Drug Repositioning

AI-driven covalent drug design strategies targeting main protease (m<sup>pro</sup>) against SARS-CoV-2: structural insights and molecular mechanisms

Tue, 2024-01-30 06:00

J Biomol Struct Dyn. 2024 Jan 29:1-29. doi: 10.1080/07391102.2024.2308769. Online ahead of print.

ABSTRACT

The emergence of new SARS-CoV-2 variants has raised concerns about the effectiveness of COVID-19 vaccines. To address this challenge, small-molecule antivirals have been proposed as a crucial therapeutic option. Among potential targets for anti-COVID-19 therapy, the main protease (Mpro) of SARS-CoV-2 is important due to its essential role in the virus's life cycle and high conservation. The substrate-binding region of the core proteases of various coronaviruses, including SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV), could be used for the generation of new protease inhibitors. Various drug discovery methods have employed a diverse range of strategies, targeting both monomeric and dimeric forms, including drug repurposing, integrating virtual screening with high-throughput screening (HTS), and structure-based drug design, each demonstrating varying levels of efficiency. Covalent inhibitors, such as Nirmatrelvir and MG-101, showcase robust and high-affinity binding to Mpro, exhibiting stable interactions confirmed by molecular docking studies. Development of effective antiviral drugs is imperative to address potential pandemic situations. This review explores recent advances in the search for Mpro inhibitors and the application of artificial intelligence (AI) in drug design. AI leverages vast datasets and advanced algorithms to streamline the design and identification of promising Mpro inhibitors. AI-driven drug discovery methods, including molecular docking, predictive modeling, and structure-based drug repurposing, are at the forefront of identifying potential candidates for effective antiviral therapy. In a time when COVID-19 potentially threat global health, the quest for potent antiviral solutions targeting Mpro could be critical for inhibiting the virus.Communicated by Ramaswamy H. Sarma.

PMID:38287509 | DOI:10.1080/07391102.2024.2308769

Categories: Literature Watch

Targeting PDE4A for therapeutic potential: exploiting drug repurposing approach through virtual screening and molecular dynamics

Tue, 2024-01-30 06:00

J Biomol Struct Dyn. 2024 Jan 29:1-13. doi: 10.1080/07391102.2024.2308764. Online ahead of print.

ABSTRACT

cAMP-specific 3',5'-cyclic phosphodiesterase 4 A (PDE4A) holds a pivotal role in modulating intracellular levels of cyclic adenosine monophosphate (cAMP). Targeting PDE4A with novel therapeutic agents shows promise in addressing neurological disorders (e.g. Alzheimer's and Parkinson's diseases), mood disorders (depression, anxiety), inflammatory conditions (asthma, chronic obstructive pulmonary disease), and even cancer. In this study, we present a comprehensive approach that integrates virtual screening and molecular dynamics (MD) simulations to identify potential inhibitors of PDE4A from the existing pool of FDA-approved drugs. The initial compound selection was conducted focusing on binding affinity scores, which led to the identification of several high-affinity compounds with potential PDE4A binding properties. From the refined selection process, two promising compounds, Fluspirilene and Dihydroergocristine, emerged as strong candidates, displaying substantial affinity and specificity for the PDE4A binding site. Interaction analysis provided robust evidence of their binding capabilities. To gain deeper insights into the dynamic behavior of Fluspirilene and Dihydroergocristine in complex with PDE4A, we conducted 300 ns MD simulations, principal components analysis (PCA), and free energy landscape (FEL) analysis. These analyses revealed that Fluspirilene and Dihydroergocristine binding stabilized the PDE4A structure and induced minimal conformational changes, highlighting their potential as potent binders. In conclusion, our study systematically explores repurposing existing FDA-approved drugs as PDE4A inhibitors through a comprehensive virtual screening pipeline. The identified compounds, Fluspirilene and Dihydroergocristine, exhibit a strong affinity for PDE4A, displaying characteristics that support their suitability for further development as potential therapeutic agents for conditions associated with PDE4A dysfunction.Communicated by Ramaswamy H. Sarma.

PMID:38287492 | DOI:10.1080/07391102.2024.2308764

Categories: Literature Watch

Integrating Transcriptomic and Structural Insights: Revealing Drug Repurposing Opportunities for Sporadic ALS

Mon, 2024-01-29 06:00

ACS Omega. 2024 Jan 10;9(3):3793-3806. doi: 10.1021/acsomega.3c07296. eCollection 2024 Jan 23.

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive and devastating neurodegenerative disorder characterized by the loss of upper and lower motor neurons, resulting in debilitating muscle weakness and atrophy. Currently, there are no effective treatments available for ALS, posing significant challenges in managing the disease that affects approximately two individuals per 100,000 people annually. To address the urgent need for effective ALS treatments, we conducted a drug repurposing study using a combination of bioinformatics tools and molecular docking techniques. We analyzed sporadic ALS-related genes from the GEO database and identified key signaling pathways involved in sporadic ALS pathogenesis through pathway analysis using DAVID. Subsequently, we utilized the Clue Connectivity Map to identify potential drug candidates and performed molecular docking using AutoDock Vina to evaluate the binding affinity of short-listed drugs to key sporadic ALS-related genes. Our study identified Cefaclor, Diphenidol, Flubendazole, Fluticasone, Lestaurtinib, Nadolol, Phenamil, Temozolomide, and Tolterodine as potential drug candidates for repurposing in sporadic ALS treatment. Notably, Lestaurtinib demonstrated high binding affinity toward multiple proteins, suggesting its potential as a broad-spectrum therapeutic agent for sporadic ALS. Additionally, docking analysis revealed NOS3 as the gene that interacts with all the short-listed drugs, suggesting its possible involvement in the mechanisms underlying the therapeutic potential of these drugs in sporadic ALS. Overall, our study provides a systematic framework for identifying potential drug candidates for sporadic ALS therapy and highlights the potential of drug repurposing as a promising strategy for discovering new therapies for neurodegenerative diseases.

PMID:38284068 | PMC:PMC10809234 | DOI:10.1021/acsomega.3c07296

Categories: Literature Watch

Targeting FGFR3 signaling and drug repurposing for the treatment of SLC26A2-related chondrodysplasia in mouse model

Mon, 2024-01-29 06:00

J Orthop Translat. 2024 Jan 6;44:88-101. doi: 10.1016/j.jot.2023.09.003. eCollection 2024 Jan.

ABSTRACT

BACKGROUND: Mutations in Slc26a2 cause a spectrum of autosomal-recessive chondrodysplasia with a significant and negligible influence on the quality of life. It has been reported that Slc26a2 deficiency triggers the ATF6 branch of the UPR, which may, in turn, activate the negative regulator of the FGFR3 signaling pathway. However, the correlation between the deletion of Slc26a2 and the augmentation of downstream phosphorylation of FGFR3 has not been investigated in vivo.

METHODS: First, we constructed Slc26a2 and Fgfr3 double knockout mouse lines and observed gross views of the born mice and histological staining of the tibial growth plates. The second approach was to construct tamoxifen-inducible Cre-ERT2 mouse models to replicate SLC26A2-related non-lethal dysplastic conditions. Pharmacological intervention was performed by administering the FGFR3 inhibitor NVP-BGJ398. The effect of NVP-BGJ398 on chondrocytes was assessed by Alcian blue staining, proliferation, apoptosis, and chondrocyte-specific markers and then verified by western blotting for variations in the downstream markers of FGFR3. The growth process was detected using X-rays, micro-CT examination, histomorphometry staining of growth plates, and immunofluorescence.

RESULTS: Genetic ablation of Fgfr3 in embryonic Slc26a2-deficient chondrocytes slightly attenuated chondrodysplasia. Subsequently, in the constructed mild dysplasia model, we found that postnatal intervention with Fgfr3 gene in Slc26a2-deficient chondrocytes partially alleviated chondrodysplasia. In chondrocyte assays, NVP-BGJ398 suppressed the defective phenotype of Slc26a2-deficient chondrocytes and restored the phosphorylation downstream of FGFR3 in a concentration-dependent manner. In addition, in vivo experiments showed significant alleviation of impaired chondrocyte differentiation, and micro-CT analysis showed a clear improvement in trabecular bone microarchitectural parameters.

CONCLUSION: Our results suggested that inhibition of FGFR3 signaling pathway overactivation and NVP-BGJ398 has promising therapeutic implications for the development of SLC26A2-related skeletal diseases in humans.

THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: Our data provide genetic and pharmacological evidence that targeting FGFR3 signaling via NVP-BGJ398 could be a route for the treatment of SLC26A2-associated skeletal disorders, which promisingly advances translational applications and therapeutic development.

PMID:38282752 | PMC:PMC10818158 | DOI:10.1016/j.jot.2023.09.003

Categories: Literature Watch

SAGDTI: self-attention and graph neural network with multiple information representations for the prediction of drug-target interactions

Mon, 2024-01-29 06:00

Bioinform Adv. 2023 Aug 26;3(1):vbad116. doi: 10.1093/bioadv/vbad116. eCollection 2023.

ABSTRACT

MOTIVATION: Accurate identification of target proteins that interact with drugs is a vital step in silico, which can significantly foster the development of drug repurposing and drug discovery. In recent years, numerous deep learning-based methods have been introduced to treat drug-target interaction (DTI) prediction as a classification task. The output of this task is binary identification suggesting the absence or presence of interactions. However, existing studies often (i) neglect the unique molecular attributes when embedding drugs and proteins, and (ii) determine the interaction of drug-target pairs without considering biological interaction information.

RESULTS: In this study, we propose an end-to-end attention-derived method based on the self-attention mechanism and graph neural network, termed SAGDTI. The aim of this method is to overcome the aforementioned drawbacks in the identification of DTI. SAGDTI is the first method to sufficiently consider the unique molecular attribute representations for both drugs and targets in the input form of the SMILES sequences and three-dimensional structure graphs. In addition, our method aggregates the feature attributes of biological information between drugs and targets through multi-scale topologies and diverse connections. Experimental results illustrate that SAGDTI outperforms existing prediction models, which benefit from the unique molecular attributes embedded by atom-level attention and biological interaction information representation aggregated by node-level attention. Moreover, a case study on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shows that our model is a powerful tool for identifying DTIs in real life.

AVAILABILITY AND IMPLEMENTATION: The data and codes underlying this article are available in Github at https://github.com/lixiaokun2020/SAGDTI.

PMID:38282612 | PMC:PMC10818136 | DOI:10.1093/bioadv/vbad116

Categories: Literature Watch

Identification of Fasudil as a collaborator to promote the anti-tumor effect of lenvatinib in hepatocellular carcinoma by inhibiting GLI2-mediated hedgehog signaling pathway

Sat, 2024-01-27 06:00

Pharmacol Res. 2024 Jan 25:107082. doi: 10.1016/j.phrs.2024.107082. Online ahead of print.

ABSTRACT

Lenvatinib is a frontline tyrosine kinase inhibitor for patients with advanced hepatocellular carcinoma (HCC). However, just 25% of patients benefit from the treatment, and acquired resistance always develops. To date, there are neither effective medications to combat lenvatinib resistance nor accurate markers that might predict how well a patient would respond to the lenvatinib treatment. Thus, novel strategies to recognize and deal with lenvatinib resistance are desperately needed. In the current study, a robust Lenvatinib Resistance index (LRi) model to predict lenvatinib response status in HCC was first established. Subsequently, five candidate drugs (Mercaptopurine, AACOCF3, NU1025, Fasudil, and Exisulind) that were capable of reversing lenvatinib resistance signature were initially selected by performing the connectivity map (CMap) analysis, and fasudil finally stood out by conducting a series of cellular functional assays in vitro and xenograft mouse model. Transcriptomics revealed that the co-administration of lenvatinib and fasudil overcame lenvatinib resistance by remodeling the hedgehog signaling pathway. Mechanistically, the feedback activation of EGFR by lenvatinib led to the activation of the GLI2-ABCC1 pathway, which supported the HCC cell's survival and proliferation. Notably, co-administration of lenvatinib and fasudil significantly inhibited IHH, the upstream switch of the hedgehog pathway, to counteract GLI2 activation and finally enhance the effectiveness of lenvatinib. These findings elucidated a novel EGFR-mediated mechanism of lenvatinib resistance and provided a practical approach to overcoming drug resistance in HCC through meaningful drug repurposing strategies.

PMID:38280440 | DOI:10.1016/j.phrs.2024.107082

Categories: Literature Watch

Aspirin as a potential drug repurposing candidate targeting estrogen receptor alpha in breast cancer: a molecular dynamics and in-vitro study

Sat, 2024-01-27 06:00

J Biomol Struct Dyn. 2024 Jan 27:1-12. doi: 10.1080/07391102.2024.2308780. Online ahead of print.

ABSTRACT

Estrogen receptor alpha (ERα) is expressed by 70% of breast cancers (BCs). Any deregulation in ERα signaling is crucial for the initiation and progression of BC. Because of development of resistance to anti-estrogenic compounds, repurposing existing drugs is an apt strategy to avoid a long drug-discovery process. Substantial epidemiologic evidence suggests that Aspirin use reduces the risk of different cancers including BC, while its role as an adjuvant or a possible antineoplastic agent in cancer treatment is being investigated. In this study, we attempted to explore possibilities of ERα inhibition by Aspirin which may act through competitive binding to the ligand binding domain (LBD) of ERα. A list of 48 ERα-LBD crystal structures bound with agonists, antagonists, and selective ER modulators (SERMs) was thoroughly analysed to determine interaction patterns specific to each ligand category. Exhaustive docking and 500 ns molecular dynamics (MD) studies were performed on three ERα - Aspirin complexes generated using agonist, antagonist, and SERM-bound crystal structures. Besides, three ERα crystal structures bound to agonist, antagonist, and SERM respectively were also subjected to MD simulations. Aspirin showed good affinity to LBD of ERα. Comparative analyses of binding patterns, conformational changes and molecular interaction profiles from the docking results and MD trajectories suggests that Aspirin was most stable in complex generated using SERM bound crystal structure of ERα and showed interactions with Gly-521, Ala-350, Leu-525 and Thr-347 like SERMs. In addition, in-vitro assays, qPCR, and immunofluorescent assay demonstrated the decline in the expression of ERα in MCF-7 upon treatment with Aspirin. These preliminary bioinformatical and in-vitro findings may form the basis to consider Aspirin as a potential candidate for targeting ERα, especially in tamoxifen-resistant cancers.Communicated by Ramaswamy H. Sarma.

PMID:38279948 | DOI:10.1080/07391102.2024.2308780

Categories: Literature Watch

The landscape of the methodology in drug repurposing using human genomic data: a systematic review

Sat, 2024-01-27 06:00

Brief Bioinform. 2024 Jan 22;25(2):bbad527. doi: 10.1093/bib/bbad527.

ABSTRACT

The process of drug development is expensive and time-consuming. In contrast, drug repurposing can be introduced to clinical practice more quickly and at a reduced cost. Over the last decade, there has been a significant expansion of large biobanks that link genomic data to electronic health record data, public availability of various databases containing biological and clinical information and rapid development of novel methodologies and algorithms in integrating different sources of data. This review aims to provide a thorough summary of different strategies that utilize genomic data to seek drug-repositioning opportunities. We searched MEDLINE and EMBASE databases to identify eligible studies up until 1 May 2023, with a total of 102 studies finally included after two-step parallel screening. We summarized commonly used strategies for drug repurposing, including Mendelian randomization, multi-omic-based and network-based studies and illustrated each strategy with examples, as well as the data sources implemented. By leveraging existing knowledge and infrastructure to expedite the drug discovery process and reduce costs, drug repurposing potentially identifies new therapeutic uses for approved drugs in a more efficient and targeted manner. However, technical challenges when integrating different types of data and biased or incomplete understanding of drug interactions are important hindrances that cannot be disregarded in the pursuit of identifying novel therapeutic applications. This review offers an overview of drug repurposing methodologies, providing valuable insights and guiding future directions for advancing drug repurposing studies.

PMID:38279645 | DOI:10.1093/bib/bbad527

Categories: Literature Watch

Role of biomarkers and molecular signaling pathways in acute lung injury

Sat, 2024-01-27 06:00

Fundam Clin Pharmacol. 2024 Jan 26. doi: 10.1111/fcp.12987. Online ahead of print.

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is caused by bacterial, fungal, and viral infections. When pathogens invade the lungs, the immune system responds by producing cytokines, chemokines, and interferons to promote the infiltration of phagocytic cells, which are essential for pathogen clearance. Their excess production causes an overactive immune response and a pathological hyper-inflammatory state, which leads to ALI. Until now, there is no particular pharmaceutical treatment available for ALI despite known inflammatory mediators like neutrophil extracellular traps (NETs) and reactive oxygen species (ROS).

OBJECTIVES: Therefore, the primary objective of this review is to provide the clear overview on the mechanisms controlling NETs, ROS formation, and other relevant processes during the pathogenesis of ALI. In addition, we have discussed the significance of epithelial and endothelial damage indicators and several molecular signaling pathways associated with ALI.

METHODS: The literature review was done from Web of Science, Scopus, PubMed, and Google Scholar for ALI, NETs, ROS, inflammation, biomarkers, Toll- and nucleotide-binding oligomerization domain (NOD)-like receptors, alveolar damage, pro-inflammatory cytokines, and epithelial/endothelial damage alone or in combination.

RESULTS: This review summarized the main clinical signs of ALI, including the regulation and distinct function of epithelial and endothelial biomarkers, NETs, ROS, and pattern recognition receptors (PRRs).

CONCLUSION: However, no particular drugs including vaccine for ALI has been established. Furthermore, there is a lack of validated diagnostic tools and a poor predictive rationality of current therapeutic biomarkers. Hence, extensive and precise research is required to speed up the process of drug testing and development by the application of artificial intelligence technologies, structure-based drug design, in-silico approaches, and drug repurposing.

PMID:38279523 | DOI:10.1111/fcp.12987

Categories: Literature Watch

Bezafibrate attenuates immobilization-induced muscle atrophy in mice

Fri, 2024-01-26 06:00

Sci Rep. 2024 Jan 26;14(1):2240. doi: 10.1038/s41598-024-52689-x.

ABSTRACT

Muscle atrophy due to fragility fractures or frailty worsens not only activity of daily living and healthy life expectancy, but decreases life expectancy. Although several therapeutic agents for muscle atrophy have been investigated, none is yet in clinical use. Here we report that bezafibrate, a drug used to treat hyperlipidemia, can reduce immobilization-induced muscle atrophy in mice. Specifically, we used a drug repositioning approach to screen 144 drugs already utilized clinically for their ability to inhibit serum starvation-induced elevation of Atrogin-1, a factor related to muscle atrophy, in myotubes in vitro. Two candidates were selected, and here we demonstrate that one of them, bezafibrate, significantly reduced muscle atrophy in an in vivo model of muscle atrophy induced by leg immobilization. In gastrocnemius muscle, immobilization reduced muscle weight by an average of ~ 17.2%, and bezafibrate treatment prevented ~ 40.5% of that atrophy. In vitro, bezafibrate significantly inhibited expression of the inflammatory cytokine Tnfa in lipopolysaccharide-stimulated RAW264.7 cells, a murine macrophage line. Finally, we show that expression of Tnfa and IL-1b is induced in gastrocnemius muscle in the leg immobilization model, an activity significantly antagonized by bezafibrate administration in vivo. We conclude that bezafibrate could serve as a therapeutic agent for immobilization-induced muscle atrophy.

PMID:38279013 | DOI:10.1038/s41598-024-52689-x

Categories: Literature Watch

Repurposing Therapeutic Drugs Complexed to Vanadium in Cancer

Fri, 2024-01-26 06:00

Pharmaceuticals (Basel). 2023 Dec 21;17(1):12. doi: 10.3390/ph17010012.

ABSTRACT

Repurposing drugs by uncovering new indications for approved drugs accelerates the process of establishing new treatments and reduces the high costs of drug discovery and development. Metal complexes with clinically approved drugs allow further opportunities in cancer therapy-many vanadium compounds have previously shown antitumor effects, which makes vanadium a suitable metal to complex with therapeutic drugs, potentially improving their efficacy in cancer treatment. In this review, covering the last 25 years of research in the field, we identified non-oncology-approved drugs suitable as ligands to obtain different vanadium complexes. Metformin-decavanadate, vanadium-bisphosphonates, vanadyl(IV) complexes with non-steroidal anti-inflammatory drugs, and cetirizine and imidazole-based oxidovanadium(IV) complexes, each has a parent drug known to have different medicinal properties and therapeutic indications, and all showed potential as novel anticancer treatments. Nevertheless, the precise mechanisms of action for these vanadium compounds against cancer are still not fully understood.

PMID:38275998 | DOI:10.3390/ph17010012

Categories: Literature Watch

Targeted Therapies and Drug Resistance in Advanced Breast Cancer, Alternative Strategies and the Way beyond

Fri, 2024-01-26 06:00

Cancers (Basel). 2024 Jan 22;16(2):466. doi: 10.3390/cancers16020466.

ABSTRACT

"Targeted therapy" or "precision medicine" is a therapeutic strategy launched over two decades ago. It relies on drugs that inhibit key molecular mechanisms/pathways or genetic/epigenetic alterations that promote different cancer hallmarks. Many clinical trials, sponsored by multinational drug companies, have been carried out. During this time, research has increasingly uncovered the complexity of advanced breast cancer disease. Despite high expectations, patients have seen limited benefits from these clinical trials. Commonly, only a minority of trials are successful, and the few approved drugs are costly. The spread of this expensive therapeutic strategy has constrained the resources available for alternative research. Meanwhile, due to the high cost/benefit ratio, other therapeutic strategies have been proposed by researchers over time, though they are often not pursued due to a focus on precision medicine. Notable among these are drug repurposing and counteracting micrometastatic disease. The former provides an obvious answer to expensive targeted therapies, while the latter represents a new field to which efforts have recently been devoted, offering a "way beyond" the current research.

PMID:38275906 | DOI:10.3390/cancers16020466

Categories: Literature Watch

The Potential of a Stratified Approach to Drug Repurposing in Alzheimer's Disease

Fri, 2024-01-26 06:00

Biomolecules. 2023 Dec 21;14(1):11. doi: 10.3390/biom14010011.

ABSTRACT

Alzheimer's disease (AD) is a complex neurodegenerative condition that is characterized by the build-up of amyloid-beta plaques and neurofibrillary tangles. While multiple theories explaining the aetiology of the disease have been suggested, the underlying cause of the disease is still unknown. Despite this, several modifiable and non-modifiable factors that increase the risk of developing AD have been identified. To date, only eight AD drugs have ever gained regulatory approval, including six symptomatic and two disease-modifying drugs. However, not all are available in all countries and high costs associated with new disease-modifying biologics prevent large proportions of the patient population from accessing them. With the current patient population expected to triple by 2050, it is imperative that new, effective, and affordable drugs become available to patients. Traditional drug development strategies have a 99% failure rate in AD, which is far higher than in other disease areas. Even when a drug does reach the market, additional barriers such as high cost and lack of accessibility prevent patients from benefiting from them. In this review, we discuss how a stratified medicine drug repurposing approach may address some of the limitations and barriers that traditional strategies face in relation to drug development in AD. We believe that novel, stratified drug repurposing studies may expedite the discovery of alternative, effective, and more affordable treatment options for a rapidly expanding patient population in comparison with traditional drug development methods.

PMID:38275752 | DOI:10.3390/biom14010011

Categories: Literature Watch

Ezetimibe Induces Paraptosis through Niemann-Pick C1-like 1 Inhibition of Mammalian-Target-of-Rapamycin Signaling in Hepatocellular Carcinoma Cells

Fri, 2024-01-26 06:00

Genes (Basel). 2023 Dec 19;15(1):4. doi: 10.3390/genes15010004.

ABSTRACT

Currently, hepatocellular carcinoma (HCC) is characterized by its unfavorable prognosis and resistance to conventional chemotherapy and radiotherapy. Drug repositioning, an approach aimed at identifying novel therapeutic applications for existing drugs, presents a cost-effective strategy for developing new anticancer agents. We explored the anticancer properties of Ezetimibe, a widely used oral lipid-lowering drug, in the context of HCC. Our findings demonstrate that Ezetimibe effectively suppresses HCC cell proliferation through paraptosis, an apoptotic-independent cell death pathway. The examination of HCC cells lines treated with Ezetimibe using light microscopy and transmission electron microscopy (TEM) showed cytoplasmic vacuolation in the perinuclear region. Notably, the nuclear membrane remained intact in both Ezetimibe-treated and untreated HCC cell lines. Probe staining assays confirmed that the cytoplasmic vacuoles originated from dilated endoplasmic reticulum (ER) compartments rather than mitochondria. Furthermore, a dose-dependent accumulation of reactive oxygen species (ROS) was observed in Ezetimibe-treated HCC cell lines. Co-treatment with the general antioxidant NAC attenuated vacuolation and improved cell viability in Ezetimibe-treated HCC cells. Moreover, Ezetimibe induced paraptosis through proteasome activity inhibition and initiation of the unfolded protein response (UPR) in HCC cell lines. In our in vivo experiment, Ezetimibe significantly impeded the growth of HCC tumors. Furthermore, when combined with Sorafenib, Ezetimibe exhibited a synergistic antitumor effect on HCC cell lines. Mechanistically, Ezetimibe induced paraptosis by targeting NPC1L1 to inhibit the PI3K/AKT/mTOR signaling pathway. In conclusion, our study highlights the potential of Ezetimibe as an anticancer agent by triggering paraptosis in HCC cells.

PMID:38275586 | DOI:10.3390/genes15010004

Categories: Literature Watch

Unlocking the Medicinal Mysteries: Preventing Lacunar Stroke with Drug Repurposing

Fri, 2024-01-26 06:00

Biomedicines. 2023 Dec 20;12(1):17. doi: 10.3390/biomedicines12010017.

ABSTRACT

Currently, only the general control of the risk factors is known to prevent lacunar cerebral infarction, but it is unknown which type of medication for controlling the risk factors has a causal relationship with reducing the risk of lacunar infarction. To unlock this medical mystery, drug-target Mendelian randomization analysis was applied to estimate the effect of common antihypertensive agents, hypolipidemic agents, and hypoglycemic agents on lacunar stroke. Lacunar stroke data for the transethnic analysis were derived from meta-analyses comprising 7338 cases and 254,798 controls. We have confirmed that genetic variants mimicking calcium channel blockers were found to most stably prevent lacunar stroke. The genetic variants at or near HMGCR, NPC1L1, and APOC3 were predicted to decrease lacunar stroke incidence in drug-target MR analysis. These variants mimic the effects of statins, ezetimibe, and antisense anti-apoC3 agents, respectively. Genetically proxied GLP1R agonism had a marginal effect on lacunar stroke, while a genetically proxied improvement in overall glycemic control was associated with reduced lacunar stroke risk. Here, we show that certain categories of drugs currently used in clinical practice can more effectively reduce the risk of stroke. Repurposing several drugs with well-established safety and low costs for lacunar stroke prevention should be given high priority when doctors are making decisions in clinical practice. This may contribute to healthier brain aging.

PMID:38275377 | DOI:10.3390/biomedicines12010017

Categories: Literature Watch

Disulfiram: A novel repurposed drug for cancer therapy

Fri, 2024-01-26 06:00

Chin Med J (Engl). 2024 Jan 26. doi: 10.1097/CM9.0000000000002909. Online ahead of print.

ABSTRACT

Cancer is a major global health issue. Effective therapeutic strategies can prolong patients' survival and reduce the costs of treatment. Drug repurposing, which identifies new therapeutic uses for approved drugs, is a promising approach with the advantages of reducing research costs, shortening development time, and increasing efficiency and safety. Disulfiram (DSF), an Food and Drug Administration (FDA)-approved drug used to treat chronic alcoholism, has a great potential as an anticancer drug by targeting diverse human malignancies. Several studies show the antitumor effects of DSF, particularly the combination of DSF and copper (DSF/Cu), on a wide range of cancers such as glioblastoma (GBM), breast cancer, liver cancer, pancreatic cancer, and melanoma. In this review, we summarize the antitumor mechanisms of DSF/Cu, including induction of intracellular reactive oxygen species (ROS) and various cell death signaling pathways, and inhibition of proteasome activity, as well as inhibition of nuclear factor-kappa B (NF-κB) signaling. Furthermore, we highlight the ability of DSF/Cu to target cancer stem cells (CSCs), which provides a new approach to prevent tumor recurrence and metastasis. Strikingly, DSF/Cu inhibits several molecular targets associated with drug resistance, and therefore it is becoming a novel option to increase the sensitivity of chemo-resistant and radio-resistant patients. Studies of DSF/Cu may shed light on its improved application to clinical tumor treatment.

PMID:38275022 | DOI:10.1097/CM9.0000000000002909

Categories: Literature Watch

Exploring gene-drug interactions for personalized treatment of post-traumatic stress disorder

Fri, 2024-01-26 06:00

Front Comput Neurosci. 2024 Jan 11;17:1307523. doi: 10.3389/fncom.2023.1307523. eCollection 2023.

ABSTRACT

INTRODUCTION: Post-Traumatic Stress Disorder (PTSD) is a mental disorder that can develop after experiencing traumatic events. The aim of this work is to explore the role of genes and genetic variations in the development and progression of PTSD.

METHODS: Through three methodological approaches, 122 genes and 184 Single Nucleotide Polymorphisms (SNPs) associated with PTSD were compiled into a single gene repository for PTSD. Using PharmGKB and DrugTargetor, 323 drug candidates were identified to target these 122 genes. The top 17 drug candidates were selected based on the statistical significance of the genetic associations, and their promiscuity (number of associated genestargets) and were further assessed for their suitability in terms of bioavailability and drug-like characteristics. Through functional analysis, insights were gained into the biological processes, cellular components, and molecular functions involved in PTSD. This formed the foundation for the next aspect of this study which was to propose an efficient treatment for PTSD by exploring drug repurposing methods.

RESULTS: The main aim was to identify the drugs with the most favorable profile that can be used as a pharmacological approach for PTSD treatment. More in particular, according to the genetic variations present in each individual, the relevant biological pathway can be identified, and the drug candidate proposed will specifically target said pathway, accounting for the personalized aspect of this work. The results showed that the drugs used as off-label treatment for PTSD have favorable pharmacokinetic profiles and the potential drug candidates that arose from DrugTargetor were not very promising. Clozapine showed a promising pharmacokinetic profile and has been linked with decreased psychiatric symptoms. Ambrucin also showed a promising pharmacokinetic profile but has been mostly linked with cancer treatment.

PMID:38274128 | PMC:PMC10808814 | DOI:10.3389/fncom.2023.1307523

Categories: Literature Watch

Computational analysis of RNA methyltransferase Rv3366 as a potential drug target for combating drug-resistant <em>Mycobacterium tuberculosis</em>

Fri, 2024-01-26 06:00

Front Mol Biosci. 2024 Jan 11;10:1348337. doi: 10.3389/fmolb.2023.1348337. eCollection 2023.

ABSTRACT

Mycobacterium tuberculosis (M.tb) remains a formidable global health threat. The increasing drug resistance among M.tb clinical isolates is exacerbating the current tuberculosis (TB) burden. In this study we focused on identifying novel repurposed drugs that could be further investigated as potential anti-TB drugs. We utilized M.tb RNA methyltransferase Rv3366 (spoU) as a potential drug target due to its imperative activity in RNA modification and no structural homology with human proteins. Using computational modeling approaches the structure of Rv3366 was determined followed by high throughput virtual screening of Food and Drug Administration (FDA) approved drugs to screen potential binders of Rv3366. Molecular dynamics (MD) simulations were performed to assess the drug-protein binding interactions, complex stability and rigidity. Through this multi-step structure-based drug repurposing workflow two promising inhibitors of Rv3366 were identified, namely, Levodopa and Droxidopa. This study highlights the significance of targeting M.tb RNA methyltransferases to combat drug-resistant M.tb. and proposes Levodopa and Droxidopa as promising inhibitors of Rv3366 for future pre-clinical investigations.

PMID:38274093 | PMC:PMC10808684 | DOI:10.3389/fmolb.2023.1348337

Categories: Literature Watch

Antifungal activity of the repurposed drug disulfiram against <em>Cryptococcus neoformans</em>

Fri, 2024-01-26 06:00

Front Pharmacol. 2024 Jan 11;14:1268649. doi: 10.3389/fphar.2023.1268649. eCollection 2023.

ABSTRACT

Fungal infections have become clinically challenging owing to the emergence of drug resistance in invasive fungi and the rapid increase in the number of novel pathogens. The development of drug resistance further restricts the use of antifungal agents. Therefore, there is an urgent need to identify alternative treatments for Cryptococcus neoformans (C. neoformans). Disulfiram (DSF) has a good human safety profile and promising applications as an antiviral, antifungal, antiparasitic, and anticancer agent. However, the effect of DSF on Cryptococcus is yet to be thoroughly investigated. This study investigated the antifungal effects and the mechanism of action of DSF against C. neoformans to provide a new theoretical foundation for the treatment of Cryptococcal infections. In vitro studies demonstrated that DSF inhibited Cryptococcus growth at minimum inhibitory concentrations (MICs) ranging from 1.0 to 8.0 μg/mL. Combined antifungal effects have been observed for DSF with 5-fluorocytosine, amphotericin B, terbinafine, or ketoconazole. DSF exerts significant protective effects and synergistic effects combined with 5-FU for Galleria mellonella infected with C. neoformans. Mechanistic investigations showed that DSF dose-dependently inhibited melanin, urease, acetaldehyde dehydrogenase, capsule and biofilm viability of C. neoformans. Further studies indicated that DSF affected C. neoformans by interfering with multiple biological pathways, including replication, metabolism, membrane transport, and biological enzyme activity. Potentially essential targets of these pathways include acetaldehyde dehydrogenase, catalase, ATP-binding cassette transporter (ABC transporter), and iron-sulfur cluster transporter. These findings provide novel insights into the application of DSF and contribute to the understanding of its mechanisms of action in C. neoformans.

PMID:38273827 | PMC:PMC10808519 | DOI:10.3389/fphar.2023.1268649

Categories: Literature Watch

Drug repurposing platform for deciphering the druggable SARS-CoV-2 interactome

Thu, 2024-01-25 06:00

Antiviral Res. 2024 Jan 23:105813. doi: 10.1016/j.antiviral.2024.105813. Online ahead of print.

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has heavily challenged the global healthcare system. Despite the vaccination programs, the new virus variants are circulating. Further research is required for understanding of the biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and for discovery of therapeutic agents against the virus. Here, we took advantage of drug repurposing to identify if existing drugs could inhibit SARS-CoV-2 infection. We established an open high-throughput platform for in vitro screening of drugs against SARS-CoV-2 infection. We screened ∼1000 drugs for their ability to inhibit SARS-CoV-2-induced cell death in the African green monkey kidney cell line (Vero-E6), analyzed how the hit compounds affect the viral N (nucleocapsid) protein expression in human cell lines using high-content microscopic imaging and analysis, determined the hit drug targets in silico, and assessed their ability to cause phospholipidosis, which can interfere with the viral replication. Duvelisib was found by in silico interaction assay as a potential drug targeting virus-host protein interactions. The predicted interaction between PARP1 and S protein, affected by Duvelisib, was further validated by immunoprecipitation. Our results represent a rapidly applicable platform for drug repurposing and evaluation of the new emerging viruses' responses to the drugs. Further in silico studies help us to discover the druggable host pathways involved in the infectious cycle of SARS-CoV-2.

PMID:38272320 | DOI:10.1016/j.antiviral.2024.105813

Categories: Literature Watch

Pages