Pharmacogenomics

The Potential Application of Extracellular Vesicles from Liquid Biopsies for Determination of Pharmacogene Expression

Sat, 2022-02-26 06:00

Pharmaceuticals (Basel). 2022 Feb 19;15(2):252. doi: 10.3390/ph15020252.

ABSTRACT

Pharmacogenomics (PGx) entails the study of heritability of drug response. This may include both variability in genes related to pharmacokinetics (drug absorption, distribution, metabolism and excretion) and pharmacodynamics (e.g., drug receptors or signaling pathways). Individualizing drug therapy taking into account the genetic profile of the patient has the potential to make drug therapy safer and more effective. Currently, this approach relies on the determination of genetic variants in pharmacogenes by genotyping. However, it is widely acknowledged that large variability in gene expression is attributed to non-structural genetic variants. Therefore, at least from a theoretical viewpoint individualizing drug therapy based upon expression of pharmacogenes rather than on genotype may be advantageous but has been difficult to implement in the clinical setting. Extracellular vesicles (EVs) are lipid encapsulated structures that contain cargo such as lipids, nucleic acids and proteins. Since their cargo is tissue- and cell-specific they can be used to determine the expression of pharmacogenes in the liver. In this review, we describe methods of EV isolation and the potential of EVs isolated from liquid biopsies as a tool to determine the expression of pharmacogenes for use in personalized medicine.

PMID:35215364 | DOI:10.3390/ph15020252

Categories: Literature Watch

Simple and Robust Detection of <em>CYP2D6</em> Gene Deletions and Duplications Using <em>CYP2D8P</em> as Reference

Sat, 2022-02-26 06:00

Pharmaceuticals (Basel). 2022 Jan 28;15(2):166. doi: 10.3390/ph15020166.

ABSTRACT

Genotyping of the CYP2D6 gene is the most commonly applied pharmacogenetic test globally. Significant economic interests have led to the development of a plurality of assays, available for almost any genotyping platform or DNA detection chemistry. Of all the genetic variants, copy number variations are particular difficult to detect by polymerase chain reaction. Here, we present two simple novel approaches for the identification of samples carrying either deletions or duplications of the CYP2D6 gene; by relative quantification using a singleplex 5'nuclease real-time PCR assay, and by high-resolution melting of PCR products. These methods make use of universal primers, targeting both the CYP2D6 and the reference gene CYP2D8P, which is necessary for the analysis. The assays were validated against a reference method using a large set of samples. The singleplex nature of the 5'nuclease real-time PCR ensures that the primers anneal with equal affinity to both the sequence of the CYP2D6 and the reference gene. This facilitates robust identification of gene deletions and duplications based on the cycle threshold value. In contrast, the high-resolution melting assay is an end-point PCR, where the identification relies on variations between the amount of product generated from each of the two genes.

PMID:35215279 | DOI:10.3390/ph15020166

Categories: Literature Watch

Effect of <em>GSTA1</em> Variants on Busulfan-Based Conditioning Regimen Prior to Allogenic Hematopoietic Stem-Cell Transplantation in Pediatric Asians

Sat, 2022-02-26 06:00

Pharmaceutics. 2022 Feb 11;14(2):401. doi: 10.3390/pharmaceutics14020401.

ABSTRACT

Busulfan is widely used as a chemotherapy treatment before hematopoietic stem-cell transplantation (HSCT). However, the response of busulfan is highly variable and unpredictable, whereby the pharmacogenetic interference of glutathione S-transferase (GST) has strong evidence in Caucasians and some adult Asians but not in pediatric Asian patients. This study was aimed at investigating the associations of GST genetic polymorphisms with variations in the pharmacokinetic (PK) properties of busulfan in pediatric Asian patients. This retrospective cohort study recruited 92 pediatric patients. The polymorphism of GSTA1 was genotyped by Sanger sequencing, and GSTM1 and GSTP1 were genotyped by real-time PCR. Drug concentration and PK estimation were identified using an LC-MS/MS method and a noncompartmental model. Statistical analysis was performed by R software. Out of 92 patients, 48 (53%) were males, the mean age was 8.4 ± 5.12 years old, and the average weight was 26.52 ± 14.75 kg. The allele frequencies of GSTA1*B and of GSTM1 and GSTP1* deletions were 16.9%, 68.5%, and 21.2%, respectively. Patients with GSTA1*B had a statistically significant impact on the PK of busulfan, whereas those with GSTM1 and GSTP1 did not (p > 0.05). The carriers of GSTA1*B showed a significant difference compared to noncarriers in terms of t1/2 (for first dose: 161.9 vs. 134.3 min, p = 0.0016; for second dose: 156.1 vs. 129.8, p = 0.012), CL (88.74 vs. 124.23 mL/min, p = 0.0089), Cmax (4232.6 vs. 3675.5 ng/mL, p = 0.0021), and AUC (5310.6 vs. 4177.1 µM/min, p = 0.00033). The augmentation of AUC was around 27.1% in patients carrying the GSTA1*B variant. The GSTA1 polymorphism was significantly associated with variations of the pharmacokinetic properties of busulfan treatment in pediatric Asian patients.

PMID:35214132 | DOI:10.3390/pharmaceutics14020401

Categories: Literature Watch

Pharmacogene Variants Associated with Liver Transplant in a Twelve-Year Clinical Follow-Up

Sat, 2022-02-26 06:00

Pharmaceutics. 2022 Feb 3;14(2):354. doi: 10.3390/pharmaceutics14020354.

ABSTRACT

Some gene polymorphisms have been previously associated individually with tacrolimus efficacy and toxicity, but no long-term study to determine the role of pharmacogene variants in the clinical evolution of liver-transplanted patients has been addressed so far. In the present work, we analyzed the relation between highly-evidenced genetic polymorphisms located in relevant pharmacogenes and the risk of suffering premature death and other comorbidities such as cancer, diabetes mellitus, arterial hypertension, graft rejection, infections and nephrotoxicities in a cohort of 87 patients (8 were excluded due to early loss of follow-up) transplanted at Hospital La Fe in Valencia (Spain) during a 12-year follow-up. Employing a logistic regression model with false discovery rate penalization and Kaplan-Meier analyses, we observed significant association between survival rates and metabolizer genes. In this sense, our results show an association between MTHFR gene variants in donor rs1801133 (HR: 7.90; p-value: 0.032) and recipient rs1801131 (HR: 7.34; p-value: 0.036) and the group of patients who died during the follow-up period, supporting the interest of confirming these results with larger patient cohorts. In addition, donor polymorphisms in UGT1A9 metabolizer gene rs6714486 (OR: 0.13; p-value: 0.032) were associated with a lower risk of suffering from de novo cancer. Genetic variants in CYP2B6 metabolizer gene rs2279343 demonstrated an association with a risk of infection. Other variants in different locations of SLCO1A2, ABCC2 and ABCB1 transporter genes were associated with a lower risk of suffering from type 2 diabetes mellitus, chronic and acute nephrotoxicities and arterial hypertension. Results suggest that pharmacogenetics-derived information may be an important support for personalized drug prescription, clinical follow-up and the evolution of liver-transplanted patients.

PMID:35214086 | DOI:10.3390/pharmaceutics14020354

Categories: Literature Watch

Genetic Factors of Renin-Angiotensin System Associated with Major Bleeding for Patients Treated with Direct Oral Anticoagulants

Sat, 2022-02-26 06:00

Pharmaceutics. 2022 Jan 19;14(2):231. doi: 10.3390/pharmaceutics14020231.

ABSTRACT

The purpose of this study was to identify the renin-angiotensin system (RAS)-related genetic factors associated with bleeding and develop the bleeding risk scoring system in patients receiving direct oral anticoagulants (DOACs). This study was a retrospective analysis of prospectively collected samples from June 2018 to May 2020. To investigate the associations between RAS-related genetic factors and major bleeding, we selected 16 single nucleotide polymorphisms (SNPs) from five genes (namely, AGT, REN, ACE, AGTR1, and AGTR2). Multivariable logistic regression analysis was employed to investigate the independent risk factors for bleeding and to develop a risk scoring system. A total of 172 patients were included in the analysis, including 33 major bleeding cases. Both old age (≥65 years) and moderate to severe renal impairment (CrCl < 50 mL/min) increased the risk of bleeding in the multivariable analysis. Among RAS-related polymorphisms, patients carrying TT genotype of rs5050 and A allele of rs4353 experienced a 3.6-fold (95% CI: 1.4-9.3) and 3.1-fold (95% CI: 1.1-9.3) increase in bleeding, respectively. The bleeding risk increased exponentially with a higher score; the risks were 0%, 2.8%, 16.9%, 32.7%, and 75% in patients with 0, 1, 2, 3, and 4 points, respectively. Although this study is limited to a retrospective study design, this is the first study to suggest RAS-related genetic markers and risk scoring systems, including both clinical and genetic factors, for major bleeding in patients receiving DOAC treatment.

PMID:35213964 | DOI:10.3390/pharmaceutics14020231

Categories: Literature Watch

Association of a Single-Nucleotide Variant rs11100494 of the <em>NPY5R</em> Gene with Antipsychotic-Induced Metabolic Disorders

Sat, 2022-02-26 06:00

Pharmaceutics. 2022 Jan 18;14(2):222. doi: 10.3390/pharmaceutics14020222.

ABSTRACT

BACKGROUND: The usage of antipsychotics (APs) is the most robust and scientifically based approach in the treatment of schizophrenia spectrum disorders (SSDs). The efficiency of APs is based on a range of target receptors of the central nervous system (CNS): serotoninergic, dopaminergic, adrenergic, histaminergic and cholinergic. Metabolic disorders are the most severe adverse drug reactions (ADRs) and lead to cardiovascular diseases with a high rate of mortality in patients with SSDs. Neuropeptide Y receptor Y5 (NPY5R) is known in the chain of interaction to target receptors for APs, agouti-related peptide receptors and proopiomelanocortin receptors. We studied the association of the single-nucleotide variants (SNVs) rs11100494 and rs6837793 of the NPY5R gene, and rs16147, rs5573, rs5574 of the NPY gene, with metabolic disorders in Russian patients with SSDs.

METHODS: We examined 99 patients with SSDs (mean age-24.56 years old). The mean duration of APs monotherapy was 8 weeks. The biochemical blood test included levels of glucose, cholesterol, lipoproteins, alanine aminotransferase (ALT), aspartate aminotransferase (AST), total protein and albumin. Anthropometry included weight, height, waist circumference and hip circumference. We used real-time PCR to study the carriage of major and minor alleles of the SNV rs11100494 (1164C>A) of the NPY5R gene (chromosome localization-4q32.2). Group 1 comprised 25 patients with SSDs taking APs with a change in body weight of more than 6% since the start of APs therapy. Group 2 comprised 74 patients with SSDs taking APs with a change in body weight of less than 6% since the start of APs therapy.

RESULTS: We show the significance of genetic risk factors (carriage of major allele C of SNV rs11100494 of the NPY5R gene) for the development of AP-induced weight gain in Russian patients with SSDs. The allele C predisposes to AP-induced weight gain (OR = 33.48 [95% CI: 12.62; 88.82], p-value < 0.001). Additionally, the results of our study demonstrate that first-generation APs (FGAs) are more likely to cause an increase in serum transaminase levels but are less likely to increase body weight. Second-generation APs (SGAs) are more likely to cause weight gain and changes in serum glucose levels.

CONCLUSION: Our study shows the predictive role of the allele C of SNV rs11100494 of the NPY5R gene in the development of AP-induced weight gain. However, we did not find a significant association between biochemical markers and this SNV in Russian patients with SSDs.

PMID:35213955 | DOI:10.3390/pharmaceutics14020222

Categories: Literature Watch

Pilot Findings of Pharmacogenomics in Perioperative Care: Initial Results From the First Phase of the ImPreSS Trial

Fri, 2022-02-25 06:00

Anesth Analg. 2022 Feb 25. doi: 10.1213/ANE.0000000000005951. Online ahead of print.

ABSTRACT

BACKGROUND: Pharmacogenomics, which offers a potential means by which to inform prescribing and avoid adverse drug reactions, has gained increasing consideration in other medical settings but has not been broadly evaluated during perioperative care.

METHODS: The Implementation of Pharmacogenomic Decision Support in Surgery (ImPreSS) Trial is a prospective, single-center study consisting of a prerandomization pilot and a subsequent randomized phase. We describe findings from the pilot period. Patients planning elective surgeries were genotyped with pharmacogenomic results, and decision support was made available to anesthesia providers in advance of surgery. Pharmacogenomic result access and prescribing records were analyzed. Surveys (Likert-scale) were administered to providers to understand utilization barriers.

RESULTS: Of eligible anesthesiology providers, 166 of 211 (79%) enrolled. A total of 71 patients underwent genotyping and surgery (median, 62 years; 55% female; average American Society of Anesthesiologists (ASA) score, 2.6; 58 inpatients and 13 ambulatories). No patients required postoperative intensive care or pain consultations. At least 1 provider accessed pharmacogenomic results before or during 41 of 71 surgeries (58%). Faculty were more likely to access results (78%) compared to house staff (41%; P = .003) and midlevel practitioners (15%) (P < .0001). Notably, all administered intraoperative medications had favorable genomic results with the exception of succinylcholine administration to 1 patient with genomically increased risk for prolonged apnea (without adverse outcome). Considering composite prescribing in preoperative, recovery, throughout hospitalization, and at discharge, each patient was prescribed a median of 35 (range 15-83) total medications, 7 (range 1-22) of which had annotated pharmacogenomic results. Of 2371 prescribing events, 5 genomically high-risk medications were administered (all tramadol or omeprazole; with 2 of 5 pharmacogenomic results accessed), and 100 genomically cautionary mediations were administered (hydralazine, oxycodone, and pantoprazole; 61% rate of accessing results). Providers reported that although results were generally easy to access and understand, the most common reason for not considering results was because remembering to access pharmacogenomic information was not yet a part of their normal clinical workflow.

CONCLUSIONS: Our pilot data for result access rates suggest interest in pharmacogenomics by anesthesia providers, even if opportunities to alter prescribing in response to high-risk genotypes were infrequent. This pilot phase has also uncovered unique considerations for implementing pharmacogenomic information in the perioperative care setting, and new strategies including adding the involvement of surgery teams, targeting patients likely to need intensive care and dedicated pain care, and embedding pharmacists within rounding models will be incorporated in the follow-on randomized phase to increase engagement and likelihood of affecting prescribing decisions and clinical outcomes.

PMID:35213469 | DOI:10.1213/ANE.0000000000005951

Categories: Literature Watch

Pharmacoepigenetics of hypertension: genome-wide methylation analysis of responsiveness to four classes of antihypertensive drugs using a double-blind crossover study design

Fri, 2022-02-25 06:00

Epigenetics. 2022 Feb 25:1-14. doi: 10.1080/15592294.2022.2038418. Online ahead of print.

ABSTRACT

Essential hypertension remains the leading risk factor of global disease burden, but its treatment goals are often not met. We investigated whether DNA methylation is associated with antihypertensive responses to a diuretic, a beta-blocker, a calcium channel blocker or an angiotensin receptor antagonist. In addition, since we previously showed an SNP at the transcription start site (TSS) of the catecholamine biosynthesis-related ACY3 gene to associate with blood pressure (BP) response to beta-blockers, we specifically analysed the association of methylation sites close to the ACY3 TSS with BP responses to beta-blockers. We conducted an epigenome-wide association study between leukocyte DNA methylation and BP responses to antihypertensive monotherapies in two hypertensive Finnish cohorts: the GENRES (https://clinicaltrials.gov/ct2/show/NCT03276598; amlodipine 5 mg, bisoprolol 5 mg, hydrochlorothiazide 25 mg, or losartan 50 mg daily) and the LIFE-Fin studies (https://clinicaltrials.gov/ct2/show/NCT00338260; atenolol 50 mg or losartan 50 mg daily). The monotherapy groups consisted of approximately 200 individuals each. We identified 64 methylation sites to suggestively associate (P < 1E-5) with either systolic or diastolic BP responses to a particular study drug in GENRES. These associations did not replicate in LIFE-Fin . Three methylation sites close to the ACY3 TSS were associated with systolic BP responses to bisoprolol in GENRES but not genome-wide significantly (P < 0.05). No robust associations between DNA methylation and BP responses to four different antihypertensive drugs were identified. However, the findings on the methylation sites close to the ACY3 TSS may support the role of ACY3 genetic and epigenetic variation in BP response to bisoprolol.

PMID:35213289 | DOI:10.1080/15592294.2022.2038418

Categories: Literature Watch

Alternative splicing and alternative polyadenylation define tumor immune microenvironment and pharmacogenomic landscape in clear cell renal carcinoma

Fri, 2022-02-25 06:00

Mol Ther Nucleic Acids. 2022 Jan 19;27:927-946. doi: 10.1016/j.omtn.2022.01.014. eCollection 2022 Mar 8.

ABSTRACT

Two major posttranscriptional mechanisms-alternative splicing (AS) and alternative polyadenylation (APA)-have attracted much attention in cancer research. Nevertheless, their roles in clear cell renal carcinoma (ccRCC) are still ill defined. Herein, this study was conducted to uncover the implications of AS and APA events in ccRCC progression. Through consensus molecular clustering analysis, two AS or APA RNA processing phenotypes were separately constructed with distinct prognosis, tumor-infiltrating immune cells, responses to immunotherapy, and chemotherapy. The AS or APA score was constructed to quantify AS or APA RNA processing patterns of individual ccRCCs with principal-component analysis. Both high AS and APA scores were characterized by undesirable survival outcomes, relatively high response to immunotherapy, and low sensitivity to targeted drugs, such as sorafenib and pazopanib. Moreover, several small molecular compounds were predicted for patients with a high AS or APA score. There was a positive correlation between AS and APA scores. Their interplay contributed to poor prognosis and reshaped the tumor immune microenvironment. Collectively, this study is the first to comprehensively analyze two major posttranscriptional events in ccRCC. Our findings uncovered the potential functions of AS and APA events and identified their therapeutic potential in immunotherapy and targeted therapy.

PMID:35211354 | PMC:PMC8829526 | DOI:10.1016/j.omtn.2022.01.014

Categories: Literature Watch

Possible pharmacogenetic factors in clozapine treatment failure: a case report

Fri, 2022-02-25 06:00

Ther Adv Psychopharmacol. 2021 Jul 22;11:20451253211030844. doi: 10.1177/20451253211030844. eCollection 2021.

ABSTRACT

There is still much to learn about the predictors of therapeutic response in psychiatry, but progress is gradually being made and precision psychiatry is an exciting and emerging subspeciality in this field. This is critically important in the treatment of refractory psychotic disorders, where clozapine is the only evidence-based treatment but only about half the patients experience an adequate response. In this case report, we explore the possible biological mechanisms underlying treatment failure and discuss possible ways of improving clinical outcomes. Further work is required to fully understand why some patients fail to respond to the most effective treatment in refractory schizophrenia. Therapeutic drug monitoring together with early pharmacogenetic testing may offer a path for some patients with refractory psychotic symptoms unresponsive to clozapine treatment.

PMID:35211290 | PMC:PMC8862186 | DOI:10.1177/20451253211030844

Categories: Literature Watch

Association of Drug-Metabolizing Enzyme and Transporter Gene Polymorphisms and Lipid-Lowering Response to Statins in Thai Patients with Dyslipidemia

Fri, 2022-02-25 06:00

Pharmgenomics Pers Med. 2022 Feb 17;15:119-130. doi: 10.2147/PGPM.S346093. eCollection 2022.

ABSTRACT

PURPOSE: Statins are increasingly widely used in the primary and secondary prevention of cardiovascular disease. However, there is an inter-individual variation in statin response among patients. The study aims to determine the association between genetic variations in drug-metabolizing enzyme and transporter (DMET) genes and lipid-lowering response to a statin in Thai patients with hyperlipidemia.

PATIENTS AND METHODS: Seventy-nine patients who received statin at steady-state concentrations were recruited. Serum lipid profile was measured at baseline and repeated after 4-month on a statin regimen. The genotype profile of 1936 DMET markers was obtained using Affymetrix DMET Plus genotyping microarrays.

RESULTS: In this DMET microarray platform, five variants; SLCO1B3 (rs4149117, rs7311358, and rs2053098), QPRT (rs13331798), and SLC10A2 (rs188096) showed a suggestive association with LDL-cholesterol-lowering response. HDL-cholesterol-lowering responses were found to be related to CYP7A1 gene variant (rs12542233). Seven variants, SLCO1B3 (rs4149117, rs7311358, and rs2053098); SULT1E1 (rs3736599 and rs3822172); and ABCB11 (rs4148768 and rs3770603), were associated with the total cholesterol-lowering response. One variant of the ABCB4 gene (rs2109505) was significantly associated with triglyceride-lowering response.

CONCLUSION: This pharmacogenomic study identifies new genetic variants of DMET genes that are associated with the lipid-lowering response to statins. Genetic polymorphisms in DMET genes may impact the pharmacokinetics and lipid-lowering response to statin. The validation studies confirmations are needed in future pharmacogenomic studies.

PMID:35210819 | PMC:PMC8860396 | DOI:10.2147/PGPM.S346093

Categories: Literature Watch

Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility

Fri, 2022-02-25 06:00

Nat Genet. 2022 Feb 24. doi: 10.1038/s41588-021-01007-6. Online ahead of print.

ABSTRACT

Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel NaV1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on NaV1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings.

PMID:35210625 | DOI:10.1038/s41588-021-01007-6

Categories: Literature Watch

Integration of liquid biopsy and pharmacogenomics for precision therapy of EGFR mutant and resistant lung cancers

Fri, 2022-02-25 06:00

Mol Cancer. 2022 Feb 24;21(1):61. doi: 10.1186/s12943-022-01534-8.

ABSTRACT

The advent of molecular profiling has revolutionized the treatment of lung cancer by comprehensively delineating the genomic landscape of the epidermal growth factor receptor (EGFR) gene. Drug resistance caused by EGFR mutations and genetic polymorphisms of drug metabolizing enzymes and transporters impedes effective treatment of EGFR mutant and resistant lung cancer. This review appraises current literature, opportunities, and challenges associated with liquid biopsy and pharmacogenomic (PGx) testing as precision therapy tools in the management of EGFR mutant and resistant lung cancers. Liquid biopsy could play a potential role in selection of precise tyrosine kinase inhibitor (TKI) therapies during different phases of lung cancer treatment. This selection will be based on the driver EGFR mutational status, as well as monitoring the development of potential EGFR mutations arising during or after TKIs treatment, since some of these new mutations may be druggable targets for alternative TKIs. Several studies have identified the utility of liquid biopsy in the identification of EGFR driver and acquired resistance with good sensitivities for various blood-based biomarkers. With a plethora of sequencing technologies and platforms available currently, further evaluations using randomized controlled trials (RCTs) in multicentric, multiethnic and larger patient cohorts could enable optimization of liquid-based assays for the detection of EGFR mutations, and support testing of CYP450 enzymes and drug transporter polymorphisms to guide precise dosing of EGFR TKIs.

PMID:35209919 | DOI:10.1186/s12943-022-01534-8

Categories: Literature Watch

Pharmacokinetic determinants for the right dose of antiarrhythmic drugs

Fri, 2022-02-25 06:00

Expert Opin Drug Metab Toxicol. 2022 Feb 25. doi: 10.1080/17425255.2022.2046733. Online ahead of print.

ABSTRACT

INTRODUCTION: Antiarrhythmic drugs (AADs) show a narrow therapeutic range and marked inter-subject variability in pharmacokinetics (PK), which may lead to inappropriate dosing and drug toxicity.

AREAS COVERED: The aim of the present review is to describe PK properties of AADs, discussing the main changes in different clinical scenarios, such as the elderly and patients with obese, chronic kidney, liver and cardiac disease, in order to guide their right prescription in clinical practice.

EXPERT OPINION: There are few data about PK properties of AADs in a special population or challenging clinical setting. The use and dose of AADs is commonly based on physicians' clinical experience observing the clinical effects rather than being personalized on the individual patients PK profiles. More and updated studies are needed to validate a patient centered approach in the pharmacological treatment of arrhythmias based on patients' clinical features, including pharmacogenomics, and AAD pharmacokinetics.

PMID:35209796 | DOI:10.1080/17425255.2022.2046733

Categories: Literature Watch

Biological Age Acceleration Is Lower in Women With Ischemic Stroke Compared to Men

Fri, 2022-02-25 06:00

Stroke. 2022 Feb 25:STROKEAHA121037419. doi: 10.1161/STROKEAHA.121.037419. Online ahead of print.

ABSTRACT

BACKGROUND: Stroke onset in women occurs later in life compared with men. The underlying mechanisms of these differences have not been established. Epigenetic clocks, based on DNA methylation (DNAm) profiles, are the most accurate biological age estimate. Epigenetic age acceleration (EAA) measures indicate whether an individual is biologically younger or older than expected. Our aim was to analyze whether sexual dichotomy at age of stroke onset is conditioned by EAA.

METHODS: We used 2 DNAm datasets from whole blood samples of case-control genetic studies of ischemic stroke (IS), a discovery cohort of 374 IS patients (N women=163, N men=211), from GRECOS (Genotyping Recurrence Risk of Stroke) and SEDMAN (Dabigatran Study in the Early Phase of Stroke, New Neuroimaging Markers and Biomarkers) studies and a replication cohort of 981 IS patients (N women=411, N men=570) from BASICMAR register. We compared chronological age, 2 DNAm-based biomarkers of aging and intrinsic and extrinsic epigenetic age acceleration EAA (IEAA and extrinsic EAA, respectively), in IS as well as in individual IS etiologic subtypes. Horvath and Hannum epigenetic clocks were used to assess the aging rate. A proteomic study using the SOMAScan multiplex assay was performed on 26 samples analyzing 1305 proteins.

RESULTS: Women present lower Hannum-extrinsic EAA values, whereas men have higher Hannum-extrinsic EAA values (women=-0.64, men=1.24, P=1.34×10-2); the same tendency was observed in the second cohort (women=-0.57, men=0.79, P=0.02). These differences seemed to be specific to cardioembolic and undetermined stroke subtypes. Additionally, 42 blood protein levels were associated with Hannum-extrinsic EAA (P<0.05), belonging to the immune effector process (P=1.54×10-6) and platelet degranulation (P<8.74×10-6) pathways.

CONCLUSIONS: This study shows that sex-specific underlying biological mechanisms associated with stroke onset could be due to differences in biological age acceleration between men and women.

PMID:35209739 | DOI:10.1161/STROKEAHA.121.037419

Categories: Literature Watch

The Potential of Metabolomics in Biomedical Applications

Fri, 2022-02-25 06:00

Metabolites. 2022 Feb 19;12(2):194. doi: 10.3390/metabo12020194.

ABSTRACT

The metabolome offers a dynamic, comprehensive, and precise picture of the phenotype. Current high-throughput technologies have allowed the discovery of relevant metabolites that characterize a wide variety of human phenotypes with respect to health, disease, drug monitoring, and even aging. Metabolomics, parallel to genomics, has led to the discovery of biomarkers and has aided in the understanding of a diversity of molecular mechanisms, highlighting its application in precision medicine. This review focuses on the metabolomics that can be applied to improve human health, as well as its trends and impacts in metabolic and neurodegenerative diseases, cancer, longevity, the exposome, liquid biopsy development, and pharmacometabolomics. The identification of distinct metabolomic profiles will help in the discovery and improvement of clinical strategies to treat human disease. In the years to come, metabolomics will become a tool routinely applied to diagnose and monitor health and disease, aging, or drug development. Biomedical applications of metabolomics can already be foreseen to monitor the progression of metabolic diseases, such as obesity and diabetes, using branched-chain amino acids, acylcarnitines, certain phospholipids, and genomics; these can assess disease severity and predict a potential treatment. Future endeavors should focus on determining the applicability and clinical utility of metabolomic-derived markers and their appropriate implementation in large-scale clinical settings.

PMID:35208267 | DOI:10.3390/metabo12020194

Categories: Literature Watch

Pharmacogenomics-Guided Pharmacotherapy in Patients with Major Depressive Disorder or Bipolar Disorder Affected by Treatment-Resistant Depressive Episodes: A Long-Term Follow-Up Study

Fri, 2022-02-25 06:00

J Pers Med. 2022 Feb 19;12(2):316. doi: 10.3390/jpm12020316.

ABSTRACT

Treatment-resistant depression (TRD) reduces affected patients' quality of life and leads to important social health care costs. Pharmacogenomics-guided treatment (PGT) may be effective in the cure of TRD. The main aim of this study was to evaluate the clinical changes after PGT in patients with TRD (two or more recent failed psychopharmacological trials) affected by bipolar disorder (BD) or major depressive disorder (MDD) compared to a control group with treatment as usual (TAU). We based the PGT on assessing different gene polymorphisms involved in the pharmacodynamics and pharmacokinetics of drugs. We analyzed, with a repeated-measure ANOVA, the changes between the baseline and a 6 month follow-up of the efficacy index assessed through the Clinical Global Impression (CGI) scale, and depressive symptoms through the Hamilton Depression Rating Scale (HDRS). The PGT sample included 53 patients (26 BD and 27 MDD), and the TAU group included 52 patients (31 BD and 21 MDD). We found a significant within-subject effect of treatment time on symptoms and efficacy index for the whole sample, with significant improvements in the efficacy index (F = 8.544; partial η² = 0.077, p < 0.004) and clinical global impression of severity of illness (F = 6.818; partial η² = 0.062, p < 0.01) in the PGT vs. the TAU group. We also found a significantly better follow-up response (χ² = 5.479; p = 0.019) and remission (χ² = 10.351; p = 0.001) rates in the PGT vs. the TAU group. PGT may be an important option for the long-term treatment of patients with TRD affected by mood disorders, providing information that can better define drug treatment strategies and increase therapeutic improvement.

PMID:35207804 | DOI:10.3390/jpm12020316

Categories: Literature Watch

Patients' Perceptions of Pharmacogenetic Testing and Access to Their Results: State of the Art in Spain and Systematic Review

Fri, 2022-02-25 06:00

J Pers Med. 2022 Feb 12;12(2):270. doi: 10.3390/jpm12020270.

ABSTRACT

The process of clinical pharmacogenetics implementation depends on patients' and general population's perceptions. To date, no study has been published addressing Spanish patients' opinions on pharmacogenetic testing, the availability of the results, and the need for signing informed consent. In this work, we contacted 146 patients that had been previously genotyped at our laboratory and 46 healthy volunteers that had participated in a bioequivalence clinical trial at the Clinical Pharmacology Department of Hospital Universitario de La Princesa and consented to pharmacogenetic testing for research purposes. From the latter, 108 and 34, respectively, responded to the questionnaire (i.e., a response rate of 74%); Participants were scheduled for a face-to-face, telephone, or videoconference interview and were asked a total of 27 questions in Spanish. Great or almost complete acceptance of pharmacogenetic testing was observed (99.3%), age and university education level being the main predictors of acceptance rates and understanding (multivariate analysis, p = 0.004, R2 = 0.17, age being inversely proportional to acceptance rates and understanding and university level being related to higher acceptance rates and understanding compared to other education levels). Mixed perceptions were observed on the requirement of written informed consent (55.6% in favor); therefore, it seems recommendable to continue requesting it for the upcoming years until more perceptions are collected. The majority of participants (95.8%) preferred storing pharmacogenetic results in medical records rather than in electronic sources (55.6%) and highly agreed with the possibility of carrying their results on a portable card (91.5%). Patients agreed to broad genetic testing, including biomarkers unrelated to their disease (93.7%) or with little clinically relevant evidence (94.4%). Patients apparently rely on clinician's or pharmacogeneticist's interpretation and seem, therefore, open to the generation of ethically challenging information. Finally, although most patients (68.3%) agreed with universal population testing, some were reluctant, probably due to the related costs and sustainability of the Spanish Health System. This was especially evident in the group of patients who were older and with a likely higher proportion of pensioners.

PMID:35207758 | DOI:10.3390/jpm12020270

Categories: Literature Watch

Serotonin-Related Functional Genetic Variants Affect the Occurrence of Psychiatric and Motor Adverse Events of Dopaminergic Treatment in Parkinson's Disease: A Retrospective Cohort Study

Fri, 2022-02-25 06:00

J Pers Med. 2022 Feb 11;12(2):266. doi: 10.3390/jpm12020266.

ABSTRACT

The serotonergic system is important in Parkinson's disease (PD) pathogenesis as it can take over dopamine production after a large portion of dopaminergic neurons is lost through neurodegeneration. The aim of this study was to evaluate the effect of genetic variability of serotonergic genes on the occurrence of motor complications and psychiatric adverse events (AE) due to dopaminergic treatment. We enrolled 231 patients and their clinical data were collected. Genotyping was performed for eight genetic variants. Logistic regression was used for analysis. Carriers of the HTR1A rs6295 GC genotype (OR = 2.58; 95% CI = 1.15-5.78; p = 0.021), TPH2 rs4290270 AA genotype (OR = 2.78; 95% CI = 1.08-7.03; p = 0.034), and at least one TPH2 rs4570625 T allele (OR = 1.86; 95% CI = 1.00-3.44; p = 0.047) had increased risk for visual hallucinations (VH). Additionally, carriers of at least one SLC6A4&nbsp;5-HTTPLR rs25531 S (OR = 0.52; 95% CI = 0.28-0.96; p = 0.037) or at least one LG allele (OR = 0.37; 95% CI = 0.14-0.97; p = 0.044) had a decreased chance for VH. Constructed haplotypes of the TPH2 showed increased risk for VH (OR = 1.94; 95% CI = 1.06-3.55; p = 0.032) and impulse control disorders (OR = 5.20; 95% CI = 1.86-14.50; p = 0.002). Finally, individual gene-gene interactions showed decreased odds for the development of motor AE. Our findings suggest that the serotonergic pathway may play an important role in the development of AE resulting from dopaminergic treatment.

PMID:35207756 | DOI:10.3390/jpm12020266

Categories: Literature Watch

SWAAT Bioinformatics Workflow for Protein Structure-Based Annotation of ADME Gene Variants

Fri, 2022-02-25 06:00

J Pers Med. 2022 Feb 11;12(2):263. doi: 10.3390/jpm12020263.

ABSTRACT

Recent genomic studies have revealed the critical impact of genetic diversity within small population groups in determining the way individuals respond to drugs. One of the biggest challenges is to accurately predict the effect of single nucleotide variants and to get the relevant information that allows for a better functional interpretation of genetic data. Different conformational scenarios upon the changing in amino acid sequences of pharmacologically important proteins might impact their stability and plasticity, which in turn might alter the interaction with the drug. Current sequence-based annotation methods have limited power to access this type of information. Motivated by these calls, we have developed the Structural Workflow for Annotating ADME Targets (SWAAT) that allows for the prediction of the variant effect based on structural properties. SWAAT annotates a panel of 36 ADME genes including 22 out of the 23 clinically important members identified by the PharmVar consortium. The workflow consists of a set of Python codes of which the execution is managed within Nextflow to annotate coding variants based on 37 criteria. SWAAT also includes an auxiliary workflow allowing a versatile use for genes other than ADME members. Our tool also includes a machine learning random forest binary classifier that showed an accuracy of 73%. Moreover, SWAAT outperformed six commonly used sequence-based variant prediction tools (PROVEAN, SIFT, PolyPhen-2, CADD, MetaSVM, and FATHMM) in terms of sensitivity and has comparable specificity. SWAAT is available as an open-source tool.

PMID:35207751 | DOI:10.3390/jpm12020263

Categories: Literature Watch

Pages