Pharmacogenomics

Evaluation of the Veterans Affairs Pharmacogenomic Testing for Veterans (PHASER) clinical program at initial test sites

Wed, 2021-10-27 06:00

Pharmacogenomics. 2021 Oct 27. doi: 10.2217/pgs-2021-0089. Online ahead of print.

ABSTRACT

Aim: The first Plan-Do-Study-Act cycle for the Veterans Affairs Pharmacogenomic Testing for Veterans pharmacogenomic clinical testing program is described. Materials & methods: Surveys evaluating implementation resources and processes were distributed to implementation teams, providers, laboratory and health informatics staff. Survey responses were mapped to the Consolidated Framework for Implementation Research constructs to identify implementation barriers. The Expert Recommendation for Implementing Change strategies were used to address implementation barriers. Results: Survey response rate was 23-73% across personnel groups at six Veterans Affairs sites. Nine Consolidated Framework for Implementation Research constructs were most salient implementation barriers. Program revisions addressed these barriers using the Expert Recommendation for Implementing Change strategies related to three domains. Conclusion: Beyond providing free pharmacogenomic testing, additional implementation barriers need to be addressed for improved program uptake.

PMID:34704830 | DOI:10.2217/pgs-2021-0089

Categories: Literature Watch

Farnesylthiosalicylic acid-derivatized PEI-based nanocomplex for improved tumor vaccination

Wed, 2021-10-27 06:00

Mol Ther Nucleic Acids. 2021 Sep 20;26:594-602. doi: 10.1016/j.omtn.2021.09.006. eCollection 2021 Dec 3.

ABSTRACT

Cancer vaccines that make use of tumor antigens represent a promising therapeutic strategy by stimulating immune responses against tumors to generate long-term anti-tumor immunity. However, vaccines have shown limited clinical efficacy due to inefficient delivery. In this study, we focus on vaccine delivery assisted by nanocomplexes for cancer immunotherapy. Nanocomplex-mediated vaccination can efficiently deliver nucleic acids encoding neoantigens to lymphoid tissues and antigen-presenting cells. Polyethylenimine (PEI) was conjugated with farnesylthiosalicylic acid (FTS) to form micelles. Subsequent interaction with nucleic acids led to formation of polymer/nucleic acid nanocomplexes of well-controlled structure. Tumor transfection via FTS-PEI was much more effective than that by PEI, other PEI derivatives, or naked DNA. Significant numbers of transfected cells were also observed in draining lymph nodes (LNs). In vivo delivery of ovalbumin (OVA; a model antigen) expression plasmid (pOVA) by FTS-PEI led to a significant growth inhibition of the OVA-expressing B16 tumor through presentation of OVA epitopes as well as other epitopes via epitope spreading. Moreover, in vivo delivery of an endogenous melanoma neoantigen tyrosinase-related protein 2 (Trp2) also led to substantial tumor growth inhibition. FTS-PEI represents a promising transfection agent for effective gene delivery to tumors and LNs to mediate effective neoantigen vaccination.

PMID:34703645 | PMC:PMC8517092 | DOI:10.1016/j.omtn.2021.09.006

Categories: Literature Watch

The utility of endogenous glycochenodeoxycholate-3-sulfate and 4β-hydroxycholesterol to evaluate the hepatic disposition of atorvastatin in rats

Wed, 2021-10-27 06:00

Asian J Pharm Sci. 2021 Jul;16(4):519-529. doi: 10.1016/j.ajps.2021.03.002. Epub 2021 Apr 6.

ABSTRACT

The liver is an important organ for drugs disposition, and thus how to accurately evaluate hepatic clearance is essential for proper drug dosing. However, there are many limitations in drug dosage adjustment based on liver function and pharmacogenomic testing. In this study, we evaluated the ability of endogenous glycochenodeoxycholate-3-sulfate (GCDCA-S) and 4β-hydroxycholesterol (4β-HC) plasma levels to evaluate organic anion-transporting polypeptide (Oatps)-mediated hepatic uptake and Cyp3a-meidated metabolism of atorvastatin (ATV) in rats. The concentration of ATV and its metabolites, 2-OH ATV and 4-OH ATV, was markedly increased after a single injection of rifampicin (RIF), an inhibitor of Oatps. Concurrently, plasma GCDCA-S levels were also elevated. After a single injection of the Cyp3a inhibitor ketoconazole (KTZ), plasma ATV concentrations were significantly increased and 2-OH ATV concentrations were decreased, consistent with the metabolism of ATV by Cyp3a. However, plasma 4β-HC was not affected by KTZ treatment despite it being a Cyp3a metabolite of cholesterol. After repeated oral administration of RIF, plasma concentrations of ATV, 2-OH ATV and 4-OH ATV were markedly increased and the hepatic uptake ratio of ATV and GCDCA-S was decreased. KTZ did not affect plasma concentrations of ATV, 2-OH ATV and 4-OH ATV, but significantly decreased the metabolic ratio of total and 4-OH ATV. However, the plasma level and hepatic metabolism of 4β-HC were not changed by KTZ. The inhibition of hepatic uptake of GCDCA-S by RIF was fully reversed after a 7-d washout of RIF. Plasma concentration and hepatic uptake ratio of GCDCA-S were correlated with the plasma level and hepatic uptake of ATV in rats with ANIT-induced liver injury, respectively. These results demonstrate that plasma GCDCA-S is a sensitive probe for the assessment of Oatps-mediated hepatic uptake of ATV. However, Cyp3a-mediated metabolism of ATV was not predicted by plasma 4β-HC levels in rats.

PMID:34703500 | PMC:PMC8520055 | DOI:10.1016/j.ajps.2021.03.002

Categories: Literature Watch

Pharmacogenomics for Clinical Trials of COVID-19 Medicines: Why Is This Important Now?

Tue, 2021-10-26 06:00

OMICS. 2021 Oct 25. doi: 10.1089/omi.2021.0176. Online ahead of print.

NO ABSTRACT

PMID:34699259 | DOI:10.1089/omi.2021.0176

Categories: Literature Watch

C4C - Paediatric pharmacovigilance: Methodological Considerations in Research and Development of Medicines for Children - A c4c Expert Group White Paper

Tue, 2021-10-26 06:00

Br J Clin Pharmacol. 2021 Oct 26. doi: 10.1111/bcp.15119. Online ahead of print.

ABSTRACT

Children frequently respond differently to therapies compared to adults. Differences also exist between paediatric age groups for pharmacokinetics and pharmacodynamics in both efficacy and safety. Paediatric pharmacovigilance requires an understanding of the unique aspects of children with regards to, for example, drug response, growth and development, clinical presentation of adverse drug reactions (ADRs), how they can be detected and population specific factors (e.g. more frequent use of off-label/unlicensed drugs). In recognition of these challenges a group of experts has been formed in the context of the conect4children (c4c) project to support paediatric drug development. This expert group collaborated to develop methodological considerations for paediatric drug safety and pharmacovigilance throughout the life-cycle of medicinal products which are described in this article. These considerations include practical points to consider for the development of the paediatric section of the risk management plan (RMP), safety in paediatric protocol development, safety data collection and analysis. Furthermore, they describe the specific details of post-marketing pharmacovigilance in children using, for example, spontaneous reports, electronic health care records, registries and record-linkage, as well as the use of paediatric pharmacoepidemiology studies for risk characterisation. Next the details of the assessment of benefit-risk and challenges related to medicinal product formulation in the context of a Paediatric Investigation Plan (PIP) are presented. Finally, practical issues in paediatric signal detection and evaluation are included. This paper provides practical points to consider for paediatric pharmacovigilance throughout the life-cycle of medicinal products for RMPs, protocol development, safety data collection and analysis and PIPs.

PMID:34699077 | DOI:10.1111/bcp.15119

Categories: Literature Watch

Pharmacogenetics studies in stroke patients treated with rtPA: a review of the most interesting findings

Tue, 2021-10-26 06:00

Pharmacogenomics. 2021 Oct 26. doi: 10.2217/pgs-2021-0100. Online ahead of print.

ABSTRACT

Recombinant tissue-plasminogen activator (rtPA) is the only drug used during the acute phase of stroke. Despite its important benefits, a percentage of patients suffer symptomatic hemorrhagic transformations or a lack of early recanalization rates. These undesirable effects are associated with acute neurological and long-term functional deterioration. For the past 20 years, pharmacogenetic studies have tried to find the genetic risk factors associated with rtPA response. Most of these studies have used a gene-candidate strategy; however, recent genome-wide association studies have emerged indicating that genetic predisposition could modulate rtPA response. This review summarizes the most interesting findings in this field, including which genes and genetic variations are associated with hemorrhagic transformations and recanalization rates after thrombolytic therapy.

PMID:34698533 | DOI:10.2217/pgs-2021-0100

Categories: Literature Watch

Validation of a multi-gene qPCR-based pharmacogenomics panel across major ethnic groups in Singapore and Indonesia

Mon, 2021-10-25 06:00

Pharmacogenomics. 2021 Oct 25. doi: 10.2217/pgs-2021-0071. Online ahead of print.

ABSTRACT

Aim: The clinical utility of pharmacogenomics (PGx) has been gaining traction alongside growing evidence that adverse drug reactions (ADRs) have significant genetic associations. Nala PGx Core® is a multi-gene qPCR-based panel of 20 allele variants, comprising 18 SNPs and two CYP2D6 copy number markers across four pharmacogenes - CYP2C9, CYP2C19, CYP2D6 and SLCO1B1. Methods: In this study, we validated the performance of Nala PGx Core® against benchmark methods, on the Singaporean and Indonesian populations. Results & conclusion: Nala PGx Core® demonstrated robust and accurate genotyping when compared with other established benchmarks. Furthermore, the panel successfully characterized alleles of clinical relevance, such as CYP2D6*10 and CYP2D6*36, across major ethnic groups present of Singapore and Indonesia, suggesting its potential for adoption in clinical workflows regionally.

PMID:34693729 | DOI:10.2217/pgs-2021-0071

Categories: Literature Watch

Exploring the Extracellular Vesicle MicroRNA Expression Repertoire in Patients with Rheumatoid Arthritis and Ankylosing Spondylitis Treated with TNF Inhibitors

Mon, 2021-10-25 06:00

Dis Markers. 2021 Sep 30;2021:2924935. doi: 10.1155/2021/2924935. eCollection 2021.

ABSTRACT

Rheumatoid arthritis (RA) and ankylosing spondylitis (AS) belong to the most common inflammatory rheumatic diseases. MicroRNAs (miRNAs) are small 18-22 RNA molecules that function as posttranscriptional regulators. They are abundantly present within extracellular vesicles (EVs), small intercellular communication vesicles that can be found in bodily fluids and that have key functions in pathological and physiological pathways. Recently, EVs have gained much interest because of their diagnostic and therapeutic potential. Using NanoString profiling technology, the miRNA repertoire of serum EVs was determined and compared in RA and AS patients before and after anti-TNF therapy to assess its potential use as a diagnostic and prognostic biomarker. Furthermore, possible functional effects of those miRNAs that were characterized by the most significant expression changes were evaluated using in silico prediction algorithms. The analysis revealed a unique profile of differentially expressed miRNAs in RA and AS patient serum EVs. We identified 12 miRNAs whose expression profiles enabled differentiation between RA and AS patients before induction of anti-TNF treatment, as well as 4 and 14 miRNAs whose repertoires were significantly changed during the treatment in RA and AS patients, respectively. In conclusion, our findings suggest that extracellular vesicle miRNAs could be used as potential biomarkers associated with RA and AS response to biological treatment.

PMID:34691284 | PMC:PMC8529175 | DOI:10.1155/2021/2924935

Categories: Literature Watch

Pharmacogenomics Factors Influencing the Effect of Risperidone on Prolactin Levels in Thai Pediatric Patients With Autism Spectrum Disorder

Mon, 2021-10-25 06:00

Front Pharmacol. 2021 Oct 6;12:743494. doi: 10.3389/fphar.2021.743494. eCollection 2021.

ABSTRACT

We investigated the association between genetic variations in pharmacodynamic genes and risperidone-induced increased prolactin levels in children and adolescents with autism spectrum disorder (ASD). In a retrospective study, variants of pharmacodynamic genes were analyzed in 124 ASD patients treated with a risperidone regimen for at least 3 months. To simplify genotype interpretation, we created an algorithm to calculate the dopamine D2 receptor (DRD2) gene genetic risk score. There was no relationship between prolactin levels and single SNPs. However, the H1/H3 diplotype (A2/A2-Cin/Cin-A/G) of DRD2/ankyrin repeat and kinase domain containing 1 (ANKK1) Taq1A, DRD2 -141C indel, and DRD2 -141A>G, which had a genetic risk score of 5.5, was associated with the highest median prolactin levels (23 ng/ml). As the dose-corrected plasma levels of risperidone, 9-OH-risperidone, and the active moiety increased, prolactin levels in patients carrying the H1/H3 diplotype were significantly higher than those of the other diplotypes. DRD2 diplotypes showed significantly high prolactin levels as plasma risperidone levels increased. Lower levels of prolactin were detected in patients who responded to risperidone. This is the first system for describing DRD2 haplotypes using genetic risk scores based on their protein expression. Clinicians should consider using pharmacogenetic-based decision-making in clinical practice to prevent prolactin increase.

PMID:34690776 | PMC:PMC8527557 | DOI:10.3389/fphar.2021.743494

Categories: Literature Watch

Effects of Cytochrome P450 and Transporter Polymorphisms on the Bioavailability and Safety of Dutasteride and Tamsulosin

Mon, 2021-10-25 06:00

Front Pharmacol. 2021 Oct 7;12:718281. doi: 10.3389/fphar.2021.718281. eCollection 2021.

ABSTRACT

Dutasteride and tamsulosin are one of the first-line combination therapies for the management of benign prostatic hyperplasia (BPH). Despite being more effective than monotherapies, they produce frequent adverse drug reactions (ADRs). Institutions such as Food and Drug Administration and European Medicines Agency recommend precaution with CYP2D6 poor metabolizers (PMs) that receive CYP3A4 inhibitors and tamsulosin. However, no specific pharmacogenetic guideline exists for tamsulosin. Furthermore, to date, no pharmacogenetic information is available for dutasteride. Henceforth, we studied the pharmacokinetics and safety of dutasteride/tamsulosin 0.5 mg/0.4 mg capsules according to 76 polymorphisms in 17 candidate pharmacogenes. The study population comprised 79 healthy male volunteers enrolled in three bioequivalence, phase-I, crossover, open, randomized clinical trials with different study designs: the first was single dose in fed state, the second was a single dose in fasting state, and the third was a multiple dose. As key findings, CYP2D6 PMs (i.e., *4/*4 and *4/*5 subjects) and intermediate metabolizers (IMs) (i.e., *1/*4, *1/*5, *4/*15 individuals) presented higher AUC (p = 0.004), higher t1/2 (p = 0.008), and lower Cl/F (p = 0.006) when compared with NMs (*1/*1 individuals) and UMs (1/*1 × 2 individuals) after multiple testing correction. Moreover, fed volunteers showed significantly higher tmax than fasting individuals. Nominally significant associations were observed between dutasteride exposure and CYP3A4 and CYP3A5 genotype and between tamsulosin and ABCG2, CYP3A5, and SLC22A1 genotypes. No association between the occurrence of adverse drug reactions and genotype was observed. Nonetheless, higher incidence of adverse events was found in a multiple-dose clinical trial. Based on our results, we suggest that dose adjustments for PMs and UMs could be considered to ensure drug safety and effectiveness, respectively. Further studies are warranted to confirm other pharmacogenetic associations.

PMID:34690761 | PMC:PMC8529037 | DOI:10.3389/fphar.2021.718281

Categories: Literature Watch

Machine Learning and Deep Learning for the Pharmacogenomics of Antidepressant Treatments

Mon, 2021-10-25 06:00

Clin Psychopharmacol Neurosci. 2021 Nov 30;19(4):577-588. doi: 10.9758/cpn.2021.19.4.577.

ABSTRACT

A growing body of evidence now proposes that machine learning and deep learning techniques can serve as a vital foundation for the pharmacogenomics of antidepressant treatments in patients with major depressive disorder (MDD). In this review, we focus on the latest developments for pharmacogenomics research using machine learning and deep learning approaches together with neuroimaging and multi-omics data. First, we review relevant pharmacogenomics studies that leverage numerous machine learning and deep learning techniques to determine treatment prediction and potential biomarkers for antidepressant treatments in MDD. In addition, we depict some neuroimaging pharmacogenomics studies that utilize various machine learning approaches to predict antidepressant treatment outcomes in MDD based on the integration of research on pharmacogenomics and neuroimaging. Moreover, we summarize the limitations in regard to the past pharmacogenomics studies of antidepressant treatments in MDD. Finally, we outline a discussion of challenges and directions for future research. In light of latest advancements in neuroimaging and multi-omics, various genomic variants and biomarkers associated with antidepressant treatments in MDD are being identified in pharmacogenomics research by employing machine learning and deep learning algorithms.

PMID:34690113 | DOI:10.9758/cpn.2021.19.4.577

Categories: Literature Watch

Integrated CGH/WES Analyses Advance Understanding of Aggressive Neuroblastoma Evolution: A Case Study

Sat, 2021-10-23 06:00

Cells. 2021 Oct 9;10(10):2695. doi: 10.3390/cells10102695.

ABSTRACT

Neuroblastoma (NB) is the most common extra-cranial malignancy in preschool children. To portray the genetic landscape of an overly aggressive NB leading to a rapid clinical progression of the disease, tumor DNA collected pre- and post-treatment has been analyzed. Array comparative genomic hybridization (aCGH), whole-exome sequencing (WES), and pharmacogenetics approaches, respectively, have identified relevant copy number alterations (CNAs), single nucleotide variants (SNVs), and polymorphisms (SNPs) that were then combined into an integrated analysis. Spontaneously formed 3D tumoroids obtained from the recurrent mass have also been characterized. The results prove the power of combining CNAs, SNVs, and SNPs analyses to assess clonal evolution during the disease progression by evidencing multiple clones at disease onset and dynamic genomic alterations during therapy administration. The proposed molecular and cytogenetic integrated analysis empowers the disease follow-up and the prediction of tumor recurrence.

PMID:34685674 | PMC:PMC8534916 | DOI:10.3390/cells10102695

Categories: Literature Watch

ERK: A Double-Edged Sword in Cancer. ERK-Dependent Apoptosis as a Potential Therapeutic Strategy for Cancer

Sat, 2021-10-23 06:00

Cells. 2021 Sep 22;10(10):2509. doi: 10.3390/cells10102509.

ABSTRACT

The RAF/MEK/ERK signaling pathway regulates diverse cellular processes as exemplified by cell proliferation, differentiation, motility, and survival. Activation of ERK1/2 generally promotes cell proliferation, and its deregulated activity is a hallmark of many cancers. Therefore, components and regulators of the ERK pathway are considered potential therapeutic targets for cancer, and inhibitors of this pathway, including some MEK and BRAF inhibitors, are already being used in the clinic. Notably, ERK1/2 kinases also have pro-apoptotic functions under certain conditions and enhanced ERK1/2 signaling can cause tumor cell death. Although the repertoire of the compounds which mediate ERK activation and apoptosis is expanding, and various anti-cancer compounds induce ERK activation while exerting their anti-proliferative effects, the mechanisms underlying ERK1/2-mediated cell death are still vague. Recent studies highlight the importance of dual-specificity phosphatases (DUSPs) in determining the pro- versus anti-apoptotic function of ERK in cancer. In this review, we will summarize the recent major findings in understanding the role of ERK in apoptosis, focusing on the major compounds mediating ERK-dependent apoptosis. Studies that further define the molecular targets of these compounds relevant to cell death will be essential to harnessing these compounds for developing effective cancer treatments.

PMID:34685488 | PMC:PMC8533760 | DOI:10.3390/cells10102509

Categories: Literature Watch

Post-Mastectomy Pain: An Updated Overview on Risk Factors, Predictors, and Markers

Sat, 2021-10-23 06:00

Life (Basel). 2021 Sep 29;11(10):1026. doi: 10.3390/life11101026.

ABSTRACT

After breast surgery, women frequently develop chronic post-mastectomy pain (PMP). PMP refers to the occurrence of pain in and around the area of the mastectomy lasting beyond three months after surgery. The nature of factors leading to PMP is not well known. When PMP is refractory to analgesic treatment, it negatively impacts the lives of patients, increasing emotional stress and disability. For this reason, optimizing the quality of life of patients treated for this pathology has gained more importance. On the basis of the findings and opinions above, we present an overview of risk factors and predictors to be used as potential biomarkers in the personalized management of individual PMP. For this overview, we discuss scientific articles published in peer-reviewed journals written in the English language describing risk factors, predictors, and potential biomarkers associated with chronic pain after breast surgery. Our overview confirms that the identification of women at risk for PMP is fundamental to setting up the best treatment to prevent this outcome. Clinical practice can be planned through the interpretation of genotyping data, choosing drugs, and tailoring doses for each patient with the aim to provide safer and more effective individual analgesic treatment.

PMID:34685397 | PMC:PMC8540201 | DOI:10.3390/life11101026

Categories: Literature Watch

Androstenedione (a Natural Steroid and a Drug Supplement): A Comprehensive Review of Its Consumption, Metabolism, Health Effects, and Toxicity with Sex Differences

Sat, 2021-10-23 06:00

Molecules. 2021 Oct 14;26(20):6210. doi: 10.3390/molecules26206210.

ABSTRACT

Androstenedione is a steroidal hormone produced in male and female gonads, as well as in the adrenal glands, and it is known for its key role in the production of estrogen and testosterone. Androstenedione is also sold as an oral supplement, that is being utilized to increase testosterone levels. Simply known as "andro" by athletes, it is commonly touted as a natural alternative to anabolic steroids. By boosting testosterone levels, it is thought to be an enhancer for athletic performance, build body muscles, reduce fats, increase energy, maintain healthy RBCs, and increase sexual performance. Nevertheless, several of these effects are not yet scientifically proven. Though commonly used as a supplement for body building, it is listed among performance-enhancing drugs (PEDs) which is banned by the World Anti-Doping Agency, as well as the International Olympic Committee. This review focuses on the action mechanism behind androstenedione's health effects, and further side effects including clinical features, populations at risk, pharmacokinetics, metabolism, and toxicokinetics. A review of androstenedione regulation in drug doping is also presented.

PMID:34684800 | PMC:PMC8539210 | DOI:10.3390/molecules26206210

Categories: Literature Watch

Hospital Food Service Strategies to Improve Food Intakes among Inpatients: A Systematic Review

Sat, 2021-10-23 06:00

Nutrients. 2021 Oct 18;13(10):3649. doi: 10.3390/nu13103649.

ABSTRACT

This review aims to identify hospital food service strategies to improve food consumption among hospitalized patients. A systematic search that met the inclusion and exclusion criteria was manually conducted through Web of Science and Scopus by an author, and the ambiguities were clarified by two senior authors. The quality assessment was separately conducted by two authors, and the ambiguities were clarified with all the involved authors. Qualitative synthesis was used to analyze and summarized the findings. A total of 2432 articles were identified by searching the databases, and 36 studies were included. The majority of the studies applied menu modifications and meal composition interventions (n = 12, 33.3%), or included the implementation of the new food service system (n = 8, 22.2%), protected mealtimes, mealtime assistance and environmental intervention (n = 7, 19.4%), and attractive meal presentation (n = 3, 8.3%). Previous studies that used multidisciplinary approaches reported a significant improvement in food intake, nutritional status, patient satisfaction and quality of life (n = 6, 16.7%). In conclusion, it is suggested that healthcare institutions consider applying one or more of the listed intervention strategies to enhance their foodservice operation in the future.

PMID:34684649 | PMC:PMC8537902 | DOI:10.3390/nu13103649

Categories: Literature Watch

Vitamin D as Modulator of Drug Concentrations: A Study on Two Italian Cohorts of People Living with HIV Administered with Efavirenz

Sat, 2021-10-23 06:00

Nutrients. 2021 Oct 12;13(10):3571. doi: 10.3390/nu13103571.

ABSTRACT

To date, vitamin D seems to have a significant role in affecting the prevention and immunomodulation in COVID-19 disease. Nevertheless, it is important to highlight that this pro-hormone has other several activities, such as affecting drug concentrations, since it regulates the expression of cytochrome P450 (CYP) genes. Efavirenz (EFV) pharmacokinetics is influenced by CYPs, but no data are available in the literature concerning the association among vitamin D levels, seasonality (which affects vitamin D concentrations) and EFV plasma levels. For this reason, the aim of this study was to evaluate the effect of 25-hydroxy vitamin D (25(OH)D3) levels on EFV plasma concentrations in different seasons. We quantified 25(OH)D3 by using chemiluminescence immunoassay, whereas EFV plasma concentrations were quantified with the HPLC-PDA method. A total of 316 patients were enrolled in Turin and Rome. Overall, 25(OH)D3levels resulted in being inversely correlated with EFV concentrations. Some patients with EFV levels higher than 4000 ng/mL showed a deficient 25(OH)D3 concentration in Turin and Rome cohorts and together. EFV concentrations were different in patients without vitamin D supplementation, whereas, for vitamin D-administered individuals, no difference in EFV exposure was present. Concerning seasonality, EFV concentrations were associated with 25(OH)D3 deficiency only in winter and in spring, whereas a significant influence was highlighted for 25(OH)D3 stratification for deficient, insufficient and sufficient values in winter, spring and summer. A strong and inverse association between 25(OH)D3and EFV plasma concentrations was suggested. These data suggest that vitamin D is able to affect drug exposure in different seasons; thus, the achievement of the clinical outcome could be improved by also considering this pro-hormone.

PMID:34684572 | PMC:PMC8538640 | DOI:10.3390/nu13103571

Categories: Literature Watch

Cannabis Dopaminergic Effects Induce Hallucinations in a Patient with Parkinson's Disease

Sat, 2021-10-23 06:00

Medicina (Kaunas). 2021 Oct 14;57(10):1107. doi: 10.3390/medicina57101107.

ABSTRACT

Cannabis products that contain the tetrahydrocannabinol (THC) cannabinoid are emerging as promising therapeutic agents for the treatment of medical conditions such as chronic pain. THC elicits psychoactive effects through modulation of dopaminergic neurons, thereby altering levels of dopamine in the brain. This case report highlights the complexity associated with medicinal cannabis and the health risks associated with its use. A 57-year-old male with Parkinson's disease was experiencing worsening tremors and vivid hallucinations despite therapy optimization attempts. It was discovered that the patient took cannabis for chronic back pain, and a pharmacogenomics (PGx) test indicated the presence of variants for the COMT and HTR2A genes. These variants could increase dopamine levels and predispose patients to visual hallucinations. Once the cannabis was discontinued, the patient's hallucinations began to slowly dissipate. Cannabis use continues to expand as it gains more acceptance legally and medicinally, but cannabis can affect the response to drugs. This patient case suggests that cannabis use in combination with dopamine-promoting drugs, especially in a patient with genetic variants, can increase the risk for vivid hallucinations. These conditions support the importance of considering herb-drug interactions and PGx data when performing a medication safety review.

PMID:34684144 | PMC:PMC8539120 | DOI:10.3390/medicina57101107

Categories: Literature Watch

Polymorphism in Gene for ABCC2 Transporter Predicts Methotrexate Drug Survival in Patients with Psoriasis

Sat, 2021-10-23 06:00

Medicina (Kaunas). 2021 Oct 1;57(10):1050. doi: 10.3390/medicina57101050.

ABSTRACT

Background and Objectives: Methotrexate is widely prescribed for the treatment of moderate-to-severe psoriasis. As drug survival encompasses efficacy, safety, and treatment satisfaction, such studies provide insights into successful drug treatments in the real-life scenario. The objective was to define methotrexate drug survival and reasons for discontinuation, along with factors associated with drug survival, in a cohort of adult patients with moderate-to-severe plaque psoriasis. Materials and Methods: Data on methotrexate treatment were extracted from our institutional registry. Drug survival was estimated by Kaplan-Meier analysis, and predictors of drug survival were analyzed by Cox proportional hazards regression. Results: We included 133 patients treated with methotrexate. Due to significant effects of the year of treatment initiation, drug survival analysis was performed for 117 patients who started methotrexate in 2010 or later. Median methotrexate drug survival was 11.0 months. Overall, 89% of patients discontinued treatment, with over half of these (51%) due to lack of efficacy. Significantly longer drug survival was seen for patients who discontinued treatment due to lack of efficacy versus drug safety (p = 0.049); when stratified by sex, this remained significant only for women (p = 0.002). The patient ABCC2 rs717620 genotype was significantly associated with drug survival in both univariate log-rank and multivariate Cox regression analyses, with variant T allele associated with longer drug survival (hazard ratio, 0.606; 95% confidence interval, 0.380-0.967; p = 0.036). Conclusions: We have identified the novel association of patient ABCC2 rs717620 genotype with methotrexate drug survival. This pharmacogenetic marker might thus help in the management of psoriasis patients in daily practice.

PMID:34684087 | PMC:PMC8539794 | DOI:10.3390/medicina57101050

Categories: Literature Watch

Pages