Pharmacogenomics
A Genome-Wide Association Study of Oxypurinol Concentrations in Patients Treated with Allopurinol
J Pers Med. 2024 Jun 18;14(6):649. doi: 10.3390/jpm14060649.
ABSTRACT
Cohort studies have identified several genetic determinants that could predict the clinical response to allopurinol. However, they have not been commonly used for genome-wide investigations to identify genetic determinants on allopurinol metabolism and concentrations. We conducted a genome-wide association study of a prior cross-sectional investigation of patients from the Montreal Heart Institute Biobank undergoing allopurinol therapy. Four endpoints were investigated, namely plasma concentrations of oxypurinol, the active metabolite of allopurinol, allopurinol, and allopurinol-riboside, as well as allopurinol daily dosing. A total of 439 participants (mean age 69.4 years; 86.4% male) taking allopurinol (mean daily dose 194.5 mg) and who had quantifiable oxypurinol concentrations were included in the genome-wide analyses. Participants presented with multiple comorbidities and received concomitant cardiovascular medications. No association achieved the predefined genome-wide threshold values for any of the endpoints (all p > 5 × 10-8). Our results are consistent with prior findings regarding the difficulty in identifying genetic determinants of drug concentrations or pharmacokinetics of allopurinol and its metabolites, as well as allopurinol daily dosing. Given the size of this genome-wide study, collaborative investigations involving larger and diverse cohorts may be required to further identify pharmacogenomic determinants of allopurinol and measure their clinical relevance to personalize allopurinol therapy.
PMID:38929870 | DOI:10.3390/jpm14060649
β3-adREnoceptor Analysis in CORD Blood of Neonates (β3 RECORD): Study Protocol of a Pilot Clinical Investigation
Life (Basel). 2024 Jun 19;14(6):776. doi: 10.3390/life14060776.
ABSTRACT
Background and Objective: The embryo and the fetus develop in a physiologically hypoxic environment, where vascularization is sustained by HIF-1, VEGF, and the β-adrenergic system. In animals, β3-adrenoceptors (β3-ARs), up-regulated by hypoxia, favor global fetal wellness to such an extent that most diseases related to prematurity are hypothesized to be induced or aggravated by a precocious β3-AR down-regulation, due to premature exposure to a relatively hyperoxic environment. In animals, β3-AR pharmacological agonism is currently investigated as a possible new therapeutic opportunity to counteract oxygen-induced damages. Our goal is to translate the knowledge acquired in animals to humans. Recently, we have demonstrated that fetuses become progressively more hypoxemic from mid-gestation to near-term, but starting from the 33rd-34th week, oxygenation progressively increases until birth. The present paper aims to describe a clinical research protocol, evaluating whether the expression level of HIF-1, β3-ARs, and VEGF is modulated by oxygen during intrauterine and postnatal life, in a similar way to animals. Materials and Methods: In a prospective, non-profit, single-center observational study we will enroll 100 preterm (group A) and 100 full-term newborns (group B). We will collect cord blood samples (T0) and measure the RNA expression level of HIF-1, β3-ARs, and VEGF by digital PCR. In preterms, we will also measure gene expression at 48-72h (T1), 14 days (T2), and 30 days (T3) of life and at 40 ± 3 weeks of post-menstrual age (T4), regardless of the day of life. We will compare group A (T0) vs. group B (T0) and identify any correlations between the values obtained from serial samples in group A and the clinical data of the patients. Our protocol has been approved by the Pediatric Ethical Committee for Clinical Research of the Tuscany region (number 291/2022). Expected Results: The observation that in infants, the HIF-1/β3-ARs/VEGF axis shows similar modulation to that of animals could suggest that β3-ARs also promote fetal well-being in humans.
PMID:38929758 | DOI:10.3390/life14060776
Pharmacogenomics: Challenges and Future
Genes (Basel). 2024 May 30;15(6):714. doi: 10.3390/genes15060714.
ABSTRACT
Over the last few decades, the implementation of pharmacogenomics (PGx) in clinical practice has improved tailored drug prescriptions [...].
PMID:38927650 | DOI:10.3390/genes15060714
Combined effect of CYP2C19 and CYP2D6 genotypes on escitalopram serum concentration and its metabolic ratio in a European patient population
Br J Clin Pharmacol. 2024 Jun 26. doi: 10.1111/bcp.16156. Online ahead of print.
ABSTRACT
AIMS: The aim of the present study was to investigate the impact of CYP2D6 genotype on exposure and metabolism of escitalopram in patients stratified by CYP2C19 genotype in a large real-world population.
METHODS: Patients were included from a therapeutic drug monitoring service if they had measured serum concentration of escitalopram and the metabolite, N-desmethyl escitalopram, and performed CYP2C19 and CYP2D6 genotyping. Patients were divided into 16 combined genotype-predicted phenotype subgroups (poor [PM], intermediate [IM], normal [NM] and ultrarapid metabolizers [UM]) of CYP2C19/CYP2D6. The concentration-to-dose (CD) ratio and metabolite-to-parent ratio (metabolic ratio) of escitalopram were compared across subgroups using the Kruskal-Wallis test followed by Dunn's test with CYP2D6 NMs as the reference group.
RESULTS: A total of 5067 patients were included in the study. A stepwise increase in escitalopram CD ratio by decreasing CYP2D6 activity was observed in all CYP2C19 subgroups, except for in CYP2C19 UMs. The percentage differences in escitalopram CD ratio between CYP2D6 PMs and NMs were 24% in CYP2C19 NMs (P < .001), 28% in CYP2C19 IMs (P < .001) and 31% in CYP2C19 PMs (P = .04). As for the CD ratio, CYP2D6 genotype effect on metabolic ratio increased stepwise by decreasing CYP2C19 metabolism.
CONCLUSIONS: CYP2D6 genotype is of significant importance for the individual variation in escitalopram pharmacokinetics. The most relevant increase in escitalopram concentration is seen in individuals with decreased and/or absent CYP2C19 activity. By combining CYP2C19 and CYP2D6 genotypes, the optimal dose for patients may be predicted with greater precision than for CYP2C19 genotype alone.
PMID:38925553 | DOI:10.1111/bcp.16156
Precision medicine in Asia enhanced by next-generation sequencing: Implications for Thailand through a scoping review and interview study
Clin Transl Sci. 2024 Jun;17(6):e13868. doi: 10.1111/cts.13868.
ABSTRACT
Next-generation sequencing (NGS) significantly enhances precision medicine (PM) by offering personalized approaches to diagnosis, treatment, and prevention of unmet medical needs. Little is known about the current situation of PM in Asia. Thus, we aimed to conduct an overview of the progress and gaps in PM in Asia and enrich it with in-depth insight into the possibilities of future PM in Thailand. This scoping review focused on Asian countries starting with non-cancer studies, including rare and undiagnosed diseases (RUDs), non-communicable diseases (NCDs), infectious diseases (IDs), and pharmacogenomics, with a focus on NGS. Subsequent in-depth interviews with experts in Thailand were performed, and a thematic analysis served as the main qualitative methodology. Out of 2898 searched articles, 387 studies were included after the review. Although most of the studies focused on cancer, 89 (23.0%) studies were related to RUDs (17.1%), NCDs (2.8%), IDs (1.8%), and pharmacogenomics (1.3%). Apart from medicine and related sciences, the studies were mostly composed of PM (61.8%), followed by genetics medicine and bioinformatics. Interestingly, 28% of articles were conducted exclusively within the fields of medicine and related sciences, emphasizing interdisciplinary integration. The experts emphasized the need for sustainability-driven political will, nurturing collaboration, reinforcing computational infrastructure, and expanding the bioinformatic workforce. In Asia, developments of NGS have made remarkable progress in PM. Thailand has extended PM beyond cancer and focused on clinical implementation. We summarized the PM challenges, including equity and efficiency targeting, guided research funding, sufficient sample size, integrated collaboration, computational infrastructure, and sufficient trained human resources.
PMID:38924657 | DOI:10.1111/cts.13868
Pharmacogenomic studies of fertility outcomes in pediatric cancer survivors - A systematic review
Clin Transl Sci. 2024 Jun;17(6):e13827. doi: 10.1111/cts.13827.
ABSTRACT
For the same age, sex, and dosage, there can be significant variation in fertility outcomes in childhood cancer survivors. Genetics may explain this variation. This study aims to: (i) review the genetic contributions to infertility, (ii) search for pharmacogenomic studies looking at interactions of cancer treatment, genetic predisposition and fertility-related outcomes. Systematic searches in MEDLINE Ovid, Embase Classic+Embase, and PubMed were conducted using the following selection criteria: (i) pediatric, adolescent, and young adult cancer survivors, below 25 years old at the time of diagnosis, (ii) fertility outcome measures after cancer therapy, (iii) genetic considerations. Studies were excluded if they were (i) conducted in animal models, (ii) were not published in English, (iii) editorial letters, (iv) theses. Articles were screened in Covidence by at least two independent reviewers, followed by data extraction and a risk of bias assessment using the Quality in Prognostic Studies tool. Eight articles were reviewed with a total of 29 genes. Outcome measures included sperm concentration, azoospermia, AMH levels, assessment of premature menopause, ever being pregnant or siring a pregnancy. Three studies included replication cohorts, which attempted replication of SNP findings for NPY2R, BRSK1, FANCI, CYP2C19, CYP3A4, and CYP2B6. Six studies were rated with a high risk of bias. Differing methods may explain a lack of replication, and small cohorts may have contributed to few significant findings. Larger, prospective longitudinal studies with an unbiased genome-wide focus will be important to replicate significant results, which can be applied clinically.
PMID:38924306 | DOI:10.1111/cts.13827
Working title: Molecular involvement of p53-MDM2 interactome in gastrointestinal cancers
Cell Biochem Funct. 2024 Jun;42(4):e4075. doi: 10.1002/cbf.4075.
ABSTRACT
The interaction between murine double minute 2 (MDM2) and p53, marked by transcriptional induction and feedback inhibition, orchestrates a functional loop dictating cellular fate. The functional loop comprising p53-MDM2 axis is made up of an interactome consisting of approximately 81 proteins, which are spatio-temporally regulated and involved in DNA repair mechanisms. Biochemical and genetic alterations of the interactome result in dysregulation of the p53-mdm2 axis that leads to gastrointestinal (GI) cancers. A large subset of interactome is well known and it consists of proteins that either stabilize p53 or MDM2 and proteins that target the p53-MDM2 complex for ubiquitin-mediated destruction. Upstream signaling events brought about by growth factors and chemical messengers invoke a wide variety of posttranslational modifications in p53-MDM2 axis. Biochemical changes in the transactivation domain of p53 impact the energy landscape, induce conformational switching, alter interaction potential and could change solubility of p53 to redefine its co-localization, translocation and activity. A diverse set of chemical compounds mimic physiological effectors and simulate biochemical modifications of the p53-MDM2 interactome. p53-MDM2 interactome plays a crucial role in DNA damage and repair process. Genetic aberrations in the interactome, have resulted in cancers of GI tract (pancreas, liver, colorectal, gastric, biliary, and esophageal). We present in this article a review of the overall changes in the p53-MDM2 interactors and the effectors that form an epicenter for the development of next-generation molecules for understanding and targeting GI cancers.
PMID:38924101 | DOI:10.1002/cbf.4075
Association of Glycoprotein IIIa PlA1/A2 Polymorphism with Risk of Stroke: Updated Meta-Analysis
Curr Issues Mol Biol. 2024 May 28;46(6):5364-5378. doi: 10.3390/cimb46060321.
ABSTRACT
Cardiovascular diseases are the main cause of death in the world, with ischemic heart disease (i.e., myocardial infarction) and cerebrovascular disease (i.e., stroke) taking the highest toll. Advances in diagnosis and treatment have led to a significant alleviation of ischemic complications, specifically in the realm of pharmacotherapy and interventional devices, while pharmacogenomics has yet to be fully leveraged to improve the burden of disease. Atherothrombotic events might occur earlier or respond worse to treatment in patients with genetic variants of GP IIb/IIIa. Therefore, we aimed to quantitate the involvement of the PlA2 variant in the risk of cerebral stroke events. A systematic search and meta-analysis were performed by pooling the risks of individual studies. A total of 31 studies comprising 5985 stroke patients and 7886 controls were analyzed. A meta-analysis of four studies on hemorrhagic stroke patients showed no association with the PIA2 rs5918(C) polymorphism in both fixed-effect (OR = 0.90 95%CI [0.71; 1.14]; p = 0.398) and random-effect models (OR = 0.86 95%CI [0.62; 1.20]; p-value = 0.386). The power of this analysis was below <30%, indicating a limited ability to detect a true effect. An analysis of the 28 studies on ischemic stroke revealed a significant association with the PIA2 rs5918(C) allele in both fixed-effect (OR = 1.16 95%CI [1.06; 1.27]; p = 0.001) and random-effect models (OR = 1.20 95%CI [1.04; 1.38]; p-value = 0.012), with a power of >80%. The PIA2 allele was associated with an increased risk of ischemic stroke. No association was found with hemorrhagic stroke, most likely due to the small number of available studies, which resulted in a lack of power.
PMID:38920993 | DOI:10.3390/cimb46060321
Succinimide Derivatives as Acetylcholinesterase Inhibitors-In Silico and In Vitro Studies
Curr Issues Mol Biol. 2024 May 22;46(6):5117-5130. doi: 10.3390/cimb46060307.
ABSTRACT
We studied the effect of succinimide derivatives on acetylcholinesterase activity due to the interest in compounds that influence this enzyme's activity, which could help treat memory issues more effectively. The following parameters were established for this purpose based on kinetic investigations of the enzyme in the presence of succinimide derivatives: the half-maximal inhibitory concentration, the maximum rate, the inhibition constant, and the Michaelis-Menten constant. Furthermore, computational analyses were performed to determine the energy required for succinimide derivatives to dock with the enzyme's active site. The outcomes acquired in this manner demonstrated that all compounds inhibited acetylcholinesterase in a competitive manner. The values of the docking energy parameters corroborated the kinetic parameter values, which indicated discernible, albeit slight, variations in the inhibitory intensity among the various derivatives.
PMID:38920979 | DOI:10.3390/cimb46060307
Effectiveness of Vitamin D on Neurological and Mental Disorders
Diseases. 2024 Jun 20;12(6):131. doi: 10.3390/diseases12060131.
ABSTRACT
(1) Background: Mental disorders are conditions that affect a person's cognition, mood, and behaviour, such as depression, anxiety, bipolar disorder, and schizophrenia. In contrast, neurological disorders are diseases of the brain, spinal cord, and nerves. Such disorders include strokes, epilepsy, Alzheimer's, and Parkinson's. Both mental and neurological disorders pose significant global health challenges, impacting hundreds of millions worldwide. Research suggests that certain vitamins, including vitamin D, may influence the incidence and severity of these disorders; (2) Methods: This systematic review examined the potential effects of vitamin D supplementation on various mental and neurological disorders. Evidence was gathered from databases like PubMed, Cochrane, and Google Scholar, including multiple randomized controlled trials comparing vitamin D supplementation to placebo or no treatment for conditions like depression, bipolar disorder, epilepsy, schizophrenia, and neuroinflammation; (3) Results: The findings strongly indicate that vitamin D supplementation may benefit a range of mental health and neurological disorders. The magnitude of the beneficial impact varied by specific disorder, but the overall pattern strongly supports the therapeutic potential of vitamin D on these disorders; (4) Conclusions: This review provides valuable insight into the role vitamin D may play in the management of critical brain-related health issues.
PMID:38920563 | DOI:10.3390/diseases12060131
HLA-B*5801 testing: Is it time to consider mandatory testing prior to prescribing allopurinol in Singapore?
Ann Acad Med Singap. 2024 Mar 27;53(3):211-212. doi: 10.47102/annals-acadmedsg.2023357.
NO ABSTRACT
PMID:38920247 | DOI:10.47102/annals-acadmedsg.2023357
Validating two international warfarin pharmacogenetic dosing algorithms for estimating the maintenance dose for patients in Singapore
Ann Acad Med Singap. 2024 Mar 27;53(3):208-210. doi: 10.47102/annals-acadmedsg.2023186.
NO ABSTRACT
PMID:38920246 | DOI:10.47102/annals-acadmedsg.2023186
Ginkgo biloba for Tardive Dyskinesia and Plasma MnSOD Activity: Association with MnSOD Ala-9Val Variant
Curr Neuropharmacol. 2024 Jun 24. doi: 10.2174/1570159X22666240530095721. Online ahead of print.
ABSTRACT
BACKGROUND: Excessive free radicals are implicated in the pathophysiology of tardive dyskinesia (TD), and Ginkgo biloba extract (EGb761) scavenges free radicals, thereby enhancing antioxidant enzymes such as mitochondrial manganese superoxide dismutase (MnSOD). This study examined whether EGb761 treatment would improve TD symptoms and increase MnSOD activity, particularly in TD patients with specific MnSOD Val-9Ala genotype.
METHODS: An EGb761 (240 mg/day) 12-week double-blind clinical trial with 157 TD patients was randomized. The severity of TD was measured by the Abnormal Involuntary Movement Scale (AIMS) and plasma MnSOD activity was assayed before and after 12 weeks of treatment. Further, in an expanded sample, we compared MnSOD activity in 159 TD, 227 non-TD and 280 healthy controls, as well as the allele frequencies and genotypes for the MnSOD Ala-9Val polymorphism in 352 TD, 486 non-TD and 1150 healthy controls.
RESULTS: EGb761 significantly reduced TD symptoms and increased MnSOD activity in TD patients compared to placebo (both p < 0.01). Moreover, we found an interaction between genotype and treatment response (p < 0.001). Furthermore, in the EGb761 group, patients carrying the Ala allele displayed a significantly lower AIMS total score than patients with the Val/Val genotype. In addition, MnSOD activity was significantly lower at baseline in TD patients compared with healthy controls or non-TD patients.
CONCLUSION: EGb761 treatment enhanced low MnSOD activity in TD patients and produced greater improvement in TD symptoms in patients with the Ala allele of the MnSOD Ala-9Val polymorphism.
PMID:38919004 | DOI:10.2174/1570159X22666240530095721
Understanding mechanisms of resistance to FLT3 inhibitors in adult FLT3-mutated Acute Myeloid Leukemia (AML) to guide treatment strategy
Crit Rev Oncol Hematol. 2024 Jun 23:104424. doi: 10.1016/j.critrevonc.2024.104424. Online ahead of print.
ABSTRACT
The presence of FLT3 mutations, including the most common FLT3-ITD (internal tandem duplications) and FLT3-TKD (tyrosine kinase domain), is associated with an unfavorable prognosis in patients affected by Acute Myeloid Leukemia (AML). In this setting, in recent years, new FLT3-inhibitors have demonstrated efficacy in improving survival and treatment response. Nevertheless, the development of primary and secondary mechanisms of resistance poses a significant obstacle to their efficacy. Understanding these mechanisms is crucial for developing novel therapeutic approaches to overcome resistance and improve the outcomes of patients. In this context, the use of novel FLT3 inhibitors and the combination of different targeted therapies have been studied. This review provides an update on the molecular alterations involved in FLT3 AML mechanisms of resistance, exploring how the molecular monitoring may be used to guide treatment strategy in FLT3-mutated AML.
PMID:38917943 | DOI:10.1016/j.critrevonc.2024.104424
Healthcare provider and patient perspectives on the implementation of pharmacogenetic-guided treatment in routine clinical practice
Pharmacogenet Genomics. 2024 Jun 18. doi: 10.1097/FPC.0000000000000541. Online ahead of print.
ABSTRACT
OBJECTIVE: This study aims to understand patient and healthcare provider perspectives on the integration and application of pharmacogenetics (PGx) testing in routine clinical practice.
METHODS: Two anonymous online surveys were distributed globally for healthcare providers and patients respectively on the Qualtrics platform (version 3.24). The surveys were distributed through social platforms, email, and posters with QR codes from 27 October 2023 to 7 March 2024. The surveys evaluated participant familiarity with PGx, previous experience with PGx testing, perceived implementation challenges, and opinions on point-of-care (PoC) PGx testing devices.
RESULTS: This study collected 78 responses from healthcare providers and 98 responses from patients. The results revealed that 64% of healthcare providers had some level of familiarity with PGx, however, PGx testing in clinical practice was low. The primary challenges identified by healthcare providers included limited access to testing and lack of knowledge on PGx test interpretation. In contrast, 52% of patient respondents were aware of PGx testing, with a significant association between awareness and positive opinions toward PGx. Both healthcare providers and patients recognized the value of PoC PGx testing devices, with 98% of healthcare providers and 71% of patients believing PoC devices would improve the accessibility and implementation of PGx testing. Comparative analysis revealed a statistically significant difference in PGx awareness between healthcare providers and patients, with providers being more informed.
CONCLUSION: Improved PGx awareness, training, clinical guidelines, and PoC PGx testing devices may help promote the implementation of PGx-guided treatments in routine clinical practice.
PMID:38917295 | DOI:10.1097/FPC.0000000000000541
Pharmacogenetic Study of Drugs Affecting Mycobacterium tuberculosis
Int J Mycobacteriol. 2024 Apr 1;13(2):206-212. doi: 10.4103/ijmy.ijmy_106_24. Epub 2024 Jun 15.
ABSTRACT
BACKGROUND: Pharmacogenetic research has led to significant progress in understanding how genetic factors influence drug response in tuberculosis (TB) treatment. One ongoing challenge is the variable occurrence of adverse drug reactions in some TB patients. Previous studies have indicated that genetic variations in the N-acetyltransferase 2 (NAT2) and solute carrier organic anion transporter family member 1B1 (SLCO1B1) genes can impact the blood concentrations of the first-line anti-TB drugs isoniazid (INH) and rifampicin (RIF), respectively. This study aimed to investigate the influence of pharmacogenetic markers in the NAT2 and SLCO1B1 genes on TB treatment outcomes using whole-exome sequencing (WES) analysis.
METHODS: DNA samples were collected from 30 healthy Iranian adults aged 18-40 years. The allelic frequencies of single-nucleotide polymorphisms (SNPs) in the NAT2 and SLCO1B1 genes were determined through WES.
RESULTS: Seven frequent SNPs were identified in the NAT2 gene (rs1041983, rs1801280, rs1799929, rs1799930, rs1208, rs1799931, rs2552), along with 16 frequent SNPs in the SLCO1B1 gene (rs2306283, rs11045818, rs11045819, rs4149056, rs4149057, rs2291075, rs201722521, rs11045852, rs11045854, rs756393362, rs11045859, rs74064211, rs201556175, rs34671512, rs71581985, rs4149085).
CONCLUSION: Genetic variations in NAT2 and SLCO1B1 can affect the metabolism of INH and RIF, respectively. A better understanding of the pharmacogenetic profile in the study population may facilitate the design of more personalized and effective TB treatment strategies. Further research is needed to directly correlate these genetic markers with clinical outcomes in TB patients.
PMID:38916393 | DOI:10.4103/ijmy.ijmy_106_24
Association between <em>COMMD1</em> gene polymorphism rs11125908 and rheumatoid arthritis in the Cuban population
Reumatismo. 2024 Jun 24;76(2). doi: 10.4081/reumatismo.2024.1691.
ABSTRACT
OBJECTIVE: To evaluate the association of the rs11125908 polymorphism in the COMMD1 gene in the Cuban population with rheumatoid arthritis (RA).
METHODS: In this case-control study, 161 RA patients and 150 control subjects were genotyped for rs11125908 by the allele-specific polymerase chain reaction method. DNA sequencing was used to verify the assignation of the polymorphism. The odds ratios (OR) and their 95% confidence interval were calculated by logistic regression to determine the associations between genotypes and RA using the SNPStats software.
RESULTS: An association of the single nucleotide polymorphism with the disease was found in the overdominant model (p=0.025; OR=1.91) for the AG genotype. Our analyses revealed an association between rs11125908 and the subgroup of patients with swollen joints < median under the codominant model for AG (p=0.034; OR=2.30) and GG genotype (p=0.034; OR=0.82) and with the overdominant model (p=0.01; OR=2.38). The subgroup of patients with an age of onset lower than the mean and AG genotype showed an association in the overdominant model (p=0.027; OR=2.27). Disease activity score 28 with erythrocyte sedimentation rate and disease duration variables were not associated with the rs11125908 polymorphism.
CONCLUSIONS: rs11125908 was associated with RA and with the number of swollen joints and age of onset subgroup analyses. We provide concepts for treatments for RA, based on pharmacological management of COMMD1 expression.
PMID:38916163 | DOI:10.4081/reumatismo.2024.1691
Optimisation of pharmacotherapy in psychiatry through therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests: focus on antipsychotics
World J Biol Psychiatry. 2024 Jun 24:1-123. doi: 10.1080/15622975.2024.2366235. Online ahead of print.
ABSTRACT
BACKGROUND: For psychotic disorders (i.e. schizophrenia), pharmacotherapy plays a key role in controlling acute and long-term symptoms. To find the optimal individual dose and dosage strategy, specialized tools are used. Three tools have been proven useful to personalize drug treatments: therapeutic drug monitoring (TDM) of drug levels, pharmacogenetic testing (PG), and molecular neuroimaging.
METHODS: In these Guidelines, we provide an in-depth review of pharmacokinetics, pharmacodynamics, and pharmacogenetics for 50 antipsychotics. Over 30 international experts in psychiatry selected studies that have measured drug concentrations in the blood (TDM), gene polymorphisms of enzymes involved in drug metabolism, or receptor/transporter occupancies in the brain (positron emission tomography (PET)).
RESULTS: Study results strongly support the use of TDM and the cytochrome P450 (CYP) genotyping and/or phenotyping to guide drug therapies. Evidence-based target ranges are available for titrating drug doses that are often supported by PET findings.
CONCLUSION: All three tools discussed in these Guidelines are essential for drug treatment. TDM goes well beyond typical indications such as unclear compliance and polypharmacy. Despite its enormous potential to optimize treatment effects, minimize side effects and ultimately reduce the global burden of diseases, personalized drug treatment has not yet become the standard of care in psychiatry.
PMID:38913780 | DOI:10.1080/15622975.2024.2366235
Influence of the glutamate-glutamine cycle on valproic acid-associated hepatotoxicity in pediatric patients with epilepsy
Clin Toxicol (Phila). 2024 Jun 24:1-8. doi: 10.1080/15563650.2024.2366920. Online ahead of print.
ABSTRACT
INTRODUCTION: Although valproic acid is generally well tolerated, hepatotoxicity is a common side effect in patients receiving long-term treatment. However, the mechanisms underlying valproic acid-associated hepatotoxicity remain elusive.
METHODS: To investigate the mechanisms and explore the potential risk factors for valproic acid-associated hepatotoxicity, 165 age-matched pediatric patients were recruited for laboratory tests and glutamate-glutamine cycle analysis.
RESULTS: The concentration of glutamate in patients with hepatotoxicity was significantly greater than that in control patients, while the concentration of glutamine in patients with hepatotoxicity was significantly lower than that in control patients (P ˂ 0.05). In addition, the frequencies of the heterozygous with one mutant allele and homozygous with two mutant alleles genotypes in glutamate-ammonia ligase rs10911021 were significantly higher in the hepatotoxicity group than those in the control group (47.1 percent versus 32.5 percent, P = 0.010; 17.6 percent versus 5.2 percent, P = 0.001, respectively). Moreover, heterozygous carriers with one mutant allele and homozygous carriers with two mutant alleles genotypes of glutamate-ammonia ligase rs10911021 exhibited significant differences in the concentrations of glutamine and glutamate concentrations (P ˂ 0.001 and P = 0.001, respectively) and liver function indicators (activities of aspartate aminotransferase, alanine aminotransferase, and gamma-glutamyl transferase, P ˂ 0.001, respectively). Furthermore, logistic regression analysis indicated that glutamate-ammonia ligase rs10911021 (P = 0.002, odds ratio: 3.027, 95 percent confidence interval, 1.521 - 6.023) and glutamate (P = 0.001, odds ratio: 2.235, 95 percent confidence interval, 1.369 - 3.146) were associated with a greater risk for hepatotoxicity, while glutamine concentrations were negatively associated with hepatotoxicity (P = 0.001, odds ratio: 0.711, 95 percent confidence interval, 0.629 - 0.804).
DISCUSSION: Understanding pharmacogenomic risks for valproic acid induced hepatotoxicity might help direct patient specific care. Limitations of our study include the exclusive use of children from one location and concomitant medication use in many patients.
CONCLUSION: Perturbation of the glutamate-glutamine cycle is associated with valproic acid-associated hepatotoxicity. Moreover, glutamate-ammonia ligase rs10911021, glutamate and glutamine concentrations are potential risk factors for valproic acid-associated hepatotoxicity.
PMID:38913595 | DOI:10.1080/15563650.2024.2366920
Towards consensus recommendations for pharmacogenetics testing
Am J Health Syst Pharm. 2024 Jun 24:zxae171. doi: 10.1093/ajhp/zxae171. Online ahead of print.
ABSTRACT
In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time.
PMID:38912618 | DOI:10.1093/ajhp/zxae171