Pharmacogenomics

Evidence of a Causal Relationship between Serum Thyroid-Stimulating Hormone and Osteoporotic Bone Fractures

Fri, 2021-12-24 06:00

Eur Thyroid J. 2021 Nov;10(6):439-446. doi: 10.1159/000518058. Epub 2021 Aug 19.

ABSTRACT

OBJECTIVE: We aimed to validate the association of genome-wide association study (GWAS)-identified loci and polygenic risk score with serum thyroid-stimulating hormone (TSH) concentrations and the diagnosis of hypothyroidism. Then, the causal relationship between serum TSH and osteoporotic bone fracture risk was tested.

METHODS: A cross-sectional study was done among patients of European Caucasian ethnicity recruited in Tayside (Scotland, UK). Electronic medical records (EMRs) were used to identify patients and average serum TSH concentration and linked to genetic biobank data. Genetic associations were performed by linear and logistic regression models. One-sample Mendelian randomization (MR) was used to test causality of serum TSH on bone fracture risk.

RESULTS: Replication in 9,452 euthyroid individuals confirmed known loci previously reported. The 58 polymorphisms accounted for 11.08% of the TSH variation (p < 1e-04). TSH-GRS was directly associated with the risk of hypothyroidism with an odds ratio (OR) of 1.98 for the highest quartile compared to the first quartile (p = 2.2e-12). MR analysis of 5,599 individuals showed that compared with those in the lowest tertile of the TSH-GRS, men in the highest tertile had a decreased risk of osteoporotic bone fracture (OR = 0.59, p = 2.4e-03), while no difference in a similar comparison was observed in women (OR = 0.93, p = 0.61). Sensitivity analysis yielded similar results.

CONCLUSIONS: EMRs linked to genomic data in large populations allow replication of GWAS discoveries without additional genotyping costs. This study suggests that genetically raised serum TSH concentrations are causally associated with decreased bone fracture risk in men.

PMID:34950598 | PMC:PMC8647109 | DOI:10.1159/000518058

Categories: Literature Watch

Genetic Polymorphisms of Very Important Pharmacogene Variants in the Blang Population from Yunnan Province in China

Fri, 2021-12-24 06:00

Pharmgenomics Pers Med. 2021 Dec 17;14:1647-1660. doi: 10.2147/PGPM.S327313. eCollection 2021.

ABSTRACT

BACKGROUND: We aimed to enrich the pharmacogenomic information of a Blang population (BP) from Yunnan Province in China.

METHODS: We genotyped 55 very important pharmacogene (VIP) variants from the PharmGKB database and compared their genotype distribution (GD) in a BP with that of 26 populations by the χ 2 test. The minor allele frequency (MAF) distribution of seven significantly different single-nucleotide polymorphisms (SNPs) was conducted to compare the difference between the BP and 26 other populations.

RESULTS: Compared with the GD of 55 loci in the BP, among 26 studied populations, GWD, YRI, GIH, ESN, MSL, TSI, PJL, ACB, FIN and IBS were the top-10 populations, which showed a significantly different GD >35 loci. CHB, JPT, CDX, CHS, and KHV populations had a significantly different GD <20 loci. A GD difference of 27-34 loci was found between the BP and 11 populations (LWK, CEU, ITU, STU, PUR, CLM, GBR, ASW, BEB, MXL and PEL). The GD of five loci (rs750155 (SULT1A1), rs4291 (ACE), rs1051298 (SLC19A1), rs1131596 (SLC19A1) and rs1051296 (SLC19A1)) were the most significantly different in the BP as compared with that of the other 26 populations. The genotype frequency of rs1800764 (ACE) and rs1065852 (CYP2D6) was different in all populations except for PEL and LWK, respectively. MAFs of rs1065852 (CYP2D6) and rs750155 (SULT1A1) showed the largest fluctuation between the BP and SAS, EUR, AFR and AMR populations.

CONCLUSION: Our data can provide theoretical guidance for safe and efficacious personalized drug use in the Blang population.

PMID:34949935 | PMC:PMC8691194 | DOI:10.2147/PGPM.S327313

Categories: Literature Watch

Precise druggability of the PTH type 1 receptor

Fri, 2021-12-24 06:00

Nat Chem Biol. 2021 Dec 23. doi: 10.1038/s41589-021-00929-w. Online ahead of print.

ABSTRACT

Class B G protein-coupled receptors (GPCRs) are notoriously difficult to target by small molecules because their large orthosteric peptide-binding pocket embedded deep within the transmembrane domain limits the identification and development of nonpeptide small molecule ligands. Using the parathyroid hormone type 1 receptor (PTHR) as a prototypic class B GPCR target, and a combination of molecular dynamics simulations and elastic network model-based methods, we demonstrate that PTHR druggability can be effectively addressed. Here we found a key mechanical site that modulates the collective dynamics of the receptor and used this ensemble of PTHR conformers to identify selective small molecules with strong negative allosteric and biased properties for PTHR signaling in cell and PTH actions in vivo. This study provides a computational pipeline to detect precise druggable sites and identify allosteric modulators of PTHR signaling that could be extended to GPCRs to expedite discoveries of small molecules as novel therapeutic candidates.

PMID:34949836 | DOI:10.1038/s41589-021-00929-w

Categories: Literature Watch

Treatment of Erythroid Precursor Cells from β-Thalassemia Patients with <em>Cinchona</em> Alkaloids: Induction of Fetal Hemoglobin Production

Fri, 2021-12-24 06:00

Int J Mol Sci. 2021 Dec 14;22(24):13433. doi: 10.3390/ijms222413433.

ABSTRACT

β-thalassemias are among the most common inherited hemoglobinopathies worldwide and are the result of autosomal mutations in the gene encoding β-globin, causing an absence or low-level production of adult hemoglobin (HbA). Induction of fetal hemoglobin (HbF) is considered to be of key importance for the development of therapeutic protocols for β-thalassemia and novel HbF inducers need to be proposed for pre-clinical development. The main purpose on this study was to analyze Cinchona alkaloids (cinchonidine, quinidine and cinchonine) as natural HbF-inducing agents in human erythroid cells. The analytical methods employed were Reverse Transcription quantitative real-time PCR (RT-qPCR) (for quantification of γ-globin mRNA) and High Performance Liquid Chromatography (HPLC) (for analysis of the hemoglobin pattern). After an initial analysis using the K562 cell line as an experimental model system, showing induction of hemoglobin and γ-globin mRNA, we verified whether the two more active compounds, cinchonidine and quinidine, were able to induce HbF in erythroid progenitor cells isolated from β-thalassemia patients. The data obtained demonstrate that cinchonidine and quinidine are potent inducers of γ-globin mRNA and HbF in erythroid progenitor cells isolated from nine β-thalassemia patients. In addition, both compounds were found to synergize with the HbF inducer sirolimus for maximal production of HbF. The data obtained strongly indicate that these compounds deserve consideration in the development of pre-clinical approaches for therapeutic protocols of β-thalassemia.

PMID:34948226 | DOI:10.3390/ijms222413433

Categories: Literature Watch

Analysis of Antidepressant-like Effects and Action Mechanisms of GSB-106, a Small Molecule, Affecting the TrkB Signaling

Fri, 2021-12-24 06:00

Int J Mol Sci. 2021 Dec 13;22(24):13381. doi: 10.3390/ijms222413381.

ABSTRACT

Induction of BDNF-TrkB signaling is associated with the action mechanisms of conventional and fast-acting antidepressants. GSB-106, developed as a small dimeric dipeptide mimetic of BDNF, was previously shown to produce antidepressant-like effects in the mouse Porsolt test, tail suspension test, Nomura water wheel test, in the chronic social defeat stress model and in the inflammation-induced model of depression. In the present study, we evaluated the effect of chronic per os administration of GSB-106 to Balb/c mice under unpredictable chronic mild stress (UCMS). It was observed for the first time that long term GSB-106 treatment (1 mg/kg, 26 days) during ongoing UCMS procedure ameliorated the depressive-like behaviors in mice as indicated by the Porsolt test. In addition, chronic per os administration of GSB-106 resulted in an increase in BDNF levels, which were found to be decreased in the prefrontal cortex and hippocampus of mice after UCMS. Furthermore, prolonged GSB-106 treatment was accompanied by an increase in the content of pTrkB706/707 in the prefrontal cortex and by a pronounced increase in the level of pTrkB816 in both studied brain structures of mice subjected to UCMS procedure. In summary, the present data show that chronic GSB-106 treatment produces an antidepressant-like effect in the unpredictable chronic mild stress model, which is likely to be associated with the regulation of the BDNF-TrkB signaling.

PMID:34948177 | DOI:10.3390/ijms222413381

Categories: Literature Watch

Genophenotypic Factors and Pharmacogenomics in Adverse Drug Reactions

Fri, 2021-12-24 06:00

Int J Mol Sci. 2021 Dec 10;22(24):13302. doi: 10.3390/ijms222413302.

ABSTRACT

Adverse drug reactions (ADRs) rank as one of the top 10 leading causes of death and illness in developed countries. ADRs show differential features depending upon genotype, age, sex, race, pathology, drug category, route of administration, and drug-drug interactions. Pharmacogenomics (PGx) provides the physician effective clues for optimizing drug efficacy and safety in major problems of health such as cardiovascular disease and associated disorders, cancer and brain disorders. Important aspects to be considered are also the impact of immunopharmacogenomics in cutaneous ADRs as well as the influence of genomic factors associated with COVID-19 and vaccination strategies. Major limitations for the routine use of PGx procedures for ADRs prevention are the lack of education and training in physicians and pharmacists, poor characterization of drug-related PGx, unspecific biomarkers of drug efficacy and toxicity, cost-effectiveness, administrative problems in health organizations, and insufficient regulation for the generalized use of PGx in the clinical setting. The implementation of PGx requires: (i) education of physicians and all other parties involved in the use and benefits of PGx; (ii) prospective studies to demonstrate the benefits of PGx genotyping; (iii) standardization of PGx procedures and development of clinical guidelines; (iv) NGS and microarrays to cover genes with high PGx potential; and (v) new regulations for PGx-related drug development and PGx drug labelling.

PMID:34948113 | DOI:10.3390/ijms222413302

Categories: Literature Watch

Detection of Sepsis in Platelets Using MicroRNAs and Membrane Antigens

Fri, 2021-12-24 06:00

Genes (Basel). 2021 Nov 25;12(12):1877. doi: 10.3390/genes12121877.

ABSTRACT

The present study proposes to legitimize in sepsis a characteristic found in platelets that suffer storage lesions in blood banks, which is the increased expression of miRNA miR-320a in relation to miR-127. Under physiologically normal conditions, an inverse relationship is observed. The aim of this study was to verify whether the analysis of miR-320a and miR-127 expression in platelets could detect a decrease in their viability and function due to the presence of pathogens in the blood of patients hospitalized in the Intensive Care Unit. We also investigated the expression of membrane antigens sensitive to platelet activation. Of the 200 patients analyzed, only those who developed sepsis (140) were found to have a higher relative quantity of miR-320a than that of miR-127. This characteristic and the increased expression of membrane antigens P2Y12, CD62P, CD41, and CD61 showed a significant association (p < 0.01) with all types of sepsis evaluated in this study. Additionally, 40% of patients hospitalized for sepsis had negative results for the first cultures. We conclude that analysis of miR-127 and miR-320a expression combined with membrane antigens evaluation, in association with the available clinical and diagnostic parameters, are important tools to detect the onset of sepsis.

PMID:34946826 | DOI:10.3390/genes12121877

Categories: Literature Watch

Precision Medicine in Aortic Anastomosis: A Numerical and Experimental Study of a Novel Double-Sided Needle

Fri, 2021-12-24 06:00

J Pers Med. 2021 Dec 20;11(12):1385. doi: 10.3390/jpm11121385.

ABSTRACT

BACKGROUND: Hand-sewn anastomosis is a crucial part of aortic reconstruction surgery and significantly affects its outcome. The present study presents a novel, bidirectional surgical needle aimed to improve aortic anastomosis in terms of speed and ease of use. Our objective was to assess the efficacy of the new design in comparison with the conventional needle.

METHODS: A series of simulations were conducted with COMSOL software in order to perform a fatigue comparative analysis between the new and the conventional needle design. Ease of penetration into a piece of polydimethylsiloxane was evaluated. Lastly, the prototype was tested under in-vitro conditions in comparison with the conventional needle.

RESULTS: Based on fatigue analysis, the new needle design improves durability, provided the two tips are equally used. The polytetrafluoroethylene coating improves penetration into the tissue by 7% to 17%, while electropolishing improves penetration up to 19%. When using the novel needle design, the average anastomotic task completion time was significantly reduced by 22% and the overall distance of hand movements was significantly reduced by 20%.

CONCLUSIONS: The proposed design exhibited a shorter anastomotic time and seems promising in relation to ease of use and simplicity of the anastomotic technique it introduces.

PMID:34945857 | DOI:10.3390/jpm11121385

Categories: Literature Watch

Applicability of Pharmacogenomically Guided Medication Treatment during Hospitalization of At-Risk Minority Patients

Fri, 2021-12-24 06:00

J Pers Med. 2021 Dec 10;11(12):1343. doi: 10.3390/jpm11121343.

ABSTRACT

Known disparities exist in the availability of pharmacogenomic information for minority populations, amplifying uncertainty around clinical utility for these groups. We conducted a multi-site inpatient pharmacogenomic implementation program among self-identified African-Americans (AA; n = 135) with numerous rehospitalizations (n = 341) from 2017 to 2020 (NIH-funded ACCOuNT project/clinicaltrials.gov#NCT03225820). We evaluated the point-of-care availability of patient pharmacogenomic results to healthcare providers via an electronic clinical decision support tool. Among newly added medications during hospitalizations and at discharge, we examined the most frequently utilized medications with associated pharmacogenomic results. The population was predominantly female (61%) with a mean age of 53 years (range 19-86). On average, six medications were newly prescribed during each individual hospital admission. For 48% of all hospitalizations, clinical pharmacogenomic information was applicable to at least one newly prescribed medication. Most results indicated genomic favorability, although nearly 29% of newly prescribed medications indicated increased genomic caution (increase in toxicity risk/suboptimal response). More than one of every five medications prescribed to AA patients at hospital discharge were associated with cautionary pharmacogenomic results (most commonly pantoprazole/suboptimal antacid effect). Notably, high-risk pharmacogenomic results (genomic contraindication) were exceedingly rare. We conclude that the applicability of pharmacogenomic information during hospitalizations for vulnerable populations at-risk for experiencing health disparities is substantial and warrants continued prospective investigation.

PMID:34945816 | DOI:10.3390/jpm11121343

Categories: Literature Watch

Serotonin Transporter Genetic Variation and Antidepressant Response and Tolerability: A Systematic Review and Meta-Analysis

Fri, 2021-12-24 06:00

J Pers Med. 2021 Dec 9;11(12):1334. doi: 10.3390/jpm11121334.

ABSTRACT

Antidepressants are used to treat several psychiatric disorders; however, a large proportion of patients do not respond to their first antidepressant therapy and often experience adverse drug reactions (ADR). A common insertion-deletion polymorphism in the promoter region (5-HTTLPR) of the serotonin transporter (SLC6A4) gene has been frequently investigated for its association with antidepressant outcomes. Here, we performed a systematic review and meta-analysis to assess 5-HTTLPR associations with antidepressants: (1) response in psychiatric disorders other than major depressive disorder (MDD) and (2) tolerability across all psychiatric disorders. Literature searches were performed up to January 2021, yielding 82 studies that met inclusion criteria, and 16 of these studies were included in the meta-analyses. Carriers of the 5-HTTLPR LL or LS genotypes were more likely to respond to antidepressant therapy, compared to the SS carriers in the total and European ancestry-only study populations. Long (L) allele carriers taking selective serotonin reuptake inhibitors (SSRIs) reported fewer ADRs relative to short/short (SS) carriers. European L carriers taking SSRIs had lower ADR rates than S carriers. These results suggest the 5-HTTLPR polymorphism may serve as a marker for antidepressant outcomes in psychiatric disorders and may be particularly relevant to SSRI treatment among individuals of European descent.

PMID:34945806 | DOI:10.3390/jpm11121334

Categories: Literature Watch

Predictors of Efavirenz Plasma Exposure, Auto-Induction Profile, and Effect of Pharmacogenetic Variations among HIV-Infected Children in Ethiopia: A Prospective Cohort Study

Fri, 2021-12-24 06:00

J Pers Med. 2021 Dec 5;11(12):1303. doi: 10.3390/jpm11121303.

ABSTRACT

(1) Background: Efavirenz plasma concentration displays wide between-patient variability partly due to pharmacogenetic variation and autoinduction. Pediatric data on efavirenz pharmacokinetics and the relevance of pharmacogenetic variation are scarce, particularly from sub-Saharan Africa, where >90% of HIV-infected children live and population genetic diversity is extensive. We prospectively investigated the short- and long-term effects of efavirenz auto-induction on plasma drug exposure and the influence of pharmacogenetics among HIV-infected Ethiopian children. (2) Method: Treatment-naïve HIV-infected children aged 3-16 years old (n = 111) were enrolled prospectively to initiate efavirenz-based combination antiretroviral therapy (cART). Plasma efavirenz concentrations were quantified at 4, 8, 12, 24, and 48 weeks of cART. Genotyping for CYP2B6, CYP3A5, UGT2B7, ABCB1, and SLCO1B1 common functional variant alleles was performed. (3) Results: The efavirenz plasma concentration reached a peak at two months, declined by the 3rd month, and stabilized thereafter, with no significant difference in geometric mean over time. On average, one-fourth of the children had plasma efavirenz concentrations ≥4 µg/mL. On multivariate analysis, CYP2B6*6 and ABCB1c.3435 C > T genotypes and low pre-treatment low-density lipoprotein (LDL) were significantly associated with higher plasma efavirenz concentration regardless of treatment duration. Duration of cART, sex, age, nutritional status, weight, and SLCO1B, CYP3A5, UGT2B7, and ABCB1 rs3842 genotypes were not significant predictors of efavirenz plasma exposure. (4) Conclusion: Pre-treatment LDL cholesterol and CYP2B6*6 and ABCB1c.3435 C > T genotypes predict efavirenz plasma exposure among HIV-infected children, but treatment-duration-dependent changes in plasma efavirenz exposure due to auto-induction are not statistically significant.

PMID:34945777 | DOI:10.3390/jpm11121303

Categories: Literature Watch

Documenting Pharmacogenomic Test Results in Electronic Health Records: Practical Considerations for Primary Care Teams

Fri, 2021-12-24 06:00

J Pers Med. 2021 Dec 4;11(12):1296. doi: 10.3390/jpm11121296.

ABSTRACT

With increasing patient interest in and access to pharmacogenomic testing, clinicians practicing in primary care are more likely than ever to encounter a patient seeking or presenting with pharmacogenomic test results. Gene-based prescribing recommendations are available to healthcare providers through Food and Drug Administration-approved drug labeling and Clinical Pharmacogenetics Implementation Consortium guidelines. Given the lifelong utility of pharmacogenomic test results to optimize pharmacotherapy for commonly prescribed medications, appropriate documentation of these results in a patient's electronic health record (EHR) is essential. The current "gold standard" for pharmacogenomics implementation includes entering pharmacogenomic test results into EHRs as discrete results with associated clinical decision support (CDS) alerts that will fire at the point of prescribing, similar to drug allergy alerts. However, such infrastructure is limited to the few institutions that have invested in the resources and personnel to develop and maintain it. For the majority of clinicians who do not practice at an institution with a dedicated clinical pharmacogenomics team and integrated pharmacogenomics CDS in the EHR, this report provides practical tips for documenting pharmacogenomic test results in the problem list and allergy field to maximize the visibility and utility of results over time, especially when such results could prevent the occurrence of serious adverse drug reactions or predict therapeutic failure.

PMID:34945768 | DOI:10.3390/jpm11121296

Categories: Literature Watch

The Utility of Pharmacogenetics Testing in Psychiatric Populations

Fri, 2021-12-24 06:00

J Pers Med. 2021 Dec 1;11(12):1262. doi: 10.3390/jpm11121262.

ABSTRACT

The implementation of pharmacogenetic tests including multiple gene variants has shown promising potential as a decision-making tool for optimizing psychopharmacological treatment regimens and reducing treatment costs. However, the varying clinical validity of gene variants included in pharmacogenetic test batteries, and inconsistencies in their translation into medical recommendations between commercially available pharmacogenetic tests, complicates their rational implementation. Thus, there is a need for well-designed, reproducible studies documenting the clinical significance of the various genetic variants.

PMID:34945734 | DOI:10.3390/jpm11121262

Categories: Literature Watch

The Contribution of Pharmacogenetic Drug Interactions to 90-Day Hospital Readmissions: Preliminary Results from a Real-World Healthcare System

Fri, 2021-12-24 06:00

J Pers Med. 2021 Nov 23;11(12):1242. doi: 10.3390/jpm11121242.

ABSTRACT

Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines exist for many medications commonly prescribed prior to hospital discharge, yet there are limited data regarding the contribution of gene-x-drug interactions to hospital readmissions. The present study evaluated the relationship between prescription of CPIC medications prescribed within 30 days of hospital admission and 90-day hospital readmission from 2010 to 2020 in a study population (N = 10,104) who underwent sequencing with a 14-gene pharmacogenetic panel. The presence of at least one pharmacogenetic indicator for a medication prescribed within 30 days of hospital admission was considered a gene-x-drug interaction. Multivariable logistic regression analyzed the association between one or more gene-x-drug interactions with 90-day readmission. There were 2211/2354 (93.9%) admitted patients who were prescribed at least one CPIC medication. Univariate analyses indicated that the presence of at least one identified gene-x-drug interaction increased the risk of 90-day readmission by more than 40% (OR = 1.42, 95% confidence interval (CI) 1.09-1.84) (p = 0.01). A multivariable model adjusting for age, race, sex, employment status, body mass index, and medical conditions slightly attenuated the effect (OR = 1.32, 95% CI 1.02-1.73) (p = 0.04). Our results suggest that the presence of one or more CPIC gene-x-drug interactions increases the risk of 90-day hospital readmission, even after adjustment for demographic and clinical risk factors.

PMID:34945714 | DOI:10.3390/jpm11121242

Categories: Literature Watch

Genome-Wide DNA Methylation Signatures Predict the Early Asymptomatic Doxorubicin-Induced Cardiotoxicity in Breast Cancer

Fri, 2021-12-24 06:00

Cancers (Basel). 2021 Dec 15;13(24):6291. doi: 10.3390/cancers13246291.

ABSTRACT

Chemotherapy with doxorubicin (DOX) may cause unpredictable cardiotoxicity. This study aimed to determine whether the methylation signature of peripheral blood mononuclear cells (PBMCs) prior to and after the first cycle of DOX-based chemotherapy could predict the risk of cardiotoxicity in breast cancer patients. Cardiotoxicity was defined as a decrease in left ventricular ejection fraction (LVEF) by >10%. DNA methylation of PBMCs from 9 patients with abnormal LVEF and 10 patients with normal LVEF were examined using Infinium HumanMethylation450 BeadChip. We have identified 14,883 differentially methylated CpGs at baseline and 18,718 CpGs after the first cycle of chemotherapy, which significantly correlated with LVEF status. Significant differentially methylated regions (DMRs) were found in the promoter and the gene body of SLFN12, IRF6 and RNF39 in patients with abnormal LVEF. The pathway analysis found enrichment for regulation of transcription, mRNA splicing, pathways in cancer and ErbB2/4 signaling. The preliminary results from this study showed that the DNA methylation profile of PBMCs may predict the risk of DOX-induced cardiotoxicity prior to chemotherapy. Further studies with larger cohorts of patients are needed to confirm these findings.

PMID:34944912 | DOI:10.3390/cancers13246291

Categories: Literature Watch

Characterization of Genetic Heterogeneity in Recurrent Metastases of Renal Cell Carcinoma

Fri, 2021-12-24 06:00

Cancers (Basel). 2021 Dec 10;13(24):6221. doi: 10.3390/cancers13246221.

ABSTRACT

Metastatic renal cell carcinoma (RCC) exhibits poor prognosis. Better knowledge of distant metastases is crucial to foster personalized treatment strategies. Here, we aimed to investigate the genetic landscape of metastases, including synchronous and/or recurrent metastases to elucidate potential drug target genes and clinically relevant mutations in a real-world setting of patients. We assessed 81 metastases from 56 RCC patients, including synchronous and/or recurrent metastases of 19 patients. Samples were analysed through next-generation sequencing with a high coverage (~1000× mean coverage). We therefore established a novel sequencing panel comprising 32 genes with impact on RCC development. We observed a high frequency of mutations in known RCC driver genes (e.g., >40% carriers of VHL and PBRM1 mutations) in metastases irrespective of the metastatic site. The somatic mutational composition was significantly associated with cancer-specific survival (p(logrank) = 0.03). Moreover, we identified in 34 patients at least one drug target gene as well as clinically relevant mutations listed in the VICC Meta-Knowledgebase in 7%. In addition to significantly higher mutational burden in recurrent metastases compared to earlier ones, synchronous and/or recurrent metastases of individual patients, even after a time-period >2 yrs, shared a high proportion of somatic events. Our data demonstrate the importance of somatic profiling in metastases for precision medicine in RCC.

PMID:34944839 | DOI:10.3390/cancers13246221

Categories: Literature Watch

Genomic and Personalized Medicine Approaches for Substance Use Disorders (SUDs) Looking at Genome-Wide Association Studies

Fri, 2021-12-24 06:00

Biomedicines. 2021 Nov 30;9(12):1799. doi: 10.3390/biomedicines9121799.

ABSTRACT

Drug addiction, or substance use disorder (SUD), is a chronic, relapsing disorder in which compulsive drug-seeking and drug-taking behaviour persist despite serious negative consequences. Drug abuse represents a problem that deserves great attention from a social point of view, and focuses on the importance of genetic studies to help in understanding the genetic basis of addiction and its medical treatment. Despite the complexity of drug addiction disorders, and the high number of environmental variables playing a role in the onset, recurrence, and duration of the symptoms, several studies have highlighted the non-negligible role of genetics, as demonstrated by heritability and genome-wide association studies. A correlation between the relative risk of addiction to specific substances and heritability has been recently observed, suggesting that neurobiological mechanisms may be, at least in part, inherited. All these observations point towards a scenario where the core neurobiological factors of addiction, involving the reward system, impulsivity, compulsivity, stress, and anxiety response, are transmitted, and therefore, genes and mutations underlying their variation might be detected. In the last few years, the development of new and more efficient sequencing technologies has paved the way for large-scale studies in searching for genetic and epigenetic factors affecting drug addiction disorders and their treatments. These studies have been crucial to pinpoint single nucleotide polymorphisms (SNPs) in genes that affect the reaction to medical treatments. This is critically important to identify pharmacogenomic approaches for substance use disorder, such as OPRM1 SNPs and methadone required doses for maintenance treatment (MMT). Nevertheless, despite the promising results obtained by genome-wide association and pharmacogenomic studies, specific studies related to population genetics diversity are lacking, undermining the overall applicability of the preliminary findings, and thus potentially affecting the portability and the accuracy of the genetic studies. In this review, focusing on cannabis, cocaine and heroin use, we report the state-of-the-art genomics and pharmacogenomics of SUDs, and the possible future perspectives related to medical treatment response in people that ask for assistance in solving drug-related problems.

PMID:34944615 | DOI:10.3390/biomedicines9121799

Categories: Literature Watch

Pharmacogenetics of Biological Agents Used in Inflammatory Bowel Disease: A Systematic Review

Fri, 2021-12-24 06:00

Biomedicines. 2021 Nov 23;9(12):1748. doi: 10.3390/biomedicines9121748.

ABSTRACT

Inflammatory Bowel Disease (IBD) comprises a group of disorders, in particular Crohn's disease (CD) and ulcerative colitis (UC), characterized by chronic inflammation affecting the gastrointestinal tract. The treatment of these conditions is primarily based on anti-inflammatory drugs, although the use of biological drugs with lower side effects quickly increased in the last decade. However, the presence of certain polymorphisms in the population may determine a different outcome in response to therapy, reflecting the heterogeneity of the efficacy in patients. Considering that several studies showed important correlations between genetic polymorphisms and response to biological treatments in IBD patients, this systematic review aims to summarize the pharmacogenetics of biologicals approved for IBD, thus highlighting a possible association between some polymorphisms and drug response. With this purpose, we reviewed PubMed papers published over the past 21 years (2000-2021), using as the search term "drug name and IBD or CD or UC and polymorphisms" to underline the role of pharmacogenetic tests in approaching the disease with a targeted therapy.

PMID:34944563 | DOI:10.3390/biomedicines9121748

Categories: Literature Watch

Phenobarbital Induces SLC13A5 Expression through Activation of PXR but Not CAR in Human Primary Hepatocytes

Fri, 2021-12-24 06:00

Cells. 2021 Dec 1;10(12):3381. doi: 10.3390/cells10123381.

ABSTRACT

Phenobarbital (PB), a widely used antiepileptic drug, is known to upregulate the expression of numerous drug-metabolizing enzymes and transporters in the liver primarily via activation of the constitutive androstane receptor (CAR, NR1I3). The solute carrier family 13 member 5 (SLC13A5), a sodium-coupled citrate transporter, plays an important role in intracellular citrate homeostasis that is associated with a number of metabolic syndromes and neurological disorders. Here, we show that PB markedly elevates the expression of SLC13A5 through a pregnane X receptor (PXR)-dependent but CAR-independent signaling pathway. In human primary hepatocytes, the mRNA and protein expression of SLC13A5 was robustly induced by PB treatment, while genetic knockdown or pharmacological inhibition of PXR significantly attenuated this induction. Utilizing genetically modified HepaRG cells, we found that PB induces SLC13A5 expression in both wild type and CAR-knockout HepaRG cells, whereas such induction was fully abolished in the PXR-knockout HepaRG cells. Mechanistically, we identified and functionally characterized three enhancer modules located upstream from the transcription start site or introns of the SLC13A5 gene that are associated with the regulation of PXR-mediated SLC13A5 induction. Moreover, metformin, a deactivator of PXR, dramatically suppressed PB-mediated induction of hepatic SLC13A5 as well as its activation of the SLC13A5 luciferase reporter activity via PXR. Collectively, these data reveal PB as a potent inducer of SLC13A5 through the activation of PXR but not CAR in human primary hepatocytes.

PMID:34943889 | DOI:10.3390/cells10123381

Categories: Literature Watch

Gene-Toxicant Interactions in Gulf War Illness: Differential Effects of the <em>PON1</em> Genotype

Fri, 2021-12-24 06:00

Brain Sci. 2021 Nov 25;11(12):1558. doi: 10.3390/brainsci11121558.

ABSTRACT

About 25-35% of United States veterans who fought in the 1990-1991 Gulf War report several moderate or severe chronic systemic symptoms, defined as Gulf War illness (GWI). Thirty years later, there is little consensus on the causes or biological underpinnings of GWI. The Gulf War Era Cohort and Biorepository (GWECB) was designed to investigate genetic and environmental associations with GWI and consists of 1343 veterans. We investigate candidate gene-toxicant interactions that may be associated with GWI based on prior associations found in human and animal model studies, focusing on SNPs in or near ACHE, BCHE, and PON1 genes to replicate results from prior studies. SOD1 was also considered as a candidate gene. CDC Severe GWI, the primary outcome, was observed in 26% of the 810 deployed veterans included in this study. The interaction between the candidate SNP rs662 and pyridostigmine bromide (PB) pills was found to be associated with CDC Severe GWI. Interactions between PB pill exposure and rs3917545, rs3917550, and rs2299255, all in high linkage disequilibrium in PON1, were also associated with respiratory symptoms. These SNPs could point toward biological pathways through which GWI may develop, which could lead to biomarkers to detect GWI or to better treatment options for veterans with GWI.

PMID:34942860 | DOI:10.3390/brainsci11121558

Categories: Literature Watch

Pages