Drug Repositioning

HPMA-Based Polymer Conjugates for Repurposed Drug Mebendazole and Other Imidazole-Based Therapeutics

Tue, 2021-08-10 06:00

Polymers (Basel). 2021 Jul 30;13(15):2530. doi: 10.3390/polym13152530.

ABSTRACT

Recently, the antitumor potential of benzimidazole anthelmintics, such as mebendazole and its analogues, have been reported to have minimal side effects, in addition to their well-known anti-parasitic abilities. However, their administration is strongly limited owing to their extremely poor solubility, which highly depletes their overall bioavailability. This study describes the design, synthesis, and physico-chemical properties of polymer-mebendazole nanomedicines for drug repurposing in cancer therapy. The conjugation of mebendazole to water-soluble and biocompatible polymer carrier was carried out via biodegradable bond, relying on the hydrolytic action of lysosomal hydrolases for mebendazole release inside the tumor cells. Five low-molecular-weight mebendazole derivatives, differing in their inner structure, and two polymer conjugates differing in their linker structure, were synthesized. The overall synthetic strategy was designed to enable the modification and polymer conjugation of most benzimidazole-based anthelmintics, such as albendazole, fenbendazole or albendazole, besides the mebendazole. Furthermore, the described methodology may be suitable for conjugation of other biologically active compounds with a heterocyclic N-H group in their molecules.

PMID:34372133 | DOI:10.3390/polym13152530

Categories: Literature Watch

Molecular Modeling Targeting Transmembrane Serine Protease 2 (TMPRSS2) as an Alternative Drug Target Against Coronaviruses

Mon, 2021-08-09 06:00

Curr Drug Targets. 2021 Aug 8. doi: 10.2174/1389450122666210809090909. Online ahead of print.

ABSTRACT

Since November 2019, the new Coronavirus disease (COVID-19) caused by the etiological agent SARS-CoV-2 has been responsible for several cases worldwide, becoming pandemic in March 2020. Pharmaceutical industries and academics have joined their efforts to discover new therapies to control the disease, since there are no specific drugs to combat this emerging virus. Thus, several targets have been explored, among them the transmembrane protease serine 2 (TMPRSS2) has gained greater interest in the scientific community. In this context, this review will describe the importance of TMPRSS2 protease and the significant advances in virtual screening focused on discovering new inhibitors. In this review, it was observed that molecular modeling methods could be powerful tools in identifying new molecules against SARS-CoV-2. Thus, this review could be used to guide researchers worldwide to explore the biological and clinical potential of compounds that could be promising drug candidates against SARS-CoV-2, acting by inhibition of TMPRSS2 protein.

PMID:34370633 | DOI:10.2174/1389450122666210809090909

Categories: Literature Watch

Quantitative structure-activity relationships, molecular docking and molecular dynamics simulations reveal drug repurposing candidates as potent SARS-CoV-2 main protease inhibitors

Mon, 2021-08-09 06:00

J Biomol Struct Dyn. 2021 Aug 9:1-18. doi: 10.1080/07391102.2021.1958700. Online ahead of print.

ABSTRACT

The current outbreak of COVID-19 is leading an unprecedented scientific effort focusing on targeting SARS-CoV-2 proteins critical for its viral replication. Herein, we performed high-throughput virtual screening of more than eleven thousand FDA-approved drugs using backpropagation-based artificial neural networks (q2LOO = 0.60, r2 = 0.80 and r2pred = 0.91), partial-least-square (PLS) regression (q2LOO = 0.83, r2 = 0.62 and r2pred = 0.70) and sequential minimal optimization (SMO) regression (q2LOO = 0.70, r2 = 0.80 and r2pred = 0.89). We simulated the stability of Acarbose-derived hexasaccharide, Naratriptan, Peramivir, Dihydrostreptomycin, Enviomycin, Rolitetracycline, Viomycin, Angiotensin II, Angiotensin 1-7, Angiotensinamide, Fenoterol, Zanamivir, Laninamivir and Laninamivir octanoate with 3CLpro by 100 ns and calculated binding free energy using molecular mechanics combined with Poisson-Boltzmann surface area (MM-PBSA). Our QSAR models and molecular dynamics data suggest that seven repurposed-drug candidates such as Acarbose-derived Hexasaccharide, Angiotensinamide, Dihydrostreptomycin, Enviomycin, Fenoterol, Naratriptan and Viomycin are potential SARS-CoV-2 main protease inhibitors. In addition, our QSAR models and molecular dynamics simulations revealed that His41, Asn142, Cys145, Glu166 and Gln189 are potential pharmacophoric centers for 3CLpro inhibitors. Glu166 is a potential pharmacophore for drug design and inhibitors that interact with this residue may be critical to avoid dimerization of 3CLpro. Our results will contribute to future investigations of novel chemical scaffolds and the discovery of novel hits in high-throughput screening as potential anti-SARS-CoV-2 properties.Communicated by Ramaswamy H. Sarma.

PMID:34370631 | DOI:10.1080/07391102.2021.1958700

Categories: Literature Watch

Exploring Innovative Leishmaniasis Treatment: Drug Targets from Pre-Clinical to Clinical Findings

Mon, 2021-08-09 06:00

Chem Biodivers. 2021 Aug 9. doi: 10.1002/cbdv.202100336. Online ahead of print.

ABSTRACT

Leishmaniasis is a group of tropical diseases caused by parasitic protozoa belonging to the genus Leishmania. The disease is categorized in cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL), and visceral leishmaniasis (VL). The conventional treatment is complex and can present high toxicity and therapeutic failures. Thus, there is a continuing need to develop new treatments. In this review, we focus on the novel molecules described in the literature with potential leishmanicidal activity, categorizing them in pre-clinical (in vitro, in vivo), drug repurposing and clinical research.

PMID:34369662 | DOI:10.1002/cbdv.202100336

Categories: Literature Watch

Deep fusion learning facilitates anatomical therapeutic chemical recognition in drug repurposing and discovery

Mon, 2021-08-09 06:00

Brief Bioinform. 2021 Aug 7:bbab289. doi: 10.1093/bib/bbab289. Online ahead of print.

ABSTRACT

The advent of large-scale biomedical data and computational algorithms provides new opportunities for drug repurposing and discovery. It is of great interest to find an appropriate data representation and modeling method to facilitate these studies. The anatomical therapeutic chemical (ATC) classification system, proposed by the World Health Organization (WHO), is an essential source of information for drug repurposing and discovery. Besides, computational methods are applied to predict drug ATC classification. We conducted a systematic review of ATC computational prediction studies and revealed the differences in data sets, data representation, algorithm approaches, and evaluation metrics. We then proposed a deep fusion learning (DFL) framework to optimize the ATC prediction model, namely DeepATC. The methods based on graph convolutional network, inferring biological network and multimodel attentive fusion network were applied in DeepATC to extract the molecular topological information and low-dimensional representation from the molecular graph and heterogeneous biological networks. The results indicated that DeepATC achieved superior model performance with area under the curve (AUC) value at 0.968. Furthermore, the DFL framework was performed for the transcriptome data-based ATC prediction, as well as another independent task that is significantly relevant to drug discovery, namely drug-target interaction. The DFL-based model achieved excellent performance in the above-extended validation task, suggesting that the idea of aggregating the heterogeneous biological network and node's (molecule or protein) self-topological features will bring inspiration for broader drug repurposing and discovery research.

PMID:34368838 | DOI:10.1093/bib/bbab289

Categories: Literature Watch

Miltefosine Against <em>Scedosporium</em> and <em>Lomentospora</em> Species: Antifungal Activity and Its Effects on Fungal Cells

Mon, 2021-08-09 06:00

Front Cell Infect Microbiol. 2021 Jul 23;11:698662. doi: 10.3389/fcimb.2021.698662. eCollection 2021.

ABSTRACT

Scedosporium and Lomentospora species are filamentous fungi responsible for a wide range of infections in humans and are frequently associated with cystic fibrosis and immunocompromising conditions. Because they are usually resistant to many antifungal drugs available in clinical settings, studies of alternative targets in fungal cells and therapeutic approaches are necessary. In the present work, we evaluated the in vitro antifungal activity of miltefosine against Scedosporium and Lomentospora species and how this phospholipid analogue affects the fungal cell. Miltefosine inhibited different Scedosporium and Lomentospora species at 2-4 µg/ml and reduced biofilm formation. The loss of membrane integrity in Scedosporium aurantiacum caused by miltefosine was demonstrated by leakage of intracellular components and lipid raft disorganisation. The exogenous addition of glucosylceramide decreased the inhibitory activity of miltefosine. Reactive oxygen species production and mitochondrial activity were also affected by miltefosine, as well as the susceptibility to fluconazole, caspofungin and myoricin. The data obtained in the present study contribute to clarify the dynamics of the interaction between miltefosine and Scedosporium and Lomentospora cells, highlighting its potential use as new antifungal drug in the future.

PMID:34368017 | PMC:PMC8343104 | DOI:10.3389/fcimb.2021.698662

Categories: Literature Watch

A Review of Current In Silico Methods for Repositioning Drugs and Chemical Compounds

Mon, 2021-08-09 06:00

Front Oncol. 2021 Jul 22;11:711225. doi: 10.3389/fonc.2021.711225. eCollection 2021.

ABSTRACT

Drug repositioning is a new way of applying the existing therapeutics to new disease indications. Due to the exorbitant cost and high failure rate in developing new drugs, the continued use of existing drugs for treatment, especially anti-tumor drugs, has become a widespread practice. With the assistance of high-throughput sequencing techniques, many efficient methods have been proposed and applied in drug repositioning and individualized tumor treatment. Current computational methods for repositioning drugs and chemical compounds can be divided into four categories: (i) feature-based methods, (ii) matrix decomposition-based methods, (iii) network-based methods, and (iv) reverse transcriptome-based methods. In this article, we comprehensively review the widely used methods in the above four categories. Finally, we summarize the advantages and disadvantages of these methods and indicate future directions for more sensitive computational drug repositioning methods and individualized tumor treatment, which are critical for further experimental validation.

PMID:34367996 | PMC:PMC8340770 | DOI:10.3389/fonc.2021.711225

Categories: Literature Watch

An Ensemble Matrix Completion Model for Predicting Potential Drugs Against SARS-CoV-2

Mon, 2021-08-09 06:00

Front Microbiol. 2021 Jul 21;12:694534. doi: 10.3389/fmicb.2021.694534. eCollection 2021.

ABSTRACT

Because of the catastrophic outbreak of global coronavirus disease 2019 (COVID-19) and its strong infectivity and possible persistence, computational repurposing of existing approved drugs will be a promising strategy that facilitates rapid clinical treatment decisions and provides reasonable justification for subsequent clinical trials and regulatory reviews. Since the effects of a small number of conditionally marketed vaccines need further clinical observation, there is still an urgent need to quickly and effectively repurpose potentially available drugs before the next disease peak. In this work, we have manually collected a set of experimentally confirmed virus-drug associations through the publicly published database and literature, consisting of 175 drugs and 95 viruses, as well as 933 virus-drug associations. Then, because the samples are extremely sparse and unbalanced, negative samples cannot be easily obtained. We have developed an ensemble model, EMC-Voting, based on matrix completion and weighted soft voting, a semi-supervised machine learning model for computational drug repurposing. Finally, we have evaluated the prediction performance of EMC-Voting by fivefold crossing-validation and compared it with other baseline classifiers and prediction models. The case study for the virus SARS-COV-2 included in the dataset demonstrates that our model achieves the outperforming AUPR value of 0.934 in virus-drug association's prediction.

PMID:34367094 | PMC:PMC8334363 | DOI:10.3389/fmicb.2021.694534

Categories: Literature Watch

COVID-19: Vaccine Delivery System, Drug Repurposing and Application of Molecular Modeling Approach

Mon, 2021-08-09 06:00

Drug Des Devel Ther. 2021 Jul 30;15:3313-3330. doi: 10.2147/DDDT.S320320. eCollection 2021.

ABSTRACT

The acute respiratory syndrome coronavirus (SARS-CoV-2) has spread across the world, resulting in a pandemic COVID-19 which is a human zoonotic disease that is caused by a novel coronavirus (CoV) strain thought to have originated in wild or captive bats in the initial COVID outbreak region. The global COVID-19 outbreak started in Guangdong Province, China's southernmost province. The global response to the COVID-19 pandemic has been hampered by the sheer number of infected people, many of whom need intensive care before succumbing to the disease. The epidemic is being handled by a combination of disease control by public health interventions and compassionate treatment for those who have been impacted. There is no clear anti-COVID-19 medication available at this time. However, the need to find medications that can turn the tide has led to the development of a number of investigational drugs as potential candidates for improving outcomes, especially in the severely and critically ill. Although many of these adjunctive medications are still being studied in clinical trials, professional organizations have attempted to define the circumstances in which their use is deemed off-label or compassionate. It is important to remind readers that new information about COVID-19's clinical features, treatment options, and outcomes is released on a regular basis. The mainstay of treatment remains optimized supportive care, and the therapeutic effectiveness of the subsequent agents is still being studied.

PMID:34366663 | PMC:PMC8335551 | DOI:10.2147/DDDT.S320320

Categories: Literature Watch

Transcriptomics based multi-dimensional characterization and drug screen in esophageal squamous cell carcinoma

Sun, 2021-08-08 06:00

EBioMedicine. 2021 Aug 5;70:103510. doi: 10.1016/j.ebiom.2021.103510. Online ahead of print.

ABSTRACT

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) remains one of the deadly cancer types. Comprehensively dissecting the molecular characterization and the heterogeneity of ESCC paves the way for developing more promising therapeutics.

METHODS: Expression profiles of multiple ESCC datasets were integrated. ATAC-seq and RNA-seq were combined to reveal the chromatin accessibility features. A prognosis-related subtype classifier (PrSC) was constructed, and its association with the tumor microenvironment (TME) and immunotherapy was assessed. The key gene signature was validated in clinical samples. Based on the TME heterogeneity of ESCC patients, potential subtype-specific therapeutic agents were screened.

FINDINGS: The common differentially expressed genes (cDEGs) in ESCC were identified. Up-regulated genes (HEATR1, TIMELESS, DTL, GINS1, RUVBL1, and ECT2) were found highly important in ESCC cell survival. The expression alterations of PRIM2, HPGD, NELL2, and TFAP2B were associated with chromatin accessibility changes. PrSC was a robust scoring tool that was not only associated with the prognosis of ESCC patients, but also could reflect the TME heterogeneity. TNS1high fibroblasts were associated with immune exclusion. TG-101348 and Vinorelbine were identified as potential subtype-specific therapeutic agents. Besides, the application of PrSC into two immunotherapy cohorts indicated its potential value in assessing treatment response to immunotherapy.

INTERPRETATION: Our study depicted the multi-dimensional characterization of ESCC, established a robust scoring tool for the prognosis assessment, highlighted the role of TNS1high fibroblasts in TME, and identified potential drugs for clinical use.

FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.

PMID:34365093 | DOI:10.1016/j.ebiom.2021.103510

Categories: Literature Watch

In silico drug repurposing for the treatment of heart diseases using gene expression data and molecular docking techniques

Sat, 2021-08-07 06:00

Biochem Biophys Res Commun. 2021 Aug 4;572:138-144. doi: 10.1016/j.bbrc.2021.07.076. Online ahead of print.

ABSTRACT

Heart diseases are known as the most primary causes of mortality worldwide. Although many therapeutic approaches and medications are proposed for these diseases, the identification of novel therapeutics in fatal heart conditions is promptly demanded. Besides, the interplay between gene expression data and molecular docking provides several novel insights to discover more effective and specific drugs for the treatment of the diseases. This study aimed to discover potent therapeutic drugs in the heart diseases based on the expression profile of heart-specific genes exclusively. Initially, the heart-specific and highly expressed genes were identified by comparing the gene expression profile of different body tissues. Subsequently, the druggable-genes were identified using in silico techniques. The interaction between these druggable genes with more than 1600 FDA approved drugs was then investigated using the molecular docking simulation. By comprehensively analyzing RNA-sequencing data obtained from 949 normal tissue samples, 48 heart-specific genes were identified in both the heart development and function. Notably, of these, 24 heart-specific genes were capable to be considered as druggable genes, among which only MYBPC3, MYLK3, and SCN5A genes entered the molecular docking process due to their functions. Afterward, the pharmacokinetics properties of top 10 ligands with the highest binding affinity for these proteins were studied. Accordingly, methylergonovine, fosaprepitant, pralatrexate, daunorubicin, glecaprevir, digoxin, and venetoclax drugs were competent, in order to interact with the target proteins perfectly. It was shown that these medications can be used as specific drugs for the treatment of heart diseases after fulfilling further experiments in this regard.

PMID:34364293 | DOI:10.1016/j.bbrc.2021.07.076

Categories: Literature Watch

A polygenic-score-based approach for identification of gene-drug interactions stratifying breast cancer risk

Sat, 2021-08-07 06:00

Am J Hum Genet. 2021 Aug 3:S0002-9297(21)00276-7. doi: 10.1016/j.ajhg.2021.07.008. Online ahead of print.

ABSTRACT

An individual's genetics can dramatically influence breast cancer (BC) risk. Although clinical measures for prevention do exist, non-invasive personalized measures for reducing BC risk are limited. Commonly used medications are a promising set of modifiable factors, but no previous study has explored whether a range of widely taken approved drugs modulate BC genetics. In this study, we describe a quantitative framework for exploring the interaction between the genetic susceptibility of BC and medication usage among UK Biobank women. We computed BC polygenic scores (PGSs) that summarize BC genetic risk and find that the PGS explains nearly three-times greater variation in disease risk within corticosteroid users compared to non-users. We map 35 genes significantly interacting with corticosteroid use (FDR < 0.1), highlighting the transcription factor NRF2 as a common regulator of gene-corticosteroid interactions in BC. Finally, we discover a regulatory variant strongly stratifying BC risk according to corticosteroid use. Within risk allele carriers, 18.2% of women taking corticosteroids developed BC, compared to 5.1% of the non-users (with an HR = 3.41 per-allele within corticosteroid users). In comparison, there are no differences in BC risk within the reference allele homozygotes. Overall, this work highlights the clinical relevance of gene-drug interactions in disease risk and provides a roadmap for repurposing biobanks in drug repositioning and precision medicine.

PMID:34363748 | DOI:10.1016/j.ajhg.2021.07.008

Categories: Literature Watch

Identification of pimavanserin tartrate as a potent Ca<sup>2+</sup>-calcineurin-NFAT pathway inhibitor for glioblastoma therapy

Sat, 2021-08-07 06:00

Acta Pharmacol Sin. 2021 Aug 6. doi: 10.1038/s41401-021-00724-2. Online ahead of print.

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and malignant type of primary brain tumor, and 95% of patients die within 2 years after diagnosis. In this study, aiming to overcome chemoresistance to the first-line drug temozolomide (TMZ), we carried out research to discover a novel alternative drug targeting the oncogenic NFAT signaling pathway for GBM therapy. To accelerate the drug's clinical application, we took advantage of a drug repurposing strategy to identify novel NFAT signaling pathway inhibitors. After screening a set of 93 FDA-approved drugs with simple structures, we identified pimavanserin tartrate (PIM), an effective 5-HT2A receptor inverse agonist used for the treatment of Parkinson's disease-associated psychiatric symptoms, as having the most potent inhibitory activity against the NFAT signaling pathway. Further study revealed that PIM suppressed STIM1 puncta formation to inhibit store-operated calcium entry (SOCE) and subsequent NFAT activity. In cellula, PIM significantly suppressed the proliferation, migration, division, and motility of U87 glioblastoma cells, induced G1/S phase arrest and promoted apoptosis. In vivo, the growth of subcutaneous and orthotopic glioblastoma xenografts was markedly suppressed by PIM. Unbiased omics studies revealed the novel molecular mechanism of PIM's antitumor activity, which included suppression of the ATR/CDK2/E2F axis, MYC, and AuroraA/B signaling. Interestingly, the genes upregulated by PIM were largely associated with cholesterol homeostasis, which may contribute to PIM's side effects and should be given more attention. Our study identified store-operated calcium channels as novel targets of PIM and was the first to systematically highlight the therapeutic potential of pimavanserin tartrate for glioblastoma.

PMID:34363007 | DOI:10.1038/s41401-021-00724-2

Categories: Literature Watch

Phase II Open-Label, Single-Arm Trial to Investigate the Efficacy and Safety of Topical Remetinostat Gel in Patients with Basal Cell Carcinoma

Sat, 2021-08-07 06:00

Clin Cancer Res. 2021 Aug 6. doi: 10.1158/1078-0432.CCR-21-0560. Online ahead of print.

ABSTRACT

PURPOSE: The mainstay of treatment for basal cell carcinoma (BCC) is surgical excision, which can result in significant associated morbidity, particularly for patients with recurrent tumors. We previously conducted a drug repositioning screen using molecular data from human BCCs and identified histone deacetylase (HDAC) inhibitors as a potential treatment for BCC. Here we conduct the first proof-of-principle study of a topical pan-HDAC inhibitor, remetinostat, in human BCC.

PATIENTS AND METHODS: We conducted a phase II, open-label, single-arm, single-institution trial of a topical HDAC inhibitor. Participants with at least one BCC were recruited. All participants applied 1% remetinostat gel three times daily for 6 weeks, with measurements of tumor diameter conducted at baseline and week 8. Surgical excision of the remaining tumor was conducted at the end of the study and microscopic evaluation was performed.

RESULTS: Thirty-three per-protocol tumors from 25 participants were included in the analysis. The overall response rate, defined as the proportion of tumors achieving more than 30% decrease in the longest diameter from baseline to week 8, was 69.7% [90% confidence interval (CI), 54%-82.5%]. On pathologic examination, 54.8% of tumors demonstrated complete resolution. Pharmacodynamic analysis demonstrated similar levels of acetylated histone H3 in skin tissue before and after treatment, however, phosphorylation was increased. No systemic adverse events were reported.

CONCLUSIONS: The HDAC inhibitor remetinostat is a well-tolerated and effective topical treatment for reducing BCC disease burden in a clinically significant manner. This provides in-human validation of HDAC inhibitors as a therapy for BCC.

PMID:34362809 | DOI:10.1158/1078-0432.CCR-21-0560

Categories: Literature Watch

Novel Aptamer-Based Small-Molecule Drug Screening Assay to Identify Potential Sclerostin Inhibitors against Osteoporosis

Sat, 2021-08-07 06:00

Int J Mol Sci. 2021 Aug 2;22(15):8320. doi: 10.3390/ijms22158320.

ABSTRACT

A novel aptamer-based competitive drug screening platform for osteoporosis was devised in which fluorescence-labeled, sclerostin-specific aptamers compete with compounds from selected chemical libraries for the binding of immobilized recombinant human sclerostin to achieve high-throughput screening for potential small-molecule sclerostin inhibitors and to facilitate drug repurposing and drug discovery. Of the 96 selected inhibitors and FDA-approved drugs, six were shown to result in a significant decrease in the fluorescence intensity of the aptamer, suggesting a higher affinity toward sclerostin compared with that of the aptamer. The targets of these potential sclerostin inhibitors were correlated to lipid or bone metabolism, and several of the compounds have already been shown to be potential osteogenic activators, indicating that the aptamer-based competitive drug screening assay offered a potentially reliable strategy for the discovery of target-specific new drugs. The six potential sclerostin inhibitors suppressed the level of both intracellular and/or extracellular sclerostin in mouse osteocyte IDG-SW3 and increased alkaline phosphatase activity in IDG-SW3 cells, human bone marrow-derived mesenchymal stem cells and human fetal osteoblasts hFOB1.19. Potential small-molecule drug candidates obtained in this study are expected to provide new therapeutics for osteoporosis as well as insights into the structure-activity relationship of sclerostin inhibitors for rational drug design.

PMID:34361085 | DOI:10.3390/ijms22158320

Categories: Literature Watch

Novel Therapeutic Approaches for Alzheimer's Disease: An Updated Review

Sat, 2021-08-07 06:00

Int J Mol Sci. 2021 Jul 30;22(15):8208. doi: 10.3390/ijms22158208.

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease and accounts for most cases of dementia. The prevalence of AD has increased in the current rapidly aging society and contributes to a heavy burden on families and society. Despite the profound impact of AD, current treatments are unable to achieve satisfactory therapeutic effects or stop the progression of the disease. Finding novel treatments for AD has become urgent. In this paper, we reviewed novel therapeutic approaches in five categories: anti-amyloid therapy, anti-tau therapy, anti-neuroinflammatory therapy, neuroprotective agents including N-methyl-D-aspartate (NMDA) receptor modulators, and brain stimulation. The trend of therapeutic development is shifting from a single pathological target to a more complex mechanism, such as the neuroinflammatory and neurodegenerative processes. While drug repositioning may accelerate pharmacological development, non-pharmacological interventions, especially repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), also have the potential for clinical application. In the future, it is possible for physicians to choose appropriate interventions individually on the basis of precision medicine.

PMID:34360973 | DOI:10.3390/ijms22158208

Categories: Literature Watch

Early-Phase Interventional Trials in Oral Cancer Prevention

Sat, 2021-08-07 06:00

Cancers (Basel). 2021 Jul 30;13(15):3845. doi: 10.3390/cancers13153845.

ABSTRACT

The increasing breadth of molecular targets, promise of immune-targeted therapies and repurposed agents have heightened interest in cancer prevention. While, to date, testing of oral cancer chemoprevention strategies has failed to deliver therapeutic agents for routine clinical practice, there remains an urgent need for further clinical research to overcome this hurdle. Patients at the greatest risk of disease stand to benefit the most from inclusion in clinical trials; therefore, there is a need to carefully define this population using validated clinical and molecular markers. Safety, tolerability and the efficacy of interventions is assessed through carefully selected endpoints. These endpoints may include pharmacodynamic, clinical, histological and on-target molecular modifications as an individual or as a composite endpoint. Early-phase trials provide an area of opportunity to explore novel and repurposed agents in the setting of oral cancer chemoprevention, eventually leading to phase III trials with clinical endpoints such as transformation and clinical outcome; these studies are large, lengthy and expensive and should be reserved for the most promising of agents. This paper will explore current evidence in oral cancer chemoprevention, drug repurposing, selection of appropriate endpoints for early-phase trials and novel therapeutic angles in oral cancer chemoprevention.

PMID:34359746 | DOI:10.3390/cancers13153845

Categories: Literature Watch

Targeting BRF2 in Cancer Using Repurposed Drugs

Sat, 2021-08-07 06:00

Cancers (Basel). 2021 Jul 27;13(15):3778. doi: 10.3390/cancers13153778.

ABSTRACT

The overexpression of BRF2, a selective subunit of RNA polymerase III, has been shown to be crucial in the development of several types of cancers, including breast cancer and lung squamous cell carcinoma. Predominantly, BRF2 acts as a central redox-sensing transcription factor (TF) and is involved in rescuing oxidative stress (OS)-induced apoptosis. Here, we showed a novel link between BRF2 and the DNA damage response. Due to the lack of BRF2-specific inhibitors, through virtual screening and molecular dynamics simulation, we identified potential drug candidates that interfere with BRF2-TATA-binding Protein (TBP)-DNA complex interactions based on binding energy, intermolecular, and torsional energy parameters. We experimentally tested bexarotene as a potential BRF2 inhibitor. We found that bexarotene (Bex) treatment resulted in a dramatic decline in oxidative stress and Tert-butylhydroquinone (tBHQ)-induced levels of BRF2 and consequently led to a decrease in the cellular proliferation of cancer cells which may in part be due to the drug pretreatment-induced reduction of ROS generated by the oxidizing agent. Our data thus provide the first experimental evidence that BRF2 is a novel player in the DNA damage response pathway and that bexarotene can be used as a potential inhibitor to treat cancers with the specific elevation of oxidative stress.

PMID:34359683 | DOI:10.3390/cancers13153778

Categories: Literature Watch

Drug repurposing of triazoles against mucormycosis using molecular docking: A short communication

Fri, 2021-08-06 06:00

Comput Biol Med. 2021 Jul 31;136:104722. doi: 10.1016/j.compbiomed.2021.104722. Online ahead of print.

ABSTRACT

BACKGROUND: Mucormycosis, a fungal infection caused by Rhizopus species is on the rise in COVID-19 patients as a result of their suppressed immunity. The current therapies include systemic administration of Amphotericin B.

HYPOTHESIS AND METHOD: We screened several triazole broad-spectrum antifungal agents against the therapeutic target in mucormycosis using computational techniques like molecular docking and compared them with isavuconazole, an approved drug.

RESULT: The study concluded that 4 triazole drugs, pramiconazole, itraconazole, posaconazole and ketoconazole were strong candidates to be further evaluated and developed as a treatment for mucormycosis.

CONCLUSION: Novel topical and oral therapies could be developed from these drug leads.

PMID:34358995 | DOI:10.1016/j.compbiomed.2021.104722

Categories: Literature Watch

In silico drug repurposing in COVID-19: A network-based analysis

Fri, 2021-08-06 06:00

Biomed Pharmacother. 2021 Jul 28;142:111954. doi: 10.1016/j.biopha.2021.111954. Online ahead of print.

ABSTRACT

The SARS-CoV-2 pandemic is a worldwide public health emergency. Despite the beginning of a vaccination campaign, the search for new drugs to appropriately treat COVID-19 patients remains a priority. Drug repurposing represents a faster and cheaper method than de novo drug discovery. In this study, we examined three different network-based approaches to identify potentially repurposable drugs to treat COVID-19. We analyzed transcriptomic data from whole blood cells of patients with COVID-19 and 21 other related conditions, as compared with those of healthy subjects. In addition to conventionally used drugs (e.g., anticoagulants, antihistaminics, anti-TNFα antibodies, corticosteroids), unconventional candidate compounds, such as SCN5A inhibitors and drugs active in the central nervous system, were identified. Clinical judgment and validation through clinical trials are always mandatory before use of the identified drugs in a clinical setting.

PMID:34358753 | PMC:PMC8316014 | DOI:10.1016/j.biopha.2021.111954

Categories: Literature Watch

Pages