Drug Repositioning
Lung disease network reveals impact of comorbidity on SARS-CoV-2 infection and opportunities of drug repurposing
BMC Med Genomics. 2021 Sep 17;14(1):226. doi: 10.1186/s12920-021-01079-7.
ABSTRACT
BACKGROUND: Higher mortality of COVID-19 patients with lung disease is a formidable challenge for the health care system. Genetic association between COVID-19 and various lung disorders must be understood to comprehend the molecular basis of comorbidity and accelerate drug development.
METHODS: Lungs tissue-specific neighborhood network of human targets of SARS-CoV-2 was constructed. This network was integrated with lung diseases to build a disease-gene and disease-disease association network. Network-based toolset was used to identify the overlapping disease modules and drug targets. The functional protein modules were identified using community detection algorithms and biological processes, and pathway enrichment analysis.
RESULTS: In total, 141 lung diseases were linked to a neighborhood network of SARS-CoV-2 targets, and 59 lung diseases were found to be topologically overlapped with the COVID-19 module. Topological overlap with various lung disorders allows repurposing of drugs used for these disorders to hit the closely associated COVID-19 module. Further analysis showed that functional protein-protein interaction modules in the lungs, substantially hijacked by SARS-CoV-2, are connected to several lung disorders. FDA-approved targets in the hijacked protein modules were identified and that can be hit by exiting drugs to rescue these modules from virus possession.
CONCLUSION: Lung diseases are clustered with COVID-19 in the same network vicinity, indicating the potential threat for patients with respiratory diseases after SARS-CoV-2 infection. Pathobiological similarities between lung diseases and COVID-19 and clinical evidence suggest that shared molecular features are the probable reason for comorbidity. Network-based drug repurposing approaches can be applied to improve the clinical conditions of COVID-19 patients.
PMID:34535131 | PMC:PMC8447809 | DOI:10.1186/s12920-021-01079-7
Indomethacin-based PROTACs as pan-coronavirus antiviral agents
Eur J Med Chem. 2021 Sep 4;226:113814. doi: 10.1016/j.ejmech.2021.113814. Online ahead of print.
ABSTRACT
Indomethacin (INM), a well-known non-steroidal anti-inflammatory drug, has recently gained attention for its antiviral activity demonstrated in drug repurposing studies against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Although the mechanism of action of INM is not yet fully understood, recent studies have indicated that it acts at an early stage of the coronaviruses (CoVs) replication cycle. In addition, a proteomic study reported that the anti-SARS-CoV-2 activity of INM could be also ascribed to its ability to inhibit human prostaglandin E synthase type 2 (PGES-2), a host protein which interacts with the SARS-CoV-2 NSP7 protein. Although INM does not potently inhibit SARS-CoV-2 replication in infected Vero E6 cells, here we have explored for the first time the application of the Proteolysis Targeting Chimeras (PROTACs) technology in order to develop more potent INM-derived PROTACs with anti-CoV activity. In this study, we report the design, synthesis, and biological evaluation of a series of INM-based PROTACs endowed with antiviral activity against a panel of human CoVs, including different SARS-CoV-2 strains. Two PROTACs showed a strong improvement in antiviral potency compared to INM. Molecular modelling studies support human PGES-2 as a potential target of INM-based antiviral PROTACs, thus paving the way toward the development of host-directed anti-CoVs strategies. To the best of our knowledge, these PROTACs represent the first-in-class INM-based PROTACs with antiviral activity and also the first example of the application of PROTACs to develop pan-coronavirus agents.
PMID:34534839 | PMC:PMC8416298 | DOI:10.1016/j.ejmech.2021.113814
Antitumoral activity of liraglutide, a new DNMT inhibitor in breast cancer cells in vitro and in vivo
Chem Biol Interact. 2021 Sep 14:109641. doi: 10.1016/j.cbi.2021.109641. Online ahead of print.
ABSTRACT
Breast cancer (BC) is the most frequently diagnosed female cancer and second leading cause of death. Despite the discovery of many antineoplastic drugs for BC, the current therapy is not totally efficient. In this study, we investigated the potential of repurposing the well-known diabetes type II drug liraglutide to modulate epigenetic modifications in BC cells lines in vitro and in vivo via Ehrlich mice tumors models. The in vitro results revealed a significant reduction on cell viability, migration, DNMT activity and displayed lower levels of global DNA methylation in BC cell lines after liraglutide treatment. The interaction between liraglutide and the DNMT enzymes resulted in a decrease profile of DNA methylation for the CDH1, ESR1 and ADAM33 gene promoter regions and, consequently, increased their gene and protein expression levels. To elucidate the possible interaction between liraglutide and the DNMT1 protein, we performed an in silico study that indicates liraglutide binding in the catalytic cleft via hydrogen bonds and salt bridges with the interdomain contacts and disturbs the overall enzyme conformation. The in vivo study was also able to reveal that liraglutide and the combined treatment of liraglutide and paclitaxel or methotrexate were effective in reducing tumor growth. Moreover, the modulation of CDH1 and ADAM33 mouse gene expression by DNA demethylation suggests a role for liraglutide in DNMT activity in vivo. Altogether, these results indicate that liraglutide may be further analysed as a new adjuvant treatment for BC.
PMID:34534549 | DOI:10.1016/j.cbi.2021.109641
Integrative Network-Based Analysis Reveals Gene Networks and Novel Drug Repositioning Candidates for Alzheimer Disease
Neurol Genet. 2021 Sep 9;7(5):e622. doi: 10.1212/NXG.0000000000000622. eCollection 2021 Oct.
ABSTRACT
BACKGROUND AND OBJECTIVES: To integrate genome-wide association study data with tissue-specific gene expression information to identify coexpression networks, biological pathways, and drug repositioning candidates for Alzheimer disease.
METHODS: We integrated genome-wide association summary statistics for Alzheimer disease with tissue-specific gene coexpression networks from brain tissue samples in the Genotype-Tissue Expression study. We identified gene coexpression networks enriched with genetic signals for Alzheimer disease and characterized the associated networks using biological pathway analysis. The disease-implicated modules were subsequently used as a molecular substrate for a computational drug repositioning analysis, in which we (1) imputed genetically regulated gene expression within Alzheimer disease implicated modules; (2) integrated the imputed gene expression levels with drug-gene signatures from the connectivity map to identify compounds that normalize dysregulated gene expression underlying Alzheimer disease; and (3) prioritized drug compounds and mechanisms of action based on the extent to which they normalize dysregulated expression signatures.
RESULTS: Genetic factors for Alzheimer disease are enriched in brain gene coexpression networks involved in the immune response. Computational drug repositioning analyses of expression changes within the disease-associated networks retrieved known Alzheimer disease drugs (e.g., memantine) as well as biologically meaningful drug categories (e.g., glutamate receptor antagonists).
DISCUSSION: Our results improve the biological interpretation of genetic data for Alzheimer disease and provide a list of potential antidementia drug repositioning candidates for which the efficacy should be investigated in functional validation studies.
PMID:34532569 | PMC:PMC8441674 | DOI:10.1212/NXG.0000000000000622
Therapeutic and protective potential of mesenchymal stem cells, pharmaceutical agents and current vaccines against covid-19
Curr Stem Cell Res Ther. 2021 Sep 16. doi: 10.2174/1574888X16666201221151853. Online ahead of print.
ABSTRACT
It has been almost 18 months since the first outbreak of COVID-19 disease was reported in Wuhan, China. This unexpected devastating phenomenon, raised a great deal of concerns and anxiety among people around the world and imposed a huge economic burden on the nations' health care systems. Accordingly, clinical scientists, pharmacologists and physicians worldwide felt an urgent demand for a safe, effective therapeutic agent, treatment strategy or vaccine in order to prevent or cure the recently-emerged disease. Initially, due to lack of specific pharmacological agents and approved vaccines to combat the COVID-19, the disease control in the confirmed cases was limited to supportive care. Accordingly, repositioning or repurposing current drugs and examining their possible therapeutic efficacy received a great deal of attention. Despite revealing promising results in some clinical trials, the overall results are conflicting. For this reason, there is an urgent to seek and investigate other potential therapeutics. Mesenchymal stem cells (MSC) representing immunomodulatory and regenerative capacity to treat both curable and intractable diseases, have been investigated in COVID-19 clinical trials carried out in different parts of the world. Nevertheless, up to now, none of MSC-based approaches has been approved in controlling COVID-19 infection. Thanks to the fact that the final solution for defeating the pandemic is developing a safe, effective vaccine, enormous efforts and clinical research have been carried out. In this review, we will concisely discuss the safety and efficacy of the most relevant pharmacological agents, MSC-based approaches and candidate vaccines for treating and preventing COVID-19 infection.
PMID:34530719 | DOI:10.2174/1574888X16666201221151853
An overview of human proteins and genes involved in SARS-CoV-2 infection
Gene. 2021 Sep 13:145963. doi: 10.1016/j.gene.2021.145963. Online ahead of print.
ABSTRACT
As of July 2021, the outbreak of coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has led to more than 200 million infections and more than 4.2 million deaths globally. Complications of severe COVID-19 include acute kidney injury, liver dysfunction, cardiomyopathy, and coagulation dysfunction. Thus, there is an urgent need to identify proteins and genetic factors associated with COVID-19 susceptibility and outcome. We comprehensively reviewed recent findings of host-SARS-CoV-2 interactome analyses. To identify genetic variants associated with COVID-19, we focused on the findings from genome and transcriptome wide association studies (GWAS and TWAS) and bioinformatics analysis. We described established human proteins including ACE2, TMPRSS2, 40S ribosomal subunit, ApoA1, TOM70, HLA-A, and PALS1 interacting with SARS-CoV-2 based on cryo-electron microscopy results. Furthermore, we described approximately 1,000 human proteins showing evidence of interaction with SARS-CoV-2 and highlighted host cellular processes such as innate immune pathways affected by infection. We summarized the evidence on more than 20 identified candidate genes in COVID-19 severity. Predicted deleterious and disruptive genetic variants with possible effects on COVID-19 infectivity have been also summarized. These findings provide novel insights into SARS-CoV-2 biology and infection as well as potential strategies for development of novel COVID therapeutic targets and drug repurposing.
PMID:34530086 | PMC:PMC8437745 | DOI:10.1016/j.gene.2021.145963
Screening of Clinically Approved and Investigation Drugs as Potential Inhibitors of SARS-CoV-2: A Combined in silico and in vitro Study
Mol Inform. 2021 Sep 16:e2100062. doi: 10.1002/minf.202100062. Online ahead of print.
ABSTRACT
In the current study, we used 7922 FDA approved small molecule drugs as well as compounds in clinical investigation from NIH's NPC database in our drug repurposing study. SARS-CoV-2 main protease as well as Spike protein/ACE2 targets were used in virtual screening and top-100 compounds from each docking simulations were considered initially in short molecular dynamics (MD) simulations and their average binding energies were calculated by MM/GBSA method. Promising hit compounds selected based on average MM/GBSA scores were then used in long MD simulations. Based on these numerical calculations following compounds were found as hit inhibitors for the SARS-CoV-2 main protease: Pinokalant, terlakiren, ritonavir, cefotiam, telinavir, rotigaptide, and cefpiramide. In addition, following 3 compounds were identified as inhibitors for Spike/ACE2: Denopamine, bometolol, and rotigaptide. In order to verify the predictions of in silico analyses, 4 compounds (ritonavir, rotigaptide, cefotiam, and cefpiramide) for the main protease and 2 compounds (rotigaptide and denopamine) for the Spike/ACE2 interactions were tested by in vitro experiments. While the concentration-dependent inhibition of the ritonavir, rotigaptide, and cefotiam was observed for the main protease; denopamine was effective at the inhibition of Spike/ACE2 binding.
PMID:34529322 | DOI:10.1002/minf.202100062
Target Discovery for Host-Directed Antiviral Therapies: Application of Proteomics Approaches
mSystems. 2021 Sep 14:e0038821. doi: 10.1128/mSystems.00388-21. Online ahead of print.
ABSTRACT
Current epidemics, such as AIDS or flu, and the emergence of new threatening pathogens, such as the one causing the current coronavirus disease 2019 (COVID-19) pandemic, represent major global health challenges. While vaccination is an important part of the arsenal to counter the spread of viral diseases, it presents limitations and needs to be complemented by efficient therapeutic solutions. Intricate knowledge of host-pathogen interactions is a powerful tool to identify host-dependent vulnerabilities that can be exploited to dampen viral replication. Such host-directed antiviral therapies are promising and are less prone to the development of drug-resistant viral strains. Here, we first describe proteomics-based strategies that allow the rapid characterization of host-pathogen interactions. We then discuss how such data can be exploited to help prioritize compounds with potential host-directed antiviral activity that can be tested in preclinical models.
PMID:34519533 | DOI:10.1128/mSystems.00388-21
Drug repositioning against COVID-19: a first line treatment
J Biomol Struct Dyn. 2021 Sep 14:1-15. doi: 10.1080/07391102.2021.1977698. Online ahead of print.
ABSTRACT
COVID-19 disease caused by the SARS-CoV-2 virus has shaken our health and wealth foundations. Although COVID-19 vaccines will become available allowing for attenuation of disease progression rates, distribution of vaccines can create other challenges and delays. Hence repurposed drugs against SARS-CoV-2 can be an attractive parallel strategy that can be integrated into routine clinical practice even in poorly-resourced countries. The present study was designed using knowledge of viral pathogenesis and pharmacodynamics of broad-spectrum antiviral agents (BSAAs). We carried out the virtual screening of BSAAs against the SARS-CoV-2 spike glycoprotein, RNA dependent RNA polymerase (RdRp), the main protease (Mpro) and the helicase enzyme of SARS-CoV-2. Imatinib (a tyrosine kinase inhibitor), Suramin (an anti-parasitic), Glycyrrhizin (an anti-inflammatory) and Bromocriptine (a dopamine agonist) showed higher binding affinity to multiple targets. Further through molecular dynamics simulation, critical conformational changes in the target protein molecules were revealed upon drug binding which illustrates the favorable binding conformations of antiviral drugs against SARS-CoV-2 target proteins. The resulting drugs from the present study in combination and in cocktails from the arsenal of existing drugs could reduce the translational distance and could offer substantial clinical benefit to decrease the burden of COVID-19 illness. This also creates a roadmap for subsequent viral diseases that emerge.Communicated by Ramaswamy H. Sarma.
PMID:34519259 | DOI:10.1080/07391102.2021.1977698
Telaprevir is a potential drug for repurposing against SARS-CoV-2: computational and in vitro studies
Heliyon. 2021 Sep;7(9):e07962. doi: 10.1016/j.heliyon.2021.e07962. Epub 2021 Sep 9.
ABSTRACT
Drug repurposing is an important approach to the assignment of already approved drugs for new indications. This technique bypasses some steps in the traditional drug approval system, which saves time and lives in the case of pandemics. Direct acting antivirals (DAAs) have repeatedly repurposed from treating one virus to another. In this study, 16 FDA-approved hepatitis C virus (HCV) DAA drugs were studied to explore their activities against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) human and viral targets. Among the 16 HCV DAA drugs, telaprevir has shown the best in silico evidence to work on both indirect human targets (cathepsin L [CTSL] and human angiotensin-converting enzyme 2 [hACE2] receptor) and direct viral targets (main protease [Mpro]). Moreover, the docked poses of telaprevir inside both hACE2 and Mpro were subjected to additional molecular dynamics simulations monitored by calculating the binding free energy using MM-GBSA. In vitro analysis of telaprevir showed inhibition of SARS-CoV-2 replication in cell culture (IC50 = 11.552 μM, CC50 = 60.865 μM, and selectivity index = 5.27). Accordingly, based on the in silico studies and supported by the presented in vitro analysis, we suggest that telaprevir may be considered for therapeutic development against SARS-CoV-2.
PMID:34518806 | PMC:PMC8426143 | DOI:10.1016/j.heliyon.2021.e07962
Asunaprevir, a Potent Hepatitis C Virus Protease Inhibitor, Blocks SARS-CoV-2 Propagation
Mol Cells. 2021 Sep 14. doi: 10.14348/molcells.2021.076. Online ahead of print.
ABSTRACT
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has become a global health concern. Various SARS-CoV-2 vaccines have been developed and are being used for vaccination worldwide. However, no therapeutic agents against coronavirus disease 2019 (COVID-19) have been developed so far; therefore, new therapeutic agents are urgently needed. In the present study, we evaluated several hepatitis C virus direct-acting antivirals as potential candidates for drug repurposing against COVID-19. Theses include asunaprevir (a protease inhibitor), daclatasvir (an NS5A inhibitor), and sofosbuvir (an RNA polymerase inhibitor). We found that asunaprevir, but not sofosbuvir and daclatasvir, markedly inhibited SARS-CoV-2-induced cytopathic effects in Vero E6 cells. Both RNA and protein levels of SARS-CoV-2 were significantly decreased by treatment with asunaprevir. Moreover, asunaprevir profoundly decreased virion release from SARS-CoV-2-infected cells. A pseudoparticle entry assay revealed that asunaprevir blocked SARS-CoV-2 infection at the binding step of the viral life cycle. Furthermore, asunaprevir inhibited SARS-CoV-2 propagation in human lung Calu-3 cells. Collectively, we found that asunaprevir displays broad-spectrum antiviral activity and therefore might be worth developing as a new drug repurposing candidate for COVID-19.
PMID:34518443 | DOI:10.14348/molcells.2021.076
Drug repurposing of dermatologic medications to treat coronavirus disease 2019: Science or fiction?
Clin Dermatol. 2021 May-Jun;39(3):430-445. doi: 10.1016/j.clindermatol.2021.01.020. Epub 2021 Feb 2.
ABSTRACT
No pharmaceutical products have been demonstrated to be safe and effective to specifically treat coronavirus disease 2019 (COVID-19); therefore, the therapy administered to infected patients remains symptomatic and empiric. Alongside the development of new, often high-cost drugs, a different tactic is being applied in parallel, investigating long-established, inexpensive medications originally designed for a variety of diseases to study their potential in treating COVID-19. The skin is the largest organ of the human body. With more than 3,000 skin conditions identified, the specialty of dermatology offers a rich armamentarium of systemic therapeutic agents aimed to treat the various chronic immunologically mediated, metabolic, infectious, occupational, inherited, or paraneoplastic dermatoses. Dermatologists have extensive experience with many drugs that have demonstrated promising in vitro antiviral action (directly targeting the viral replication). Many of these drugs have been used as nonspecific immunosuppressive strategies, such as glucocorticoids, synthetic antimalarials, colchicine, or other immunomodulators, and a number of targeted therapeutics have been directed at controlling hyperinflammatory processes similar to the "cytokine storm" associated with COVID-19 infection. We discuss several dermatologic drugs that have already been used or may have a promising role in the treatment of COVID-19.
PMID:34518001 | DOI:10.1016/j.clindermatol.2021.01.020
Strategies for the treatment of breast cancer: from classical drugs to mathematical models
Math Biosci Eng. 2021 Jul 21;18(5):6328-6385. doi: 10.3934/mbe.2021316.
ABSTRACT
Breast cancer is one of the most common cancers and generally affects women. It is a heterogeneous disease that presents different entities, different biological characteristics, and differentiated clinical behaviors. With this in mind, this literature review had as its main objective to analyze the path taken from the simple use of classical drugs to the application of mathematical models, which through the many ongoing studies, have been considered as one of the reliable strategies, explaining the reasons why chemotherapy is not always successful. Besides, the most commonly mentioned strategies are immunotherapy, which includes techniques and therapies such as the use of antibodies, cytokines, antitumor vaccines, oncolytic and genomic viruses, among others, and nanoparticles, including metallic, magnetic, polymeric, liposome, dendrimer, micelle, and others, as well as drug reuse, which is a process by which new therapeutic indications are found for existing and approved drugs. The most commonly used pharmacological categories are cardiac, antiparasitic, anthelmintic, antiviral, antibiotic, and others. For the efficient development of reused drugs, there must be a process of exchange of purposes, methods, and information already available, and for their better understanding, computational mathematical models are then used, of which the methods of blind search or screening, based on the target, knowledge, signature, pathway or network and the mechanism to which it is directed, stand out. To conclude it should be noted that these different strategies can be applied alone or in combination with each other always to improve breast cancer treatment.
PMID:34517536 | DOI:10.3934/mbe.2021316
Trimebutine suppresses Toll-like receptor 2/4/7/8/9 signaling pathways in macrophages
Arch Biochem Biophys. 2021 Sep 10:109029. doi: 10.1016/j.abb.2021.109029. Online ahead of print.
ABSTRACT
Because of the critical roles of Toll-like receptors (TLRs) and receptor for advanced glycation end-products (RAGE) in the pathophysiology of various acute and chronic inflammatory diseases, continuous efforts have been made to discover novel therapeutic inhibitors of TLRs and RAGE to treat inflammatory disorders. A recent study by our group has demonstrated that trimebutine, a spasmolytic drug, suppresses the high mobility group box 1‒RAGE signaling that is associated with triggering proinflammatory signaling pathways in macrophages. Our present work showed that trimebutine suppresses interleukin-6 (IL-6) production in lipopolysaccharide (LPS, a stimulant of TLR4)-stimulated macrophages of RAGE-knockout mice. In addition, trimebutine suppresses the LPS-induced production of various proinflammatory cytokines and chemokines in mouse macrophage-like RAW264.7 cells. Importantly, trimebutine suppresses IL-6 production induced by TLR2-and TLR7/8/9 stimulants. Furthermore, trimebutine greatly reduces mortality in a mouse model of LPS-induced sepsis. Studies exploring the action mechanism of trimebutine revealed that it inhibits the LPS-induced activation of IL-1 receptor-associated kinase 1 (IRAK1), and the subsequent activations of extracellular signal-related kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and nuclear factor-κB (NF-κB). These findings suggest that trimebutine exerts anti-inflammatory effects on TLR signaling by downregulating IRAK1‒ERK1/2‒JNK pathway and NF-κB activity, thereby indicating the therapeutic potential of trimebutine in inflammatory diseases. Therefore, trimebutine can be a novel anti-inflammatory drug-repositioning candidate and may provide an important scaffold for designing more effective dual anti-inflammatory drugs that target TLR/RAGE signaling.
PMID:34517011 | DOI:10.1016/j.abb.2021.109029
Characterization of the NiRAN domain from RNA-dependent RNA polymerase provides insights into a potential therapeutic target against SARS-CoV-2
PLoS Comput Biol. 2021 Sep 13;17(9):e1009384. doi: 10.1371/journal.pcbi.1009384. Online ahead of print.
ABSTRACT
Apart from the canonical fingers, palm and thumb domains, the RNA dependent RNA polymerases (RdRp) from the viral order Nidovirales possess two additional domains. Of these, the function of the Nidovirus RdRp associated nucleotidyl transferase domain (NiRAN) remains unanswered. The elucidation of the 3D structure of RdRp from the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), provided the first ever insights into the domain organisation and possible functional characteristics of the NiRAN domain. Using in silico tools, we predict that the NiRAN domain assumes a kinase or phosphotransferase like fold and binds nucleoside triphosphates at its proposed active site. Additionally, using molecular docking we have predicted the binding of three widely used kinase inhibitors and five well characterized anti-microbial compounds at the NiRAN domain active site along with their drug-likeliness. For the first time ever, using basic biochemical tools, this study shows the presence of a kinase like activity exhibited by the SARS-CoV-2 RdRp. Interestingly, a well-known kinase inhibitor- Sorafenib showed a significant inhibition and dampened viral load in SARS-CoV-2 infected cells. In line with the current global COVID-19 pandemic urgency and the emergence of newer strains with significantly higher infectivity, this study provides a new anti-SARS-CoV-2 drug target and potential lead compounds for drug repurposing against SARS-CoV-2.
PMID:34516563 | DOI:10.1371/journal.pcbi.1009384
Molecular mechanism of ATP and RNA binding to Zika virus NS3 helicase and identification of repurposed drugs using molecular dynamics simulations
J Biomol Struct Dyn. 2021 Sep 13:1-18. doi: 10.1080/07391102.2021.1973909. Online ahead of print.
ABSTRACT
Congenital Zika virus syndrome has caused a public health emergency of international concern. So far, there are no drugs available to prevent or treat the infection caused by Zika virus. The Zika virus NS3 helicase is a potential protein target for drug discovery due to its vital role in viral genome replication. NS3 helicase unwinds the viral RNA to enable the reproduction of the viral genome by the NS5 protein. NS3 helicase has two crucial binding sites; the ATP binding site and the RNA binding site. We used molecular docking and molecular dynamics (MD) simulations to study the structural behavior of Zika virus NS3 helicase in its apo form and in the presence of ATP, single-stranded RNA, and both ATP-RNA to understand their potential implications in NS3 helicase activity. Further, we have carried out virtual screening of FDA approved drugs, followed by molecular docking to identify the ATP-competitive hit molecules as probable Zika virus NS3 helicase inhibitors. The MD simulations trajectories were analyzed using normal mode analysis and principal component analysis that reveals fluctuations in the R-loop. These findings aid in understanding the molecular mechanisms of the simultaneous binding of ATP and RNA, and guide the design and discovery of new inhibitors of the Zika virus NS3 helicase as a promising drug target to treat the Zika virus infection. Communicated by Ramaswamy H. Sarma.
PMID:34516356 | DOI:10.1080/07391102.2021.1973909
PATHOME-Drug: a subpathway-based poly-pharmacology drug-repositioning method
Bioinformatics. 2021 Sep 13:btab566. doi: 10.1093/bioinformatics/btab566. Online ahead of print.
ABSTRACT
MOTIVATION: Drug repositioning reveals novel indications for existing drugs and in particular, diseases with no available drugs. Diverse computational drug repositioning methods have been proposed by measuring either drug-treated gene expression signatures or the proximity of drug targets and disease proteins found in prior networks. However, these methods do not explain which signaling subparts allow potential drugs to be selected, and do not consider polypharmacology, i.e., multiple targets of a known drug, in specific subparts.
RESULTS: Here, to address the limitations, we developed a subpathway-based polypharmacology drug repositioning method, PATHOME-Drug, based on drug-associated transcriptomes. Specifically, this tool locates subparts of signaling cascading related to phenotype changes (e.g., disease status changes), and identifies existing approved drugs such that their multiple targets are enriched in the subparts. We show that our method demonstrated better performance for detecting signaling context and specific drugs/compounds, compared to WebGestalt and clusterProfiler, for both real biological and simulated datasets. We believe that our tool can successfully address the current shortage of targeted therapy agents.
AVAILABILITY: The web-service is available at http://statgen.snu.ac.kr/software/pathome. The source codes and data are available at https://github.com/labnams/pathome-drug.
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
PMID:34515762 | DOI:10.1093/bioinformatics/btab566
Investigating Neuroprotective Potential of Berberine, Levetiracetam and Their Combination in The Management of Alzheimer's Disease Utilizing Drug Repurposing Strategy
Curr Rev Clin Exp Pharmacol. 2021 Sep 9. doi: 10.2174/2772432816666210910104306. Online ahead of print.
ABSTRACT
AIM: The aim of the present work was to evaluate the neuroprotective potential of berberine, levetiracetam and their combination in lead acetate induced neurotoxicity by applying a drug repositioning approach.
BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease characterized by impairment of memory, disturbances in reasoning, planning, language and perception. Currently, there are only four drugs approved by US-FDA for AD; therefore, there is an extensive need for new drug development. The drug repositioning approach refers to the development of new uses for existing or abandoned pharmaceuticals. Several studies support the neuroprotective abilities of anti-oxidants resulting in neuronal protection against neurotoxins, suppression of oxidative stress and promotion of memory, learning and cognitive functions. Many natural polyphenols are being investigated as a potential therapeutic option for AD. Levetiracetam (LEV), a second-generation antiepileptic drug, is a new molecule that is clearly differentiated from conventional antiepileptic drugs by its pharmacologic properties. LEV also has been previously demonstrated to protect against oxidative stress-induced neurotoxicity in several models of seizures. Berberine (BBR) is an anti-inflammatory and anti-oxidant phytoconstituent.
OBJECTIVE: To study the therapeutic effect of berberine, levetiracetam and their physical mixture in lead acetate-induced neurotoxicity in Swiss albino mice for probable application in the management of Alzheimer's disease.
METHODS: Neurotoxicity was induced in Swiss albino mice by lead acetate. Behavioural parameters, such as transfer latency time and percentage alternation, were studied using Morris water maze (MWM), Elevated plus-maze test (EPM) and Y- maze for the assessment of improvement in learning and memory. Concentrations of acetylcholinesterase, MDA and GSH in the brain were also estimated. Brain samples were subjected to histopathological studies.
RESULTS: Results revealed that the combination of BBR and LEV exhibited a significant neuroprotective effect by decreasing escape latency time and increasing time spent in the target quadrant in MWM. The combination also decreases transfer latency time in EPM and acetylcholinesterase levels in the brain as compared to standard donepezil. Reduced neuronal damage was also confirmed by the histopathological report.
CONCLUSION: Leveteracitam, berberin and their combination resulted in the significant conservation of various behavioural, biochemical, enzymatic and anti-oxidant parameters that were evaluated. The neuroprotective effect of plain leveteracitam and berberin was significantly better than their combination. However, the anticipated synergism or additive effect was not observed with a combination of leveteracitam and berberin in lead acetate-induced neurotoxicity.
PMID:34515019 | DOI:10.2174/2772432816666210910104306
Functional variation (Q63R) in the cannabinoid CB2 receptor may affect the severity of COVID-19: a human study and molecular docking
Arch Virol. 2021 Sep 13. doi: 10.1007/s00705-021-05223-7. Online ahead of print.
ABSTRACT
Evidence supports a role of host genetic diversity in the clinical course of coronavirus disease 2019 (COVID-19). Variation in the cannabinoid CB2 receptor gene (CNR2) could affect the regulatory action of endocannabinoids on the immune system, resulting in an increased risk of various inflammatory diseases. The present study investigated the relationship between the CNR2-Q63R variant and COVID-19 severity. A total of 200 Iranian COVID-19 patients were enrolled in the study and genotyped using a TaqMan assay. The co-dominant, dominant, recessive, over-dominant, and additive inheritance models were analyzed using SNPStats software. In silico molecular docking was also performed to simulate the effects of the Q63R variation on CB2 binding with a ligand and with the G-protein. A significant difference in the Q63R allele and genotype distribution was found between expired and discharged COVID-19 patients in co-dominant, recessive, and additive inheritance models. The molecular docking results showed that the predicted structure of mutant CB2 (63R type) could not bind to the G-protein in the correct position. The data indicated that the Q63R variation in the CNR2 gene may affect the severity of COVID-19. Identification of genes related to susceptibility and severity of COVID-19 may lead to specific targets for drug repurposing or development.
PMID:34514519 | DOI:10.1007/s00705-021-05223-7
Identification of novel transmembrane Protease Serine Type 2 drug candidates for COVID-19 using computational studies
Inform Med Unlocked. 2021;26:100725. doi: 10.1016/j.imu.2021.100725. Epub 2021 Sep 7.
ABSTRACT
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emergence has resulted in a global health crisis. As a consequence, discovering an effective therapy that saves lives and slows the spread of the pandemic is a global concern currently. In silico drug repurposing is highly regarded as a precise computational method for obtaining fast and reliable results. Transmembrane serine-type 2 (TMPRSS2) is a SARS CoV-2 enzyme that is essential for viral fusion with the host cell. Inhibition of TMPRSS2 may block or lessen the severity of SARS-CoV-2 infection. In this study, we aimed to perform an in silico drug repurposing to identify drugs that can effectively inhibit SARS-CoV-2 TMPRSS2. As there is no 3D structure of TMPRSS2 available, homology modeling was performed to build the 3D structure of human TMPRSS2. 3848 world-approved drugs were screened against the target. Based on docking scores and visual outcomes, the best-fit drugs were chosen. Molecular dynamics (MD) and density functional theory (DFT) studies were also conducted. Five potential drugs (Amikacin, isepamicin, butikacin, lividomycin, paromomycin) exhibited promising binding affinities. In conclusion, these findings empower purposing these agents.
PMID:34514079 | PMC:PMC8421083 | DOI:10.1016/j.imu.2021.100725