Drug Repositioning
Ivermectin and curcumin cause plasma membrane rigidity in Leishmania amazonensis due to oxidative stress
Biochim Biophys Acta Biomembr. 2022 May 30:183977. doi: 10.1016/j.bbamem.2022.183977. Online ahead of print.
ABSTRACT
Spin label electron paramagnetic resonance (EPR) spectroscopy was used to study the mechanisms of action of ivermectin and curcumin against Leishmania (L.) amazonensis promastigotes. EPR spectra showed that treatment of the parasites with both compounds results in plasma membrane rigidity due to oxidative processes. With the IC50 and EPR measurements for assays using different parasite concentrations, estimations could be made for the membrane-water partition coefficient (KM/W), and the concentration of the compound in the membrane (cm50) and in the aqueous phase (cw50), which inhibits cell growth by 50%. The KM/W values indicated that ivermectin has a greater affinity than curcumin for the parasite membrane. Therefore, the activity of ivermectin was higher for experiments with low cell concentrations, but for concentrations greater than 1.5 × 108 parasites/mL the compounds did not show significantly different results. The cm50 values indicated that the concentration of compound in the membrane leading to growth inhibition or membrane alteration is approximately 1 M for both ivermectin and curcumin. This high membrane concentration suggests that many ivermectin molecules per chlorine channel are needed to cause an increase in chlorine ion influx.
PMID:35654148 | DOI:10.1016/j.bbamem.2022.183977
An in vivo drug repurposing screen and transcriptional analyses reveals the serotonin pathway and GSK3 as major therapeutic targets for NGLY1 deficiency
PLoS Genet. 2022 Jun 2;18(6):e1010228. doi: 10.1371/journal.pgen.1010228. eCollection 2022 Jun.
ABSTRACT
NGLY1 deficiency, a rare disease with no effective treatment, is caused by autosomal recessive, loss-of-function mutations in the N-glycanase 1 (NGLY1) gene and is characterized by global developmental delay, hypotonia, alacrima, and seizures. We used a Drosophila model of NGLY1 deficiency to conduct an in vivo, unbiased, small molecule, repurposing screen of FDA-approved drugs to identify therapeutic compounds. Seventeen molecules partially rescued lethality in a patient-specific NGLY1 deficiency model, including multiple serotonin and dopamine modulators. Exclusive dNGLY1 expression in serotonin and dopamine neurons, in an otherwise dNGLY1 deficient fly, was sufficient to partially rescue lethality. Further, genetic modifier and transcriptomic data supports the importance of serotonin signaling in NGLY1 deficiency. Connectivity Map analysis identified glycogen synthase kinase 3 (GSK3) inhibition as a potential therapeutic mechanism for NGLY1 deficiency, which we experimentally validated with TWS119, lithium, and GSK3 knockdown. Strikingly, GSK3 inhibitors and a serotonin modulator rescued size defects in dNGLY1 deficient larvae upon proteasome inhibition, suggesting that these compounds act through NRF1, a transcription factor that is regulated by NGLY1 and regulates proteasome expression. This study reveals the importance of the serotonin pathway in NGLY1 deficiency, and serotonin modulators or GSK3 inhibitors may be effective therapeutics for this rare disease.
PMID:35653343 | DOI:10.1371/journal.pgen.1010228
The diaryl-imidazopyridazine anti-plasmodial compound, MMV652103, exhibits anti-breast cancer activity
EXCLI J. 2022 Apr 4;21:656-679. doi: 10.17179/excli2021-4323. eCollection 2022.
ABSTRACT
Breast cancer is the most common malignancy in women worldwide and it remains a global health burden, in part, due to poor response and tolerance to current therapeutics. Drug repurposing, which seeks to identify new indications for existing and investigational drugs, has become an exciting strategy to address these challenges. Here we describe the anti-breast cancer activity of a diaryl-imidazopyridazine compound, MMV652103, which was previously identified for its anti-plasmodial activity. We demonstrate that MMV652103 potently inhibits the oncogenic PI4KB and PIK3C2G lipid kinases, is selectively cytotoxic to MCF7 and T47D estrogen receptor positive breast cancer cells and inhibits their ability to survive and migrate. The underlying mechanisms involved included the induction of reactive oxygen species and activation of the DNA damage and p38 MAPK stress signaling pathways. This was associated with a G1 cell cycle arrest and an increase in levels of the cyclin-dependent kinase inhibitor p21 and activation of apoptotic and autophagic cell death pathways. Lastly, MMV652103 significantly reduced the weight and metastases of MCF7 induced tumors in an in vivo chick embryo model and displayed a favorable safety profile. These findings position MMV652103 as a promising chemotherapeutic in the treatment of oestrogen receptor positive breast cancers.
PMID:35651652 | PMC:PMC9149975 | DOI:10.17179/excli2021-4323
Protocol paper: a multi-center, double-blinded, randomized, 6-month, placebo-controlled study followed by 12-month open label extension to evaluate the safety and efficacy of Saracatinib in Fibrodysplasia Ossificans Progressiva (STOPFOP)
BMC Musculoskelet Disord. 2022 Jun 1;23(1):519. doi: 10.1186/s12891-022-05471-x.
ABSTRACT
BACKGROUND: Fibrodysplasia Ossificans Progressiva (FOP) is a genetic, progressive and devastating disease characterized by severe heterotopic ossification (HO), loss of mobility and early death. There are no FDA approved medications. The STOPFOP team identified AZD0530 (saracatinib) as a potent inhibitor of the ALK2/ACVR1-kinase which is the causative gene for this rare bone disease. AZD0530 was proven to prevent HO formation in FOP mouse models. The STOPFOP trial investigates the repositioning of AZD0530, originally developed for ovarian cancer treatment, to treat patients with FOP.
METHODS: The STOPFOP trial is a phase 2a study. It is designed as a European, multicentre, 6-month double blind randomized controlled trial of AZD0530 versus placebo, followed by a 12-month trial comparing open-label extended AZD0530 treatment with natural history data as a control. Enrollment will include 20 FOP patients, aged 18-65 years, with the classic FOP mutation (ALK2 R206H). The primary endpoint is objective change in heterotopic bone volume measured by low-dose whole-body computer tomography (CT) in the RCT phase. Secondary endpoints include 18F NaF PET activity and patient reported outcome measures.
DISCUSSION: Clinical trials in rare diseases with limited study populations pose unique challenges. An ideal solution for limiting risks in early clinical studies is drug repositioning - using existing clinical molecules for new disease indications. Using existing assets may also allow a more fluid transition into clinical practice. With positive study outcome, AZD0530 may provide a therapy for FOP that can be rapidly progressed due to the availability of existing safety data from 28 registered clinical trials with AZD0530 involving over 600 patients.
TRIAL REGISTRATION: EudraCT, 2019-003324-20. Registered 16 October 2019, https://www.clinicaltrialsregister.eu/ctr-search/trial/2019-003324-20/NL .
CLINICALTRIALS: gov , NCT04307953 . Registered 13 March 2020.
PMID:35650602 | DOI:10.1186/s12891-022-05471-x
BETA: a comprehensive benchmark for computational drug-target prediction
Brief Bioinform. 2022 Jun 2:bbac199. doi: 10.1093/bib/bbac199. Online ahead of print.
ABSTRACT
Internal validation is the most popular evaluation strategy used for drug-target predictive models. The simple random shuffling in the cross-validation, however, is not always ideal to handle large, diverse and copious datasets as it could potentially introduce bias. Hence, these predictive models cannot be comprehensively evaluated to provide insight into their general performance on a variety of use-cases (e.g. permutations of different levels of connectiveness and categories in drug and target space, as well as validations based on different data sources). In this work, we introduce a benchmark, BETA, that aims to address this gap by (i) providing an extensive multipartite network consisting of 0.97 million biomedical concepts and 8.5 million associations, in addition to 62 million drug-drug and protein-protein similarities and (ii) presenting evaluation strategies that reflect seven cases (i.e. general, screening with different connectivity, target and drug screening based on categories, searching for specific drugs and targets and drug repurposing for specific diseases), a total of seven Tests (consisting of 344 Tasks in total) across multiple sampling and validation strategies. Six state-of-the-art methods covering two broad input data types (chemical structure- and gene sequence-based and network-based) were tested across all the developed Tasks. The best-worst performing cases have been analyzed to demonstrate the ability of the proposed benchmark to identify limitations of the tested methods for running over the benchmark tasks. The results highlight BETA as a benchmark in the selection of computational strategies for drug repurposing and target discovery.
PMID:35649342 | DOI:10.1093/bib/bbac199
Suite of TMPRSS2 Assays for Screening Drug Repurposing Candidates as Potential Treatments of COVID-19
ACS Infect Dis. 2022 Jun 1. doi: 10.1021/acsinfecdis.2c00172. Online ahead of print.
ABSTRACT
SARS-CoV-2 is the causative viral pathogen driving the COVID-19 pandemic that prompted an immediate global response to the development of vaccines and antiviral therapeutics. For antiviral therapeutics, drug repurposing allows for rapid movement of the existing clinical candidates and therapies into human clinical trials to be tested as COVID-19 therapies. One effective antiviral treatment strategy used early in symptom onset is to prevent viral entry. SARS-CoV-2 enters ACE2-expressing cells when the receptor-binding domain of the spike protein on the surface of SARS-CoV-2 binds to ACE2 followed by cleavage at two cut sites by TMPRSS2. Therefore, a molecule capable of inhibiting the protease activity of TMPRSS2 could be a valuable antiviral therapy. Initially, we used a fluorogenic high-throughput screening assay for the biochemical screening of 6030 compounds in NCATS annotated libraries. Then, we developed an orthogonal biochemical assay that uses mass spectrometry detection of product formation to ensure that hits from the primary screen are not assay artifacts from the fluorescent detection of product formation. Finally, we assessed the hits from the biochemical screening in a cell-based SARS-CoV-2 pseudotyped particle entry assay. Of the six molecules advanced for further studies, two are approved drugs in Japan (camostat and nafamostat), two have entered clinical trials (PCI-27483 and otamixaban), while the other two molecules are peptidomimetic inhibitors of TMPRSS2 taken from the literature that have not advanced into clinical trials (compounds 92 and 114). This work demonstrates a suite of assays for the discovery and development of new inhibitors of TMPRSS2.
PMID:35648838 | DOI:10.1021/acsinfecdis.2c00172
Targeting the Essential Transcription Factor HP1043 of <em>Helicobacter pylori</em>: A Drug Repositioning Study
Front Mol Biosci. 2022 May 11;9:887564. doi: 10.3389/fmolb.2022.887564. eCollection 2022.
ABSTRACT
Antibiotic-resistant bacterial pathogens are a very challenging problem nowadays. Helicobacter pylori is one of the most widespread and successful human pathogens since it colonizes half of the world population causing chronic and atrophic gastritis, peptic ulcer, mucosa-associated lymphoid tissue-lymphoma, and even gastric adenocarcinoma. Moreover, it displays resistance to numerous antibiotics. One of the H. pylori pivotal transcription factors, HP1043, plays a fundamental role in regulating essential cellular processes. Like other bacterial transcription factors, HP1043 does not display a eukaryote homolog. These characteristics make HP1043 a promising candidate to develop novel antibacterial strategies. Drug repositioning is a relatively recent strategy employed in drug development; testing approved drugs on new targets considerably reduces the time and cost of this process. The combined computational and in vitro approach further reduces the number of compounds to be tested in vivo. Our aim was to identify a subset of known drugs able to prevent HP1043 binding to DNA promoters. This result was reached through evaluation by molecular docking the binding capacity of about 14,350 molecules on the HP1043 dimer in both conformations, bound and unbound to the DNA. Employing an ad hoc pipeline including MMGBSA molecular dynamics, a selection of seven drugs was obtained. These were tested in vitro by electrophoretic mobility shift assay to evaluate the HP1043-DNA interaction. Among these, three returned promising results showing an appreciable reduction of the DNA-binding activity of HP1043. Overall, we applied a computational methodology coupled with experimental validation of the results to screen a large number of known drugs on one of the H. pylori essential transcription factors. This methodology allowed a rapid reduction of the number of drugs to be tested, and the drug repositioning approach considerably reduced the drug design costs. Identified drugs do not belong to the same pharmaceutical category and, by computational analysis, bound different cavities, but all display a reduction of HP1043 binding activity on the DNA.
PMID:35647033 | PMC:PMC9135449 | DOI:10.3389/fmolb.2022.887564
Identification of anthelmintic parbendazole as a therapeutic molecule for HNSCC through connectivity map-based drug repositioning
Acta Pharm Sin B. 2022 May;12(5):2429-2442. doi: 10.1016/j.apsb.2021.12.005. Epub 2021 Dec 20.
ABSTRACT
Head and neck squamous cell carcinoma (HNSCC) is one of the most common human cancers; however, its outcome of pharmacotherapy is always very limited. Herein, we performed a batch query in the connectivity map (cMap) based on bioinformatics, queried out 35 compounds with therapeutic potential, and screened out parbendazole as a most promising compound, which had an excellent inhibitory effect on the proliferation of HNSCC cell lines. In addition, tubulin was identified as a primary target of parbendazole, and the direct binding between them was further verified. Parbendazole was further proved as an effective tubulin polymerization inhibitor, which can block the cell cycle, cause apoptosis and prevent cell migration, and it exhibited reasonable therapeutic effect and low toxicity in the in vivo and in vitro anti-tumor evaluation. Our study repositioned an anthelmintic parbendazole to treat HNSCC, which revealed a therapeutic utility and provided a new treatment option for human cancers.
PMID:35646536 | PMC:PMC9136614 | DOI:10.1016/j.apsb.2021.12.005
Computational drug repositioning using similarity constrained weight regularization matrix factorization: A case of COVID-19
J Cell Mol Med. 2022 May 29. doi: 10.1111/jcmm.17412. Online ahead of print.
ABSTRACT
Amid the COVID-19 crisis, we put sizeable efforts to collect a high number of experimentally validated drug-virus association entries from literature by text mining and built a human drug-virus association database. To the best of our knowledge, it is the largest publicly available drug-virus database so far. Next, we develop a novel weight regularization matrix factorization approach, termed WRMF, for in silico drug repurposing by integrating three networks: the known drug-virus association network, the drug-drug chemical structure similarity network, and the virus-virus genomic sequencing similarity network. Specifically, WRMF adds a weight to each training sample for reducing the influence of negative samples (i.e. the drug-virus association is unassociated). A comparison on the curated drug-virus database shows that WRMF performs better than a few state-of-the-art methods. In addition, we selected the other two different public datasets (i.e. Cdataset and HMDD V2.0) to assess WRMF's performance. The case study also demonstrated the accuracy and reliability of WRMF to infer potential drugs for the novel virus. In summary, we offer a useful tool including a novel drug-virus association database and a powerful method WRMF to repurpose potential drugs for new viruses.
PMID:35644992 | DOI:10.1111/jcmm.17412
High-throughput drug screening allowed identification of entry inhibitors specifically targeting different routes of SARS-CoV-2 Delta and Omicron/BA.1
Biomed Pharmacother. 2022 May 16;151:113104. doi: 10.1016/j.biopha.2022.113104. Online ahead of print.
ABSTRACT
The Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2) has continuously evolved, resulting in the emergence of several variants of concern (VOCs). To study mechanisms of viral entry and potentially identify specific inhibitors, we pseudotyped lentiviral vectors with different SARS-CoV-2 VOC spike variants (D614G, Alpha, Beta, Delta, Omicron/BA.1), responsible for receptor binding and membrane fusion. These SARS-CoV-2 lentiviral pseudoviruses were applied to screen 774 FDA-approved drugs. For the assay we decided to use CaCo2 cells, since they equally allow cell entry through both the direct membrane fusion pathway mediated by TMPRSS2 and the endocytosis pathway mediated by cathepsin-L. The active molecules which showed stronger differences in their potency to inhibit certain SARS-CoV-2 VOCs included antagonists of G-protein coupled receptors, like phenothiazine-derived antipsychotic compounds such as Chlorpromazine, with highest activity against the Omicron pseudovirus. In general, our data showed that the various VOCs differ in their preferences for cell entry, and we were able to identify synergistic combinations of inhibitors. Notably, Omicron singled out by relying primarily on the endocytosis pathway while Delta preferred cell entry via membrane fusion. In conclusion, our data provide new insights into different entry preferences of SARS-CoV-2 VOCs, which might help to identify new drug targets.
PMID:35643072 | DOI:10.1016/j.biopha.2022.113104
Can Drug Repurposing Accelerate Precision Oncology?
Cancer Discov. 2022 Jun 1:OF1-OF8. doi: 10.1158/2159-8290.CD-21-0612. Online ahead of print.
ABSTRACT
Ongoing new insights in the field of cancer diagnostics, genomic profiling, and cancer behavior have raised the demand for novel, personalized cancer treatments. As the development of new cancer drugs is a challenging, costly, and time-consuming endeavor, drug repurposing is regarded as an attractive alternative to potentially accelerate this. In this review, we describe strategies for drug repurposing of anticancer agents, translation of preclinical findings in novel trial designs, and associated challenges. Furthermore, we provide suggestions to further utilize the potential of drug repurposing within precision oncology, with a focus on combinatorial approaches.
SIGNIFICANCE: Oncologic drug development is a timely and costly endeavor, with only few compounds progressing to meaningful therapy options. Although repurposing of existing agents for novel, oncologic indications provides an opportunity to accelerate this process, it is not without challenges.
PMID:35642948 | DOI:10.1158/2159-8290.CD-21-0612
Drug repurposing against the RNA-dependent RNA polymerase domain of dengue serotype 3 by virtual screening and molecular dynamics simulations
J Biomol Struct Dyn. 2022 May 31:1-14. doi: 10.1080/07391102.2022.2080764. Online ahead of print.
ABSTRACT
Dengue is an arboviral disease caused by the dengue flavivirus. The NS5 protein of flaviviruses is a potential therapeutic target, and comprises an RNA-dependent RNA polymerase (RDRP) domain that catalyses viral replication. The aim of this study was to repurpose FDA-approved drugs against the RDRP domain of dengue virus serotype 3 (DENV3) using structure-based virtual screening and molecular dynamics (MD) simulations. The FDA-approved drugs were screened against the RDRP domain of DENV3 using a two-step docking-based screening approach with Glide SP and Glide XP. For comparison, four reported DENV3 RDRP inhibitors were docked as standards. The hitlist was screened based on the docking score of the inhibitor with the lowest docking score (PubChem ID: 118797902; reported IC50 value: 0.34 µM). Five hits with docking scores and Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) energy lower than those of 118797902 were selected. The stability of the hit-receptor complexes was investigated using 100 ns MD simulations in an explicit solvent. The results of MD simulations demonstrated that polydatin and betiatide remained stably bound to the receptor, and formed stable interactions with the RDRP domain of DENV3. The hit-receptor interactions were comparable to those of 118797902. The average Prime MM-GBSA energy of polydatin and betiatide was lower than that of 118797902 during simulation, indicating that their binding affinity to DENV3 RDRP was higher than that of the standard. The results of this study may aid in the development of serotype-selective drugs against dengue in the future.Communicated by Ramaswamy H. Sarma.
PMID:35642087 | DOI:10.1080/07391102.2022.2080764
Drug repurposing for the treatment of COVID-19
J Pharmacol Sci. 2022 Jul;149(3):108-114. doi: 10.1016/j.jphs.2022.04.007. Epub 2022 Apr 25.
ABSTRACT
Coronavirus disease 2019 (COVID-19) remains prevalent worldwide since its onset was confirmed in Wuhan, China in 2019. Vaccines against the causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have shown a preventive effect against the onset and severity of COVID-19, and social and economic activities are gradually recovering. However, the presence of vaccine-resistant variants has been reported, and the development of therapeutic agents for patients with severe COVID-19 and related sequelae remains urgent. Drug repurposing, also called drug repositioning or eco-pharma, is the strategy of using previously approved and safe drugs for a therapeutic indication that is different from their original indication. The risk of severe COVID-19 and mortality increases with advancing age, cardiovascular disease, hypertension, diabetes, and cancer. We have reported three protein-protein interactions that are related to heart failure, and recently identified that one mechanism increases the risk of SARS-CoV-2 infection in mammalian cells. This review outlines the global efforts and outcomes of drug repurposing research for the treatment of severe COVID-19. It also discusses our recent finding of a new protein-protein interaction that is common to COVID-19 aggravation and heart failure.
PMID:35641023 | DOI:10.1016/j.jphs.2022.04.007
Identifying candidate genes and drug targets for Alzheimer's disease by an integrative network approach using genetic and brain region-specific proteomic data
Hum Mol Genet. 2022 May 28:ddac124. doi: 10.1093/hmg/ddac124. Online ahead of print.
ABSTRACT
Genome-wide association studies (GWAS) have identified more than 75 genetic variants associated with Alzheimer's disease (ad). However, how these variants function and impact protein expression in brain regions remains elusive. Large-scale proteomic datasets of ad postmortem brain tissues have become available recently. In this study, we used these datasets to investigate brain region-specific molecular pathways underlying ad pathogenesis and explore their potential drug targets. We applied our new network-based tool, Edge-Weighted Dense Module Search of GWAS (EW_dmGWAS), to integrate ad GWAS statistics of 472 868 individuals with proteomic profiles from two brain regions from two large-scale ad cohorts [parahippocampal gyrus (PHG), sample size n = 190; dorsolateral prefrontal cortex (DLPFC), n = 192]. The resulting network modules were evaluated using a scale-free network index, followed by a cross-region consistency evaluation. Our EW_dmGWAS analyses prioritized 52 top module genes (TMGs) specific in PHG and 58 TMGs in DLPFC, of which four genes (CLU, PICALM, PRRC2A, NDUFS3) overlapped. Those four genes were significantly associated with ad (GWAS gene-level false discovery rate < 0.05). To explore the impact of these genetic components on TMGs, we further examined their differentially co-expressed genes at the proteomic level and compared them with investigational drug targets. We pinpointed three potential drug target genes, APP, SNCA, and VCAM1, specifically in PHG. Gene set enrichment analyses of TMGs in PHG and DLPFC revealed region-specific biological processes, tissue-cell type signatures, and enriched drug signatures, suggesting potential region-specific drug repurposing targets for ad.
PMID:35640139 | DOI:10.1093/hmg/ddac124
Machine-Learning-Based Virtual Screening to Repurpose Drugs for Treatment of Candida albicans Infection
Mycoses. 2022 May 31. doi: 10.1111/myc.13475. Online ahead of print.
ABSTRACT
BACKGROUND: Approximately 30% of Candida genus isolates are resistant to all currently available antifungal drugs and it is highly important to develop new treatments. Additionally, many current drugs are toxic and cause unwanted side effects. 1,3-beta-glucan synthase is an essential enzyme that builds the cell walls of Candida.
OBJECTIVES: Targeting CaFKS1, a subunit of the synthase, could be used to fight Candida.
METHODS: In the present study, a machine-learning model based on chemical descriptors was trained to recognize drugs that inhibit CaFKS1. The model attained 96.72% accuracy for classifying between active and inactive drug compounds. Descriptors for FDA-approved and other drugs were calculated and the model was used to predict the potential activity of these drugs against CaFKS1.
RESULTS: Several drugs, including goserelin and icatibant, were detected as active with high confidence. Many of the drugs, interestingly, were gonadotrophin-releasing hormone (GnRH) antagonists or agonists. A literature search found that five of the predicted drugs inhibit Candida experimentally.
CONCLUSIONS: This study yields promising drugs to be repurposed to combat Candida albicans infection. Future steps include testing the drugs on fungal cells in vitro.
PMID:35639510 | DOI:10.1111/myc.13475
Amentoflavone derivatives significantly act towards the main protease (3CL<sup>PRO</sup>/M<sup>PRO</sup>) of SARS-CoV-2: in silico admet profiling, molecular docking, molecular dynamics simulation, network pharmacology
Mol Divers. 2022 May 31. doi: 10.1007/s11030-022-10459-9. Online ahead of print.
ABSTRACT
SARS-CoV-2 is the foremost culprit of the novel coronavirus disease 2019 (nCoV-19 and/or simply COVID-19) and poses a threat to the continued life of humans on the planet and create pandemic issue globally. The 3-chymotrypsin-like protease (MPRO or 3CLPRO) is the crucial protease enzyme of SARS-CoV-2, which directly involves the processing and release of translated non-structural proteins (nsps), and therefore involves the development of virus pathogenesis along with outbreak the forecasting of COVID-19 symptoms. Moreover, SARS-CoV-2 infections can be inhibited by plant-derived chemicals like amentoflavone derivatives, which could be used to develop an anti-COVID-19 drug. Our research study is designed to conduct an in silico analysis on derivatives of amentoflavone (isoginkgetin, putraflavone, 4''''''-methylamentoflavone, bilobetin, ginkgetin, sotetsuflavone, sequoiaflavone, heveaflavone, kayaflavone, and sciadopitysin) for targeting the non-structural protein of SARS-CoV-2, and subsequently further validate to confirm their antiviral ability. To conduct all the in silico experiments with the derivatives of amentoflavone against the MPRO protein, both computerized tools and online servers were applied; notably the software used is UCSF Chimera (version 1.14), PyRx, PyMoL, BIOVIA Discovery Studio tool (version 4.5), YASARA (dynamics simulator), and Cytoscape. Besides, as part of the online tools, the SwissDME and pKCSM were employed. The research study was proposed to implement molecular docking investigations utilizing compounds that were found to be effective against the viral primary protease (MPRO). MPRO protein interacted strongly with 10 amentoflavone derivatives. Every time, amentoflavone compounds outperformed the FDA-approved antiviral medicine that is currently underused in COVID-19 in terms of binding affinity (- 8.9, - 9.4, - 9.7, - 9.1, - 9.3, - 9.0, - 9.7, - 9.3, - 8.8, and - 9.0 kcal/mol, respectively). The best-selected derivatives of amentoflavone also possessed potential results in 100 ns molecular dynamic simulation (MDS) validation. It is conceivable that based on our in silico research these selected amentoflavone derivatives more precisely 4''''''-methylamentoflavone, ginkgetin, and sequoiaflavone have potential for serving as promising lead drugs against SARS-CoV-2 infection. In consequence, it is recommended that additional in vitro as well as in vivo research studies have to be conducted to support the conclusions of this current research study.
PMID:35639226 | DOI:10.1007/s11030-022-10459-9
An updated patent review on monoamine oxidase (MAO) inhibitors
Expert Opin Ther Pat. 2022 May 31. doi: 10.1080/13543776.2022.2083501. Online ahead of print.
ABSTRACT
INTRODUCTION: : Monoamine oxidase (MAO) inhibitors are currently used as antidepressants (selective MAO-A inhibitors) or as co-adjuvants for neurodegenerative diseases (selective MAO-B inhibitors). The research within this field is attracting attention due to their crucial role in the modulation of brain functions, mood and cognitive activity, and monoamine catabolism.
AREAS COVERED: MAO inhibitors (2018-2021) are discussed according to their chemotypes. Structure-activity relationships are derived for each chemical scaffold (propargylamines, chalcones, indoles, benzimidazoles, (iso)coumarins, (iso)benzofurans, xanthones, and tetralones), while the chemical entities were divided into newly synthesized molecules and natural metabolites. The mechanism of action and type of inhibition are also considered. Lastly, new therapeutic applications are reported, which demonstrates the clinical potential of these inhibitors as well as the possibility of repurposing existing drugs for a variety of diseases.
EXPERT OPINION: MAO inhibitors here reported exhibit different potencies (from the micro- to nanomolar range) and isoform selectivity. These compounds are clinically licensed for multi-faceted neurodegenerative pathologies due to their ability to also act against other relevant targets (cholinesterases, inflammation, and oxidative stress). Moreover, the drug repurposing approach is an attractive strategy by which MAO inhibitors may be applied for the treatment of prostate cancer, inflammation, vertigo, and type 1 diabetes.
PMID:35638744 | DOI:10.1080/13543776.2022.2083501
Dual roles of drug or its metabolite-protein conjugate: Cutting-edge strategy of drug discovery using shotgun proteomics
Med Res Rev. 2022 May 31. doi: 10.1002/med.21889. Online ahead of print.
ABSTRACT
Many drugs can bind directly to proteins or be bioactivated by metabolizing enzymes to form reactive metabolites (RMs) that rapidly bind to proteins to form drug-protein conjugates or metabolite-protein conjugates (DMPCs). The close relationship between DMPCs and idiosyncratic adverse drug reactions (IADRs) has been recognized; drug discovery teams tend to avoid covalent interactions in drug discovery projects. Covalent interactions in DMPCs can provide high potency and long action duration and conquer the intractable targets, inspiring drug design, and development. This forms the dual role feature of DMPCs. Understanding the functional implications of DMPCs in IADR control and therapeutic applications requires precise identification of these conjugates from complex biological samples. While classical biochemical methods have contributed significantly to DMPC detection in the past decades, the low abundance and low coverage of DMPCs have become a bottleneck in this field. An emerging transformation toward shotgun proteomics is on the rise. The evolving shotgun proteomics techniques offer improved reproducibility, throughput, specificity, operability, and standardization. Here, we review recent progress in the systematic discovery of DMPCs using shotgun proteomics. Furthermore, the applications of shotgun proteomics supporting drug development, toxicity mechanism investigation, and drug repurposing processes are also reviewed and prospected.
PMID:35638460 | DOI:10.1002/med.21889
Disulfiram bolsters T-cell anti-tumor immunity through direct activation of LCK-mediated TCR signaling
EMBO J. 2022 May 31:e110636. doi: 10.15252/embj.2022110636. Online ahead of print.
ABSTRACT
Activation of the T-cell antigen receptor (TCR)-CD3 complex is critical to induce the anti-tumor response of CD8+ T cells. Here, we found that disulfiram (DSF), an FDA-approved drug previously used to treat alcohol dependency, directly activates TCR signaling. Mechanistically, DSF covalently binds to Cys20/Cys23 residues of lymphocyte-specific protein tyrosine kinase (LCK) and enhances its tyrosine 394 phosphorylation, thereby promoting LCK kinase activity and boosting effector T cell function, interleukin-2 production, metabolic reprogramming, and proliferation. Furthermore, our in vivo data revealed that DSF promotes anti-tumor immunity against both melanoma and colon cancer in mice by activating CD8+ T cells, and this effect was enhanced by anti-PD-1 co-treatment. We conclude that DSF directly activates LCK-mediated TCR signaling to induce strong anti-tumor immunity, providing novel molecular insights into the therapeutic effect of DSF on cancer.
PMID:35638332 | DOI:10.15252/embj.2022110636
Identification of potential inhibitors against FemX of Staphylococcus aureus: A hierarchial in-silico drug repurposing approach
J Mol Graph Model. 2022 May 20;115:108215. doi: 10.1016/j.jmgm.2022.108215. Online ahead of print.
ABSTRACT
Staphylococcus aureus causes a wide range of common diseases in both community-acquired and hospital-acquired environments. The treatment becomes challenging due to the emergence of multi-drug resistant strains such as Methicillin-Resistant Staphylococcus aureus (MRSA). This study aims to find some drugs that can be used in repurposing. Virtual screening has been performed against S. aureus FemX using 1,918 FDA-approved drugs, which provides the top 10 drugs with good binding affinity. These drugs are re-docked to understand their interaction patterns with FemX. Docking study shows a high score for three drugs, Lumacaftor, Dihydroergocornine and Olaparib, and they are selected for molecular dynamics and quantum mechanical analysis. Molecular dynamics calculation shows that drug-FemX forms a stable structure compared to apo-FemX. Besides, the free energy landscape reveals that drug-protein complexes possess a single global minimum indicating their thermodynamic stability. MM/GBSA calculations show that Lumacaftor, Dihydroergocornine and Olaparib have the binding free energy of -30.03, -19.22 and -16.54 kcal/mol, respectively. The analysis of the wavefunctions from quantum chemical calculations reveals the presence of non-covalent interactions between drug and receptor, dominated by aromatic π-π interactions. The drug-receptor interaction energy estimated from quantum mechanical methods suggests an important role of dispersion interactions in stabilizing the drug molecules with FemX. The hierarchy of computational methods of increasing accuracy employed in this work finds Lumacaftor to be the most potent inhibitor against FemX.
PMID:35636337 | DOI:10.1016/j.jmgm.2022.108215