Pharmacogenomics
Effect of Genetic Variants of Gonadotropins and Their Receptors on Ovarian Stimulation Outcomes: A Delphi Consensus
Front Endocrinol (Lausanne). 2022 Feb 1;12:797365. doi: 10.3389/fendo.2021.797365. eCollection 2021.
ABSTRACT
BACKGROUND: A Delphi consensus was conducted to evaluate the influence of single nucleotide polymorphisms (SNPs) in genes encoding gonadotropin and gonadotropin receptors on clinical ovarian stimulation outcomes following assisted reproductive technology (ART) treatment.
METHODS: Nine experts plus two Scientific Coordinators discussed and amended statements plus supporting references proposed by the Scientific Coordinators. The statements were distributed via an online survey to 36 experts, who voted on their level of agreement or disagreement with each statement. Consensus was reached if the proportion of participants agreeing or disagreeing with a statement was >66%.
RESULTS: Eleven statements were developed, of which two statements were merged. Overall, eight statements achieved consensus and two statements did not achieve consensus. The statements reaching consensus are summarized here. (1) SNP in the follicle stimulating hormone receptor (FSHR), rs6166 (c.2039A>G, p.Asn680Ser) (N=5 statements): Ser/Ser carriers have higher basal FSH levels than Asn/Asn carriers. Ser/Ser carriers require higher amounts of gonadotropin during ovarian stimulation than Asn/Asn carriers. Ser/Ser carriers produce fewer oocytes during ovarian stimulation than Asn/Asn or Asn/Ser carriers. There is mixed evidence supporting an association between this variant and ovarian hyperstimulation syndrome. (2) SNP of FSHR, rs6165 (c.919G>A, p.Thr307Ala) (N=1 statement): Few studies suggest Thr/Thr carriers require a shorter duration of gonadotropin stimulation than Thr/Ala or Ala/Ala carriers. (3) SNP of FSHR, rs1394205 (-29G>A) (N=1 statement): Limited data in specific ethnic groups suggest that A/A allele carriers may require higher amounts of gonadotropin during ovarian stimulation and produce fewer oocytes than G/G carriers. (4) SNP of FSH β-chain (FSHB), rs10835638 (-211G>T) (N=1 statement): There is contradictory evidence supporting an association between this variant and basal FSH levels or oocyte number. (5) SNPs of luteinizing hormone β-chain (LHB) and LH/choriogonadotropin receptor (LHCGR) genes (N=1 statement): these may influence ovarian stimulation outcomes and could represent potential future targets for pharmacogenomic research in ART, although data are still very limited.
CONCLUSIONS: This Delphi consensus provides clinical perspectives from a diverse international group of experts. The consensus supports a link between some variants in gonadotropin/gonadotropin receptor genes and ovarian stimulation outcomes; however, further research is needed to clarify these findings.
PMID:35178027 | PMC:PMC8844496 | DOI:10.3389/fendo.2021.797365
Clinical pharmacogenomic testing and reporting: A technical standard of the American College of Medical Genetics and Genomics (ACMG)
Genet Med. 2022 Feb 10:S1098-3600(21)05468-X. doi: 10.1016/j.gim.2021.12.009. Online ahead of print.
ABSTRACT
Pharmacogenomic testing interrogates germline sequence variants implicated in interindividual drug response variability to infer a drug response phenotype and to guide medication management for certain drugs. Specifically, discrete aspects of pharmacokinetics, such as drug metabolism, and pharmacodynamics, as well as drug sensitivity, can be predicted by genes that code for proteins involved in these pathways. Pharmacogenomics is unique and differs from inherited disease genetics because the drug response phenotype can be drug-dependent and is often unrecognized until an unexpected drug reaction occurs or a patient fails to respond to a medication. Genes and variants with sufficiently high levels of evidence and consensus may be included in a clinical pharmacogenomic test; however, result interpretation and phenotype prediction can be challenging for some genes and medications. This document provides a resource for laboratories to develop and implement clinical pharmacogenomic testing by summarizing publicly available resources and detailing best practices for pharmacogenomic nomenclature, testing, result interpretation, and reporting.
PMID:35177334 | DOI:10.1016/j.gim.2021.12.009
Genotypic and phenotypic landscapes of 51 pharmacogenes derived from whole-genome sequencing in a Thai population
PLoS One. 2022 Feb 17;17(2):e0263621. doi: 10.1371/journal.pone.0263621. eCollection 2022.
ABSTRACT
Differences in drug responses in individuals are partly due to genetic variations in pharmacogenes, which differ among populations. Here, genome sequencing of 171 unrelated Thai individuals from all regions of Thailand was used to call star alleles of 51 pharmacogenes by Stargazer, determine allele and genotype frequencies, predict phenotype and compare high-impact variant frequencies between Thai and other populations. Three control genes, EGFR, VDR, and RYR1, were used, giving consistent results. Every individual had at least three genes with variant or altered phenotype. Forty of the 51 pharmacogenes had at least one individual with variant or altered phenotype. Moreover, thirteen genes had at least 25% of individuals with variant or altered phenotype including SLCO1B3 (97.08%), CYP3A5 (88.3%), CYP2C19 (60.82%), CYP2A6 (60.2%), SULT1A1 (56.14%), G6PD (54.39%), CYP4B1 (50.00%), CYP2D6 (48.65%), CYP2F1 (46.41%), NAT2 (40.35%), SLCO2B1 (28.95%), UGT1A1 (28.07%), and SLCO1B1 (26.79%). Allele frequencies of high impact variants from our samples were most similar to East Asian. Remarkably, we identified twenty predicted high impact variants which have not previously been reported. Our results provide information that contributes to the implementation of pharmacogenetic testing in Thailand and other Southeast Asian countries, bringing a step closer to personalized medicine.
PMID:35176049 | DOI:10.1371/journal.pone.0263621
Life-Threatening Docetaxel Toxicity in a Patient With Reduced-Function CYP3A Variants: A Case Report
Front Oncol. 2022 Jan 31;11:809527. doi: 10.3389/fonc.2021.809527. eCollection 2021.
ABSTRACT
Docetaxel therapy occasionally causes severe and life-threatening toxicities. Some docetaxel toxicities are related to exposure, and inter-individual variability in exposure has been described based on genetic variation and drug-drug interactions that impact docetaxel clearance. Cytochrome P450 3A4 (CYP3A4) and CYP3A5 metabolize docetaxel into inactive metabolites, and this is the primary mode of docetaxel clearance. Supporting their role in these toxicities, increased docetaxel toxicities have been found in patients with reduced- or loss-of-function variants in CYP3A4 and CYP3A5. However, since these variants in CYP3A4 are rare, little is known about the safety of docetaxel in patients who are homozygous for the reduced-function CYP3A4 variants. Here we present a case of life-threatening (grade 4) pneumonitis, dyspnea, and neutropenia resulting from a single dose of docetaxel. This patient was (1) homozygous for CYP3A4*22, which causes reduced expression and is associated with increased docetaxel-related adverse events, (2) heterozygous for CYP3A4*3, a rare reduced-function missense variant, and (3) homozygous for CYP3A5*3, a common loss of function splicing defect that has been associated with increased docetaxel exposure and adverse events. The patient also carried functional variants in other genes involved in docetaxel pharmacokinetics that may have increased his risk of toxicity. We identified one additional CYP3A4*22 homozygote that received docetaxel in our research cohort, and present this case of severe hematological toxicity. Furthermore, the one other CYP3A4*22 homozygous patient we identified from the literature died from docetaxel toxicity. This case report provides further evidence for the need to better understand the impact of germline CYP3A variants in severe docetaxel toxicity and supports using caution when treating patients with docetaxel who have genetic variants resulting in CYP3A poor metabolizer phenotypes.
PMID:35174070 | PMC:PMC8841796 | DOI:10.3389/fonc.2021.809527
Mu opioid receptor gene variant modulates subjective response to smoked cannabis
Am J Transl Res. 2022 Jan 15;14(1):623-632. eCollection 2022.
ABSTRACT
The mu-opioid receptor (MOR) mediates the rewarding properties of many psychoactive drugs and is an important target in the treatment of addictions. Functional interactions between the opioid and endocannabinoid systems are established and have been hypothesized to contribute to the effects of cannabis. We investigated associations between three single nucleotide polymorphisms in the MOR gene OPRM1 (rs1799971, rs2281617, and rs510769) and subjective responses to smoked cannabis. Fifty-two regular cannabis users (1-4 days/week) were given a cannabis cigarette (12.5% THC) and rated their subjective responses on visual analog scales at baseline and at multiple time points after smoking. Blood samples were collected for THC quantification. There was a significant impact of the intronic variant rs510769 on subjective cannabis effects and THC blood levels. The influence of this gene variant may thus be mediated by pharmacodynamics and/or pharmacokinetic factors. We provide novel evidence that variability in OPRM1 contributes to individual responses to cannabis and may affect risk of cannabis use disorder. Our findings add to the growing body of literature on the genetic basis of individual responses to cannabis and may have implications for targeting the endogenous opioid system in the treatment of cannabis use disorder.
PMID:35173880 | PMC:PMC8829626
<em>GABRA1</em> and <em>GABRB2</em> Polymorphisms are Associated with Propofol Susceptibility
Pharmgenomics Pers Med. 2022 Feb 9;15:105-117. doi: 10.2147/PGPM.S348170. eCollection 2022.
ABSTRACT
PURPOSE: To explore the effect of gene polymorphisms of propofol GABAA receptor and metabolic enzyme on drug susceptibility during the induction period of general anesthesia.
PATIENTS AND METHODS: A total of 294 female patients aged 18-55 years, ASA I-II, who underwent hysteroscopy with intravenous general anesthesia, were included in the study. Anesthesia was induced by continuous intravenous infusion of propofol at 40 mg·kg-1·h-1. Infusion of propofol was ended when both the Modified Observer's Assessment of Awareness/Sedation scale (MOAA/S scale) decreased to 1 and the BIS index decreased to 60. The time when the MOAA/S scale decreased to 1 and the time when BIS index decreased to 60 was recorded to assess the susceptibility to the sedation effect. The maximum decreased percentage in mean arterial pressure (MAP) within 5 minutes was recorded to assess the susceptibility of cardiovascular response. Venous blood of each patient was collected to identify the presence of genetic variants in the GABRA1, GABRA2, GABRB2, GABRB3, GABRG2, CYP2B6, and UGT1A9 genes using the Sequenom MassARRAY® platform.
RESULTS: After receiving propofol infusion, carriers of polymorphic GABRA1 rs4263535 G allele required significantly less time for BIS decreased to 60, while carriers of polymorphic GABRB2 rs3816596 T allele required significantly more time for BIS decreased to 60, carriers of polymorphic GABRA1 rs1157122 C allele and carriers of polymorphic GABRB2 rs76774144 T allele had a significantly less change in MAP.
CONCLUSION: GABRB2 rs3816596 and GABRA1 rs4263535 polymorphisms are associated with susceptibility to the sedation effect of propofol. GABRA1 rs1157122 and GABRB2 rs76774144 polymorphisms are associated with the degree of drop in blood pressure after propofol infusion.
PMID:35173461 | PMC:PMC8841664 | DOI:10.2147/PGPM.S348170
Predictors of 4-week antidepressant outcome in patients with first-episode major depressive disorder:An ROC curve analysis
J Affect Disord. 2022 Feb 13:S0165-0327(22)00177-X. doi: 10.1016/j.jad.2022.02.029. Online ahead of print.
ABSTRACT
BACKGROUND: Pretreatment characteristics of patients, symptom and function could be associated with antidepressant treatment outcome, but its predictive ability is not adequate. Our study aimed to identify predictors of acute antidepressant efficacy in patients with first-episode Major Depressive Disorder (MDD).
METHODS: 187 patients with first-episode MDD were included and assessed clinical symptoms, cognitive function and global functioning using the 17-item Hamilton Depression Inventory (HAMD-17), MATRICS Consensus Cognitive Battery (MCCB) and Global Assessment of Functioning (GAF). Participants received treatment with a SSRI (escitalopram or venlafaxine) for 4 weeks. Logistic regression was used to analyze the association between patients' characteristics, symptom profiles, cognitive performance, and global functioning and the antidepressant outcome at the end of 4 weeks, and ROC curve analysis was performed for predictive accuracy with area under the receiver operating curve (AUC).
RESULTS: Antidepressant improvement, response and remission rate at week 4 was 87.7%, 64.7% and 42.8%, respectively. The combination of pretreatment clinical profiles, speed of processing and global functioning showed moderate discrimination of acute improvement, response and remission with AUCs of 0.863, 0.812 and 0.734, respectively.
LIMITATIONS: The major limitation of the present study is the study did not combine pharmacogenomics from the perspective of antidepressant drug metabolism.
CONCLUSION: Aside from the baseline clinical symptoms, cognitive function and global functioning could be predictors of acute treatment outcome in first episode MDD using escitalopram or venlafaxine. This relatively simple application based on clinical symptoms and function seems to be cost-effective method to identify individuals who are more likely to respond to antidepressant treatment.
PMID:35172174 | DOI:10.1016/j.jad.2022.02.029
HLA-B*07:02 and HLA-C*07:02 are associated with trimethoprim-sulfamethoxazole respiratory failure
Pharmacogenomics J. 2022 Feb 16. doi: 10.1038/s41397-022-00266-8. Online ahead of print.
ABSTRACT
We have identified an underrecognized severe adverse drug reaction (ADR) of trimethoprim-sulfamethoxazole (TMP-SMX) associated respiratory failure in previously healthy children and young adults. We investigated potential genetic risk factors associated with TMP-SMX induced respiratory failure in a cohort of seven patients. We explored whole genome sequence among seven patients representing nearly half of all reported cases worldwide and 63 unrelated control individuals in two stages: (1) human leukocyte antigen (HLA) locus variation as several other ADRs have been associated HLA genetic variants and (2) coding variation to catalog and explore potential rare variants contributing to this devastating reaction. All cases were either heterozygous (carriers) or homozygous for the common HLA-B*07:02-HLA-C*07:02 haplotype. Despite the small sample size, this observation is statistically significant both in conservative comparison to maximum reported population frequencies (binomial P = 0.00017 for HLA-B and P = 0.00028 for HLA-C) and to our control population assessed by same HLA genotyping approach (binomial P = 0.000001 for HLA-B and P = 0.000018 for HLA-C). No gene elsewhere in the genome harnessed shared rare case enriched coding variation. Our results suggests that HLA-B*07:02 and HLA-C*07:02 are necessary for a patient to develop respiratory failure due to TMP-SMX.
PMID:35169303 | DOI:10.1038/s41397-022-00266-8
A population study of clinically actionable genetic variation affecting drug response from the Middle East
NPJ Genom Med. 2022 Feb 15;7(1):10. doi: 10.1038/s41525-022-00281-5.
ABSTRACT
Clinical implementation of pharmacogenomics will help in personalizing drug prescriptions and alleviate the personal and financial burden due to inefficacy and adverse reactions to drugs. However, such implementation is lagging in many parts of the world, including the Middle East, mainly due to the lack of data on the distribution of actionable pharmacogenomic variation in these ethnicities. We analyzed 6,045 whole genomes from the Qatari population for the distribution of allele frequencies of 2,629 variants in 1,026 genes known to affect 559 drugs or classes of drugs. We also performed a focused analysis of genotypes or diplotypes of 15 genes affecting 46 drugs, which have guidelines for clinical implementation and predicted their phenotypic impact. The allele frequencies of 1,320 variants in 703 genes affecting 299 drugs or class of drugs were significantly different between the Qatari population and other world populations. On average, Qataris carry 3.6 actionable genotypes/diplotypes, affecting 13 drugs with guidelines for clinical implementation, and 99.5% of the individuals had at least one clinically actionable genotype/diplotype. Increased risk of simvastatin-induced myopathy could be predicted in ~32% of Qataris from the diplotypes of SLCO1B1, which is higher compared to many other populations, while fewer Qataris may need tacrolimus dosage adjustments for achieving immunosuppression based on the CYP3A5 diplotypes compared to other world populations. Distinct distribution of actionable pharmacogenomic variation was also observed among the Qatari subpopulations. Our comprehensive study of the distribution of actionable genetic variation affecting drugs in a Middle Eastern population has potential implications for preemptive pharmacogenomic implementation in the region and beyond.
PMID:35169154 | DOI:10.1038/s41525-022-00281-5
Characterization of the promoter of the human farnesyltransferase beta subunit and the impact of the transcription factor OCT-1 on its expression
Genomics. 2022 Feb 12:110314. doi: 10.1016/j.ygeno.2022.110314. Online ahead of print.
ABSTRACT
Farnesyltransferase (FTase) enables about 100 proteins to interact with cellular membranes by catalyzing the posttranslational addition of a farnesyl group. Farnesylated proteins provide important functions and inhibitors against the β-subunit of the heterodimer of FTase are intensively studied in clinical and preclinical trials. However, very little is known about the transcriptional regulation of the β-subunit. The examined promoter region of the human FTase β-subunit gene (FNTB) showed significant basal promoter activity in HEK-293 and in HeLa cells. We were able to locate the core promoter at -165 to -74. Ten potential binding sites of the transcription factor OCT-1 were detected. Three could be confirmed using EMSA super shift experiments. OCT-1 overexpression and knockdown confirmed it as an important regulator of FNTB expression. Our results provide a basis for further research on FNTB/OCT-1 regulation, its inhibitors and diseases influenced by both such as colon carcinoma or diabetes mellitus.
PMID:35167937 | DOI:10.1016/j.ygeno.2022.110314
Programmed death-ligand 1 signaling and expression are reversible by lycopene via PI3K/AKT and Raf/MEK/ERK pathways in tongue squamous cell carcinoma
Genes Nutr. 2022 Feb 14;17(1):3. doi: 10.1186/s12263-022-00705-y.
ABSTRACT
BACKGROUND: Cancer therapy targeting programmed death receptor-1 (PD-1 or CD279) or programmed death-ligand 1 (PD-L1 or CD274) gives hope to Tongue Squamous Cell Carcinoma (TSCC) treatment. However, the tumor-intrinsic mechanism of PD-L1 is not fully elucidated in TSCC. On the other hand, lycopene showed antitumor effects and chemotherapy/radiotherapy-enhancing effects by mechanisms closely correlated with PD-L1.
PURPOSE: We aimed to explore whether the mechanisms of PD-L1 signaling and regulation are reversible by lycopene treatment in TSCC.
METHODS: We collected TSCC tissues and normal tissues for assessment of PD-L1 expression by immunohistochemical technique and western blotting. We measured the expression of PD-L1 in three TSCC cell lines and constructed cell lines with knockdown and overexpression of PD-L1. Then, we measured the proliferation by CCK-8 assay, migration and invasion by Transwell assay, and apoptosis by TUNEL assay in five groups with treatment of blank control, negative control with vector transfection, PD-L1 knockdown/overexpression, 4 μM lycopene, and combined 4 μM lycopene and PD-L1 knockdown/overexpression. We also systematically analyzed the PD-L1 constitutive signaling pathways and their effect EMT pathways. In order to bring out the mechanism underlying PI3K/AKT depressing Raf/MEK/ERK, we used PI3K inhibitor LY294002.
RESULTS: We detected significant PD-L1 upregulation in biopsies by western blot and immunohistochemistry. Our study demonstrated that PD-L1 upregulation elevated IGF-1R to activate the PI3K/AKT pathway but inactivated the Raf/MEK/ERK pathway in TSCC cell line CAL27, while PD-L1 knockdown decreased IGF-1R to inactivate both PI3K/AKT and Raf/MEK/ERK pathways in cell line SCC9, to increase/decrease p-FOXOs and decrease/increase p-GSK-3β, producing further changes in EMT, proliferation, migration, invasion, and apoptosis. Lycopene reversed PD-L1 signaling and expression by mechanisms opposite to PD-L1 upregulation but similar to PD-L1 knockdown.
CONCLUSION: Taken together, this study firstly confirmed PD-L1 expression and signaling are reversible by lycopene via PI3K/AKT and Raf/MEK/ERK pathways in TSCC. Our study provides a sounder basis for comprehending PD-L1 signaling and expression and prevention and treatment of TSCC.
PMID:35164673 | DOI:10.1186/s12263-022-00705-y
Monthly Increase in Vitamin D Levels upon Supplementation with 2000 IU/Day in Healthy Volunteers: Result from "Integriamoci", a Pilot Pharmacokinetic Study
Molecules. 2022 Feb 3;27(3):1042. doi: 10.3390/molecules27031042.
ABSTRACT
Vitamin D (VD) is a calcium- and phosphate-controlling hormone used to treat bone disorders; yet, several other effects are progressively emerging. VD deficiency is highly prevalent worldwide, with suboptimal exposure to sunlight listed among the leading causes: oral supplementation with either cholecalciferol or calcitriol is used. However, there is a scarcity of clinical studies investigating how quickly VD concentrations can increase after supplementation. In this pilot study, the commercial supplement ImmuD3 (by Erboristeria Magentina®) was chosen as the source of VD and 2000 IU/day was administered for one month to 21 healthy volunteers that had not taken any other VD supplements in the previous 30 days. Plasma VD levels were measured through liquid chromatography coupled to tandem mass spectrometry after 7, 14, and 28 days of supplementation. We found that 95% of the participants had insufficient VD levels at baseline (<30 ng/mL; median 23.72 ng/mL; IQR 18.10-26.15), but after 28 days of supplementation, this percentage dropped to 62% (median 28.35 ng/mL; IQR 25.78-35.20). The median increase in VD level was 3.09 ng/mL (IQR 1.60-5.68) after 7 days and 8.85 ng/mL (IQR 2.85-13.97F) after 28 days. This study suggests the need for continuing VD supplementation and for measuring target level attainment.
PMID:35164307 | DOI:10.3390/molecules27031042
Hereditary Spastic Paraplegia: An Update
Int J Mol Sci. 2022 Feb 1;23(3):1697. doi: 10.3390/ijms23031697.
ABSTRACT
Hereditary spastic paraplegia (HSP) is a rare neurodegenerative disorder with the predominant clinical manifestation of spasticity in the lower extremities. HSP is categorised based on inheritance, the phenotypic characters, and the mode of molecular pathophysiology, with frequent degeneration in the axon of cervical and thoracic spinal cord's lateral region, comprising the corticospinal routes. The prevalence ranges from 0.1 to 9.6 subjects per 100,000 reported around the globe. Though modern medical interventions help recognize and manage the disorder, the symptomatic measures remain below satisfaction. The present review assimilates the available data on HSP and lists down the chromosomes involved in its pathophysiology and the mutations observed in the respective genes on the chromosomes. It also sheds light on the treatment available along with the oral/intrathecal medications, physical therapies, and surgical interventions. Finally, we have discussed the related diagnostic techniques as well as the linked pharmacogenomics studies under future perspectives.
PMID:35163618 | DOI:10.3390/ijms23031697
Genetic and Epigenetic Markers of Lithium Response
Int J Mol Sci. 2022 Jan 29;23(3):1555. doi: 10.3390/ijms23031555.
ABSTRACT
The mood stabilizer lithium represents a cornerstone in the long term treatment of bipolar disorder (BD), although with substantial interindividual variability in clinical response. This variability appears to be modulated by genetics, which has been significantly investigated in the last two decades with some promising findings. In addition, recently, the interest in the role of epigenetics has grown significantly, since the exploration of these mechanisms might allow the elucidation of the gene-environment interactions and explanation of missing heritability. In this article, we provide an overview of the most relevant findings regarding the pharmacogenomics and pharmacoepigenomics of lithium response in BD. We describe the most replicated findings among candidate gene studies, results from genome-wide association studies (GWAS) as well as post-GWAS approaches supporting an association between high genetic load for schizophrenia, major depressive disorder or attention deficit/hyperactivity disorder and poor lithium response. Next, we describe results from studies investigating epigenetic mechanisms, such as changes in methylation or noncoding RNA levels, which play a relevant role as regulators of gene expression. Finally, we discuss challenges related to the search for the molecular determinants of lithium response and potential future research directions to pave the path towards a biomarker guided approach in lithium treatment.
PMID:35163479 | DOI:10.3390/ijms23031555
Metformin and Insulin Resistance: A Review of the Underlying Mechanisms behind Changes in GLUT4-Mediated Glucose Transport
Int J Mol Sci. 2022 Jan 23;23(3):1264. doi: 10.3390/ijms23031264.
ABSTRACT
Metformin is the most commonly used treatment to increase insulin sensitivity in insulin-resistant (IR) conditions such as diabetes, prediabetes, polycystic ovary syndrome, and obesity. There is a well-documented correlation between glucose transporter 4 (GLUT4) expression and the level of IR. Therefore, the observed increase in peripheral glucose utilization after metformin treatment most likely comes from the induction of GLUT4 expression and its increased translocation to the plasma membrane. However, the mechanisms behind this effect and the critical metformin targets are still largely undefined. The present review explores the evidence for the crucial role of changes in the expression and activation of insulin signaling pathway mediators, AMPK, several GLUT4 translocation mediators, and the effect of posttranscriptional modifications based on previously published preclinical and clinical models of metformin's mode of action in animal and human studies. Our aim is to provide a comprehensive review of the studies in this field in order to shed some light on the complex interactions between metformin action, GLUT4 expression, GLUT4 translocation, and the observed increase in peripheral insulin sensitivity.
PMID:35163187 | DOI:10.3390/ijms23031264
Assessment of Telomerase Reverse Transcriptase Single Nucleotide Polymorphism in Sleep Bruxism
J Clin Med. 2022 Jan 20;11(3):525. doi: 10.3390/jcm11030525.
ABSTRACT
INTRODUCTION: Sleep bruxism (SB) is a widespread masticatory muscle activity during sleep and affects approximately 13.2% of the general population. Telomerase reverse transcriptase (TERT) plays a role in preventing the shortening of the telomere. This prospective, observational study aimed to investigate the relationship between single nucleotide polymorphism (SNP) of TERT and the severity of SB and to identify the independent risk factors for SB.
METHODS: A total of 112 patients were diagnosed by performing one-night polysomnography based on the guidelines of the American Academy of Sleep Medicine. TERT SNP was detected by real-time quantitative polymerase chain reaction (qPCR).
RESULTS: Statistical analysis showed the lack of relationship between the rs2853669 polymorphism of TERT and severity of SB (p > 0.05). However, the study showed that patients with allele T in the 2736100 polymorphism of TERT had a lower score on the phasic bruxism episode index (BEI). Based on the receiver operating characteristic (ROC) curve, the value of phasic BEI was 0.8 for the differential prediction for the presence of allele T in the locus. The sensitivity and specificity were 0.328 and 0.893, respectively. The regression analysis showed that lack of TERT rs2736100 T allele, male gender, and arterial hypertension are the risk factors for the higher value of phasic BEI.
CONCLUSION: The SNP of the TERT gene affects phasic SB intensity. The absence of TERT rs2736100 T allele, male sex, and arterial hypertension are independent risk factors for phasic SB.
PMID:35159976 | DOI:10.3390/jcm11030525
An Integrated In Silico, In Vitro and Tumor Tissues Study Identified Selenoprotein S (SELENOS) and Valosin-Containing Protein (VCP/p97) as Novel Potential Associated Prognostic Biomarkers in Triple Negative Breast Cancer
Cancers (Basel). 2022 Jan 27;14(3):646. doi: 10.3390/cancers14030646.
ABSTRACT
BACKGROUND: Triple negative breast cancer (TNBC) is a heterogeneous group of tumors with early relapse, poor overall survival, and lack of effective treatments. Hence, new prognostic biomarkers and therapeutic targets are needed.
METHODS: The expression profile of all twenty-five human selenoproteins was analyzed in TNBC by a systematic approach.In silicoanalysis was performed on publicly available mRNA expression datasets (Cancer Cell Line Encyclopedia, CCLE and Library of Integrated Network-based Cellular Signatures, LINCS). Reverse transcription quantitative PCR analysis evaluated selenoprotein mRNA expression in TNBC versus non-TNBC and normal breast cells, and in TNBC tissues versus normal counterparts. Immunohistochemistry was employed to study selenoproteins in TNBC tissues. STRING and Cytoscape tools were used for functional and network analysis.
RESULTS: GPX1, GPX4, SELENOS, TXNRD1 and TXNRD3 were specifically overexpressed in TNBC cells, tissues and CCLE/LINCS datasets. Network analysis demonstrated that SELENOS-binding valosin-containing protein (VCP/p97) played a critical hub role in the TNBCselenoproteins sub-network, being directly associated with SELENOS expression. The combined overexpression of SELENOS and VCP/p97 correlated with advanced stages and poor prognosis in TNBC tissues and the TCGA dataset.
CONCLUSION: Combined evaluation of SELENOS and VCP/p97 might represent a novel potential prognostic signature and a therapeutic target to be exploited in TNBC.
PMID:35158912 | DOI:10.3390/cancers14030646
Pharmacogenomics of Vincristine-Induced Peripheral Neuropathy in Children with Cancer: A Systematic Review and Meta-Analysis
Cancers (Basel). 2022 Jan 26;14(3):612. doi: 10.3390/cancers14030612.
ABSTRACT
Vincristine-induced peripheral neuropathy (VIPN) is a debilitating side-effect of vincristine. It remains a challenge to predict which patients will suffer from VIPN. Pharmacogenomics may explain an individuals' susceptibility to side-effects. In this systematic review and meta-analysis, we describe the influence of pharmacogenomic parameters on the development of VIPN in children with cancer. PubMed, Embase and Web of Science were searched. In total, 1597 records were identified and 21 studies were included. A random-effects meta-analysis was performed for the influence of CYP3A5 expression on the development of VIPN. Single-nucleotide polymorphisms (SNPs) in transporter-, metabolism-, cytoskeleton-, and hereditary neuropathy-associated genes and SNPs in genes previously unrelated to vincristine or neuropathy were associated with VIPN. CYP3A5 expression status was not significantly associated with VIPN. The comparison and interpretation of the results of the included studies was limited due to heterogeneity in the study population, treatment protocol and assessment methods and definitions of VIPN. Independent replication is essential to validate the clinical significance of the reported associations. Future research should aim for prospective VIPN assessment in both a discovery and a replication cohort. Ultimately, the goal would be to screen patients upfront to determine optimal vincristine dosage with regards to efficacy and risk of VIPN.
PMID:35158880 | DOI:10.3390/cancers14030612
Peripheral Blood Transcriptome in Breast Cancer Patients as a Source of Less Invasive Immune Biomarkers for Personalized Medicine, and Implications for Triple Negative Breast Cancer
Cancers (Basel). 2022 Jan 25;14(3):591. doi: 10.3390/cancers14030591.
ABSTRACT
Transcriptome studies of peripheral blood cells can advance our understanding of the systemic immune response to the presence of cancer and the mechanisms underlying cancer onset and progression. This enables the identification of novel minimally invasive immune biomarkers for early cancer detection and personalized cancer management and may bring forward new immunotherapy options. Recent blood gene expression analyses in breast cancer (BC) identified distinct patient subtypes that differed in the immune reaction to cancer and were distinct from the clinical BC subtypes, which are categorized based on expression of specific receptors on tumor cells. Introducing new BC subtypes based on peripheral blood gene expression profiles may be appropriate, since it may assist in BC prognosis, the identification of patients likely to benefit from immunotherapy, and treatment efficacy monitoring. Triple-negative breast cancer (TNBC) is an aggressive, heterogeneous, and difficult-to-treat disease, and identification of novel biomarkers for this BC is crucial for clinical decision-making. A few studies have reported TNBC-enriched blood transcriptional signatures, mostly related to strong inflammation and augmentation of altered immune signaling, that can differentiate TNBC from other classical BC subtypes and facilitate diagnosis. Future research is geared toward transitioning from expression signatures in unfractionated blood cells to those in immune cell subpopulations.
PMID:35158858 | DOI:10.3390/cancers14030591
<em>FNTB</em> Promoter Polymorphisms Are Independent Predictors of Survival in Patients with Triple Negative Breast Cancer
Cancers (Basel). 2022 Jan 18;14(3):468. doi: 10.3390/cancers14030468.
ABSTRACT
In breast cancer, the promising efficacy of farnesyltransferase inhibitors (FTIs) in preclinical studies is in contrast to only limited effects in clinical Phase II-III trials. The objective of this study was to explore the clinical relevance of farnesyltransferase β-subunit (FNTB) single nucleotide promoter polymorphisms (FNTB-173 6G > 5G (rs3215788), -609 G > C (rs11623866) and -179 T > A (rs192403314)) in early breast cancer. FNTB genotyping was performed by pyrosequencing in 797 patients from a prospective multicentre observational PiA trial (NCT01592825). In the total cohort, the FNTB-173 6G > 5G polymorphism was an independent predictor of RFI (HR = 0.568; 95% CI = 0.339-0.949, p = 0.031), OS (HR = 0.629; 95% CI = 0.403-0.980, p = 0.040) and BCSS (HR = 0.433; 95% CI = 0.213-0.882; p = 0.021), whereas the FNTB-609 G > C polymorphism was an independent predictor of RFI (HR = 0.453; 95% CI = 0.226-0.910, p = 0.026) and BCSS (HR = 0.227; 95% CI = 0.075-0.687, p = 0.009). Subtype analysis revealed the independent prognostic relevance of FNTB promoter polymorphisms, particularly in TNBC but not in luminal or HER2-positive intrinsic subtypes. Finally, we used electrophoretic mobility shift assays (EMSAs) to confirm in vitro that the polymorphism FNTB-173 6G > 5G resulted in the differential binding of nuclear proteins from five different breast cancer cell lines. This is the first study on breast cancer suggesting that FNTB promoter polymorphisms (i) are independent prognostic biomarkers, particularly in patients with early TNBC, and (ii) could modulate FNTB's transcriptional activity.
PMID:35158735 | DOI:10.3390/cancers14030468