on the Response to α-Adrenergic Receptor Blockers in Pheochromocytoma Patients
Biomedicines. 2022 Apr 13;10(4):896. doi: 10.3390/biomedicines10040896.
ABSTRACT
Background: Presurgical treatment with an α-adrenergic receptor blocker is recommended to antagonize the catecholamine-induced α-adrenergic receptor mediated vasoconstriction in patients with pheochromocytoma or sympathetic paraganglioma (PPGL). There is, however, a considerable interindividual variation in the dose-response relationship regarding the magnitude of blood pressure reduction or the occurrence of side effects. We hypothesized that genetically determined differences in α-adrenergic receptor activity contribute to this variability in dose-response relationship. Methods: Thirty-one single-nucleotide polymorphisms (SNPs) of the α1A, α1B, α1D adrenoreceptor (ADRA1A, ADRA1B, ADRA1D) and α2A, α2B adrenoreceptor (ADRA2A, ADRA2B) genes were genotyped in a group of 116 participants of the PRESCRIPT study. Haplotypes were constructed after determining linkage disequilibrium blocks. Results: The ADRA1B SNP rs10515807 and the ADRA2A SNPs rs553668/rs521674 were associated with higher dosages of α-adrenergic receptor blocker (p < 0.05) and with a higher occurrence of side effects (rs10515807) (p = 0.005). Similar associations were found for haplotype block 6, which is predominantly defined by rs10515807. Conclusions: This study suggests that genetic variability of α-adrenergic receptor genes might be associated with the clinically observed variation in beneficial and adverse therapeutic drug responses to α-adrenergic receptor blockers. Further studies in larger cohorts are needed to confirm our observations.
PMID:35453646 | DOI:10.3390/biomedicines10040896
ANALYTICAL VALIDATION OF A COMPUTATIONAL METHOD FOR PHARMACOGENETIC GENOTYPING FROM CLINICAL WHOLE EXOME SEQUENCING
J Mol Diagn. 2022 Apr 19:S1525-1578(22)00082-4. doi: 10.1016/j.jmoldx.2022.03.008. Online ahead of print.
ABSTRACT
Germline whole exome sequencing from molecular tumor boards has the potential to be repurposed to support clinical pharmacogenomics. However, accurately calling pharmacogenomics-relevant genotypes from exome sequencing data remains challenging. Accordingly, this study assessed the analytical validity of the computational tool, Aldy, in calling pharmacogenomics-relevant genotypes from exome sequencing data for 13 major pharmacogenes. Germline DNA from whole blood was obtained for 164 subjects seen at an institutional molecular solid tumor board. All subjects had whole exome sequencing from Ashion Analytics and panel-based genotyping from an institutional pharmacogenomics laboratory. Aldy v3.3 was operationalized on the LifeOmic Precision Health Cloud with copy number fixed to two copies per gene. Aldy results were compared to those from genotyping for 56 star-defining variants within CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, CYP4F2, DPYD, G6PD, NUDT15, SLCO1B1, and TPMT. Read depth was >100x for all variants except CYP3A4*22. For 75 subjects in the validation cohort, all 3,393 Aldy variant calls were concordant with genotyping. Aldy calls for 736 diplotypes containing alleles assessed by both platforms were also concordant. Aldy identified additional star alleles not covered by targeted genotyping for 139 diplotypes. Aldy accurately called variants and diplotypes for 13 major pharmacogenes except for CYP2D6 variants involving copy number variations, thus allowing repurposing of whole exome sequencing to support clinical pharmacogenomics.
PMID:35452844 | DOI:10.1016/j.jmoldx.2022.03.008
Effects of CYP2D6 genotypes on Plasmodium vivax recurrence after primaquine treatment: A meta-analysis
Travel Med Infect Dis. 2022 Apr 19:102333. doi: 10.1016/j.tmaid.2022.102333. Online ahead of print.
ABSTRACT
OBJECTIVES: To elucidate the relationship between CYP2D6 polymorphisms and Plasmodium vivax recurrence in patients receiving primaquine-based treatment through systematic review and meta-analysis.
METHODS: We searched the PubMed, EMBASE, Cochrane Library, and Web of Science databases for eligible studies published up to August of 2021. We included studies investigating the associations between CYP2D6 polymorphisms and P. vivax recurrence. We evaluated the pooled odds ratio (OR) and 95% confidence interval (CI).
RESULTS: Data from nine studies, including 970 patients, were analyzed. We found that CYP2D6 poor metabolizers (PMs), intermediate metabolizers (IMs), or normal metabolizers slow (NM-Ss) were associated with a 1.8-fold (95% CI, 1.34-2.45; P = 0.0001) higher recurrence of P. vivax than normal metabolizers fast (NM-Fs), extensive metabolizers (EMs), or ultrarapid metabolizer (UMs). Subgroup analysis showed that studies on both Brazilian and Southeast or East Asian individuals had similar results to the main results. Sensitivity analysis by sequentially excluding individual studies also showed robust results (OR range: 1.63-2.01).
CONCLUSIONS: This meta-analysis confirmed that CYP2D6 PMs, IMs, or NM-Ss increased the risk of P. vivax recurrence compared to NM-Fs, EMs, or UMs. The results of this study could be used to predict P. vivax recurrence and suggest CYP2D6 genotype-based primaquine dosing.
PMID:35452835 | DOI:10.1016/j.tmaid.2022.102333
Kindlin-1 modulates the EGFR pathway and predicts sensitivity to EGFR inhibitors across cancer types
Clin Transl Med. 2022 Apr;12(4):e813. doi: 10.1002/ctm2.813.
NO ABSTRACT
PMID:35452191 | DOI:10.1002/ctm2.813
Towards personalised antidepressive medicine based on "big data": an up-to-date review on robust factors affecting treatment response
Neuropsychopharmacol Hung. 2022 Mar 1;24(1):17-28.
ABSTRACT
Prescribing antidepressant medication is currently the most effective way of treating major depression, but only very few patients achieve permanent improvement. Therefore, it is important to identify objectively measurable markers for effective, personalized therapy. The aim of this review article is to collect all the markers that are robustly predictive of the outcome of therapy. We searched for systematic review articles that have simultaneously investigated the effects of as many different markers as possible on the response to antidepressant therapy in major depressive patients. From these we extracted markers that have been found to be significant by at least two independent review studies and that have proven replicable also within each of these reviews. A separate search was performed for meta-analyses of pharmacogenetic genome-wide association studies. Based on our results, onset time, symptom severity, presence of anhedonia, early treatment response, comorbid anxiety, alcohol consumption, frontal EEG theta activity, hippocampal volume, activity of anterior cingulate cortex, as well as a peripheral marker, serum BDNF levels have proven replicable predictors of antidepressant response. Pharmacogenomic studies to date have not yielded replicable results. Predictors identified as robust by our study may provide a starting point for future machine learning models within a 'big data' database of major depressive patients. (Neuropsychopharmacol Hung 2022; 24(1): 17-28).
PMID:35451589
Evolution of <em>HLA-B</em> Pharmacogenomics and the Importance of PGx Data Integration in Health Care System: A 10 Years Retrospective Study in Thailand
Front Pharmacol. 2022 Apr 5;13:866903. doi: 10.3389/fphar.2022.866903. eCollection 2022.
ABSTRACT
Background: The HLA-B is the most polymorphic gene, play a crucial role in drug-induced hypersensitivity reactions. There is a lot of evidence associating several risk alleles to life-threatening adverse drug reactions, and a few of them have been approved as valid biomarkers for predicting life-threatening hypersensitivity reactions. Objectives: The objective of this present study is to present the progression of HLA-B pharmacogenomics (PGx) testing in the Thai population during a 10-year period, from 2011 to 2020. Methods: This was a retrospective observational cohort study conducted at the Faculty of Medicine Ramathibodi Hospital. Overall, 13,985 eligible patients who were tested for HLA-B risk alleles between periods of 2011-2020 at the study site were included in this study. Results: The HLA PGx testing has been increasing year by year tremendously, 94 HLA-B testing was done in 2011; this has been raised to 2,880 in 2020. Carbamazepine (n = 4,069, 33%), allopurinol (n = 4,675, 38%), and abacavir (n = 3,246, 26%) were the most common drugs for which the HLA-B genotyping was performed. HLA-B*13:01, HLA-B*15:02 and HLA-B*58:01 are highly frequent, HLA-B*51:01 and HLA-B*57:01 are moderately frequent alleles that are being associated with drug induced hypersensitivity. HLA-B*59:01 and HLA-B*38:01 theses alleles are rare but has been reported with drug induced toxicity. Most of the samples were from state hospital (50%), 36% from private clinical laboratories and 14% from private hospitals. Conclusion: According to this study, HLA-B PGx testing is increasing substantially in Thailand year after year. The advancement of research in this field, increased physician awareness of PGx, and government and insurance scheme reimbursement assistance could all be factors. Incorporating PGx data, along with other clinical and non-clinical data, into clinical decision support systems (CDS) and national formularies, on the other hand, would assist prescribers in prioritizing therapy for their patients. This will also aid in the prediction and prevention of serious adverse drug reactions.
PMID:35450046 | PMC:PMC9016335 | DOI:10.3389/fphar.2022.866903