Drug Repositioning

"drug repositioning" OR "drug repurposing"; +11 new citations

Fri, 2020-11-20 08:29

11 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:

"drug repositioning" OR "drug repurposing"

These pubmed results were generated on 2020/11/20

PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

Categories: Literature Watch

Histamine receptors and COVID-19.

Fri, 2020-11-20 02:22
Related Articles

Histamine receptors and COVID-19.

Inflamm Res. 2020 Nov 18;:

Authors: Ennis M, Tiligada K

Abstract
OBJECTIVE: Reports that the over-the-counter histamine H2 receptor antagonist famotidine could help treat the novel coronavirus disease (COVID-19) appeared from April 2020. We, therefore, examined reports on interactions between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and histamine receptor antagonists.
METHODS: A systematic literature search was performed by 19 September 2020, and updated on 28 October 2020, in PubMed, Scopus, Cochrane Library and Google Scholar using (COVID-19 OR coronavirus OR SARS-CoV-2) AND (histamine antagonist OR famotidine OR cimetidine). ClinicalTrials.gov was searched for COVID-19 and (famotidine or histamine).
RESULTS: Famotidine may be a useful addition in COVID-19 treatment, but the results from prospective randomized trials are as yet awaited. Bioinformatics/drug repurposing studies indicated that, among several medicines, H1 and H2 receptor antagonists may interact with key viral enzymes. However, in vitro studies have to date failed to show a direct inhibition of famotidine on SARS-CoV-2 replication.
CONCLUSIONS: Clinical research into the potential benefits of H2 receptor antagonists in managing COVID-19 inflammation began from a simple observation and now is being tested in multi-centre clinical trials. The positive effects of famotidine may be due to H2 receptor-mediated immunomodulatory actions on mast cell histamine-cytokine cross-talk, rather than a direct action on SARS-CoV-2.

PMID: 33206207 [PubMed - as supplied by publisher]

Categories: Literature Watch

Targeting SARS-CoV-2 RNA-dependent RNA polymerase: An in silico drug repurposing for COVID-19.

Fri, 2020-11-20 02:22
Related Articles

Targeting SARS-CoV-2 RNA-dependent RNA polymerase: An in silico drug repurposing for COVID-19.

F1000Res. 2020;9:1166

Authors: Baby K, Maity S, Mehta CH, Suresh A, Nayak UY, Nayak Y

Abstract
Background: The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), took more lives than combined epidemics of SARS, MERS, H1N1, and Ebola. Currently, the prevention and control of spread are the goals in COVID-19 management as there are no specific drugs to cure or vaccines available for prevention. Hence, the drug repurposing was explored by many research groups, and many target proteins have been examined. The major protease (M pro), and RNA-dependent RNA polymerase (RdRp) are two target proteins in SARS-CoV-2 that have been validated and extensively studied for drug development in COVID-19. The RdRp shares a high degree of homology between those of two previously known coronaviruses, SARS-CoV and MERS-CoV. Methods: In this study, the FDA approved library of drugs were docked against the active site of RdRp using Schrodinger's computer-aided drug discovery tools for in silico drug-repurposing. Results: We have shortlisted 14 drugs from the Standard Precision docking and interaction-wise study of drug-binding with the active site on the enzyme. These drugs are antibiotics, NSAIDs, hypolipidemic, coagulant, thrombolytic, and anti-allergics. In molecular dynamics simulations, pitavastatin, ridogrel and rosoxacin displayed superior binding with the active site through ARG555 and divalent magnesium. Conclusion: Pitavastatin, ridogrel and rosoxacin can be further optimized in preclinical and clinical studies to determine their possible role in COVID-19 treatment.

PMID: 33204411 [PubMed - in process]

Categories: Literature Watch

Potential SARS-CoV-2 protease Mpro inhibitors: Repurposing FDA-approved drugs.

Fri, 2020-11-20 02:22
Related Articles

Potential SARS-CoV-2 protease Mpro inhibitors: Repurposing FDA-approved drugs.

Phys Biol. 2020 Nov 18;:

Authors: Kouznetsova VL, Huang DZ, Tsigelny IF

Abstract
Using as a template the crystal structure of COVID-19 main protease, we developed a pharmacophore model of functional centers of the protease inhibitor-binding pocket. With this model, we conducted data mining of the conformational database of FDA-approved drugs. This search brought 64 compounds that can be potential inhibitors of COVID-19 protease. The conformations of these compounds undergone 3D fingerprint similarity clusterization. Then we conducted docking of possible conformers of these drugs to the binding pocket of protease. We also conducted the same docking of random compounds. Free energies of the docking interaction for the selected compounds were clearly lower than random compounds. Three of the selected compounds were carfilzomib, cyclosporine A, and azithromycin-the drugs that already are tested for COVID-19 treatment. Among the selected compounds are two HIV protease inhibitors and two hepatitis C protease inhibitors. We recommend testing of the selected compounds for treatment of COVID-19.

PMID: 33203811 [PubMed - as supplied by publisher]

Categories: Literature Watch

Repurposing the antidepressant sertraline as SHMT inhibitor to suppress serine/glycine synthesis addicted breast tumor growth.

Fri, 2020-11-20 02:22
Related Articles

Repurposing the antidepressant sertraline as SHMT inhibitor to suppress serine/glycine synthesis addicted breast tumor growth.

Mol Cancer Ther. 2020 Nov 17;:

Authors: Geeraerts SL, Kampen KR, Rinaldi G, Gupta P, Planque M, Louros N, Heylen E, De Cremer K, De Brucker K, Vereecke S, Verbelen B, Vermeersch P, Schymkowitz J, Rousseau F, Cassiman D, Fendt SM, Voet A, Cammue BPA, Thevissen K, De Keersmaecker K

Abstract
Metabolic rewiring is a hallmark of cancer that supports tumor growth, survival and chemotherapy resistance. While normal cells often rely on extracellular serine and glycine supply, a significant subset of cancers becomes addicted to intracellular serine/glycine synthesis, offering an attractive drug target. Previously developed inhibitors of serine/glycine synthesis enzymes did not reach clinical trials due to unfavorable pharmacokinetic profiles, implying that further efforts to identify clinically applicable drugs targeting this pathway are required. In this study, we aimed to develop therapies that can rapidly enter the clinical practice by focusing on drug repurposing, as their safety and cost-effectiveness have been optimized before. Using a yeast model system, we repurposed two compounds, sertraline and thimerosal, for their selective toxicity against serine/glycine synthesis addicted breast cancer and T-cell acute lymphoblastic leukemia cell lines. Isotope tracer metabolomics, computational docking, enzymatic assays and drug-target interaction studies revealed that sertraline and thimerosal inhibit serine/glycine synthesis enzymes serine hydroxymethyltransferase and phosphoglycerate dehydrogenase, respectively. In addition, we demonstrated that sertraline's anti-proliferative activity was further aggravated by mitochondrial inhibitors, such as the antimalarial artemether, by causing G1-S cell cycle arrest. Most notably, this combination also resulted in serine-selective antitumor activity in breast cancer mouse xenografts. Collectively, this study provides molecular insights into the repurposed mode-of-action of the antidepressant sertraline and allows to delineate a hitherto unidentified group of cancers being particularly sensitive to treatment with sertraline. Furthermore, we highlight the simultaneous inhibition of serine/glycine synthesis and mitochondrial metabolism as a novel treatment strategy for serine/glycine synthesis addicted cancers.

PMID: 33203732 [PubMed - as supplied by publisher]

Categories: Literature Watch

Antifungal Drug Repurposing.

Fri, 2020-11-20 02:22
Related Articles

Antifungal Drug Repurposing.

Antibiotics (Basel). 2020 Nov 15;9(11):

Authors: Kim JH, Cheng LW, Chan KL, Tam CC, Mahoney N, Friedman M, Shilman MM, Land KM

Abstract
Control of fungal pathogens is increasingly problematic due to the limited number of effective drugs available for antifungal therapy. Conventional antifungal drugs could also trigger human cytotoxicity associated with the kidneys and liver, including the generation of reactive oxygen species. Moreover, increased incidences of fungal resistance to the classes of azoles, such as fluconazole, itraconazole, voriconazole, or posaconazole, or echinocandins, including caspofungin, anidulafungin, or micafungin, have been documented. Of note, certain azole fungicides such as propiconazole or tebuconazole that are applied to agricultural fields have the same mechanism of antifungal action as clinical azole drugs. Such long-term application of azole fungicides to crop fields provides environmental selection pressure for the emergence of pan-azole-resistant fungal strains such as Aspergillus fumigatus having TR34/L98H mutations, specifically, a 34 bp insertion into the cytochrome P450 51A (CYP51A) gene promoter region and a leucine-to-histidine substitution at codon 98 of CYP51A. Altogether, the emerging resistance of pathogens to currently available antifungal drugs and insufficiency in the discovery of new therapeutics engender the urgent need for the development of new antifungals and/or alternative therapies for effective control of fungal pathogens. We discuss the current needs for the discovery of new clinical antifungal drugs and the recent drug repurposing endeavors as alternative methods for fungal pathogen control.

PMID: 33203147 [PubMed]

Categories: Literature Watch

"drug repositioning" OR "drug repurposing"; +8 new citations

Wed, 2020-11-18 07:32

8 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:

"drug repositioning" OR "drug repurposing"

These pubmed results were generated on 2020/11/18

PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

Categories: Literature Watch

"drug repositioning" OR "drug repurposing"; +9 new citations

Tue, 2020-11-17 16:07

9 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:

"drug repositioning" OR "drug repurposing"

These pubmed results were generated on 2020/11/17

PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

Categories: Literature Watch

"drug repositioning" OR "drug repurposing"; +6 new citations

Mon, 2020-11-16 21:42

6 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:

"drug repositioning" OR "drug repurposing"

These pubmed results were generated on 2020/11/16

PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

Categories: Literature Watch

"drug repositioning" OR "drug repurposing"; +9 new citations

Fri, 2020-11-13 07:57

9 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:

"drug repositioning" OR "drug repurposing"

These pubmed results were generated on 2020/11/13

PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

Categories: Literature Watch

"drug repositioning" OR "drug repurposing"; +6 new citations

Thu, 2020-11-12 13:37

6 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:

"drug repositioning" OR "drug repurposing"

These pubmed results were generated on 2020/11/12

PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

Categories: Literature Watch

"drug repositioning" OR "drug repurposing"; +14 new citations

Wed, 2020-11-11 10:02

14 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:

"drug repositioning" OR "drug repurposing"

These pubmed results were generated on 2020/11/11

PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

Categories: Literature Watch

"drug repositioning" OR "drug repurposing"; +13 new citations

Wed, 2020-11-11 06:00

13 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:

"drug repositioning" OR "drug repurposing"

These pubmed results were generated on 2020/11/11

PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

Categories: Literature Watch

Genomic Medicine: Lessons Learned From Monogenic and Complex Bone Disorders.

Tue, 2020-11-10 12:37
Related Articles

Genomic Medicine: Lessons Learned From Monogenic and Complex Bone Disorders.

Front Endocrinol (Lausanne). 2020;11:556610

Authors: Trajanoska K, Rivadeneira F

Abstract
Current genetic studies of monogenic and complex bone diseases have broadened our understanding of disease pathophysiology, highlighting the need for medical interventions and treatments tailored to the characteristics of patients. As genomic research progresses, novel insights into the molecular mechanisms are starting to provide support to clinical decision-making; now offering ample opportunities for disease screening, diagnosis, prognosis and treatment. Drug targets holding mechanisms with genetic support are more likely to be successful. Therefore, implementing genetic information to the drug development process and a molecular redefinition of skeletal disease can help overcoming current shortcomings in pharmaceutical research, including failed attempts and appalling costs. This review summarizes the achievements of genetic studies in the bone field and their application to clinical care, illustrating the imminent advent of the genomic medicine era.

PMID: 33162933 [PubMed - in process]

Categories: Literature Watch

Computational drug re-purposing targeting the spike glycoprotein of SARS-CoV-2 as an effective strategy to neutralize COVID-19.

Tue, 2020-11-10 12:37
Related Articles

Computational drug re-purposing targeting the spike glycoprotein of SARS-CoV-2 as an effective strategy to neutralize COVID-19.

Eur J Pharmacol. 2020 Nov 05;:173720

Authors: Toor HG, Banerjee DI, Lipsa Rath S, Darji SA

Abstract
COVID-19 has intensified into a global pandemic with over a million deaths worldwide. Experimental research analyses have been implemented and executed with the sole rationale to counteract SARS-CoV-2, which has initiated potent therapeutic strategy development in coherence with computational biology validation focusing on the characterized viral drug targets signified by proteomic and genomic data. Spike glycoprotein is one of such potential drug target that promotes viral attachment to the host cellular membrane by binding to its receptor ACE-2 via its Receptor-Binding Domain (RBD). Multiple Sequence alignment and relative phylogenetic analysis revealed significant sequential disparities of SARS-CoV-2 as compared to previously encountered SARS-CoV and MERS-CoV strains. We implemented a drug re-purposing approach wherein the inhibitory efficacy of a cluster of thirty known drug candidates comprising of antivirals, antibiotics and phytochemicals (selection contingent on their present developmental status in underway clinical trials) was elucidated by subjecting them to molecular docking analyses against the spike protein RBD model (developed using homology modelling and validated using SAVES server 5.0) and the composite trimeric structures of spike glycoprotein of SARS-CoV-2. Our results indicated that Camostat, Favipiravir, Tenofovir, Raltegravir and Stavudine showed significant interactions with spike RBD of SARS-CoV-2. Proficient bioavailability coupled with no predicted in silico toxicity rendered them as prospective alternatives for designing and development of novel combinatorial therapy formulations for improving existing treatment regimes to combat COVID-19.

PMID: 33160938 [PubMed - as supplied by publisher]

Categories: Literature Watch

A network medicine approach to investigation and population-based validation of disease manifestations and drug repurposing for COVID-19.

Tue, 2020-11-10 12:37
Related Articles

A network medicine approach to investigation and population-based validation of disease manifestations and drug repurposing for COVID-19.

PLoS Biol. 2020 Nov 06;18(11):e3000970

Authors: Zhou Y, Hou Y, Shen J, Mehra R, Kallianpur A, Culver DA, Gack MU, Farha S, Zein J, Comhair S, Fiocchi C, Stappenbeck T, Chan T, Eng C, Jung JU, Jehi L, Erzurum S, Cheng F

Abstract
The global coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to unprecedented social and economic consequences. The risk of morbidity and mortality due to COVID-19 increases dramatically in the presence of coexisting medical conditions, while the underlying mechanisms remain unclear. Furthermore, there are no approved therapies for COVID-19. This study aims to identify SARS-CoV-2 pathogenesis, disease manifestations, and COVID-19 therapies using network medicine methodologies along with clinical and multi-omics observations. We incorporate SARS-CoV-2 virus-host protein-protein interactions, transcriptomics, and proteomics into the human interactome. Network proximity measurement revealed underlying pathogenesis for broad COVID-19-associated disease manifestations. Analyses of single-cell RNA sequencing data show that co-expression of ACE2 and TMPRSS2 is elevated in absorptive enterocytes from the inflamed ileal tissues of Crohn disease patients compared to uninflamed tissues, revealing shared pathobiology between COVID-19 and inflammatory bowel disease. Integrative analyses of metabolomics and transcriptomics (bulk and single-cell) data from asthma patients indicate that COVID-19 shares an intermediate inflammatory molecular profile with asthma (including IRAK3 and ADRB2). To prioritize potential treatments, we combined network-based prediction and a propensity score (PS) matching observational study of 26,779 individuals from a COVID-19 registry. We identified that melatonin usage (odds ratio [OR] = 0.72, 95% CI 0.56-0.91) is significantly associated with a 28% reduced likelihood of a positive laboratory test result for SARS-CoV-2 confirmed by reverse transcription-polymerase chain reaction assay. Using a PS matching user active comparator design, we determined that melatonin usage was associated with a reduced likelihood of SARS-CoV-2 positive test result compared to use of angiotensin II receptor blockers (OR = 0.70, 95% CI 0.54-0.92) or angiotensin-converting enzyme inhibitors (OR = 0.69, 95% CI 0.52-0.90). Importantly, melatonin usage (OR = 0.48, 95% CI 0.31-0.75) is associated with a 52% reduced likelihood of a positive laboratory test result for SARS-CoV-2 in African Americans after adjusting for age, sex, race, smoking history, and various disease comorbidities using PS matching. In summary, this study presents an integrative network medicine platform for predicting disease manifestations associated with COVID-19 and identifying melatonin for potential prevention and treatment of COVID-19.

PMID: 33156843 [PubMed - as supplied by publisher]

Categories: Literature Watch

Identification and characterization of novel RdRp and Nsp15 inhibitors for SARS-COV2 using computational approach.

Tue, 2020-11-10 12:37
Related Articles

Identification and characterization of novel RdRp and Nsp15 inhibitors for SARS-COV2 using computational approach.

J Biomol Struct Dyn. 2020 Nov 06;:1-18

Authors: Barage S, Karthic A, Bavi R, Desai N, Kumar R, Kumar V, Lee KW

Abstract
The World Health Organization has declared COVID-19 as a global health emergency. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and highlights an urgent need for therapeutics. Here, we have employed a series of computer-aided drug repurposing campaign to discover inhibitors of RNA dependent RNA polymerase (RdRp) and Nsp15/EndoU. Subsequently, MD simulation has been performed to observe dynamic behavior of identified leads at the active site of RdRp and Nsp15. We successfully identified novel lead molecule such as Alectinib for RdRp while Naldemedine and Ergotamine for NSP15. These lead molecules were accommodated in the active site of the enzyme and stabilized by the networks of the hydrogen bond, pi type and hydrophobic interaction with key residues of either target. Interestingly, identified compounds show molecular mimicry in terms of molecular interactions with key residues of RdRp and Nsp15 essential for catalysis and substrate interaction. Previously, Alectinib, Naldemedine and Ergotamine were used as drug in different diseases might be repurposed against selected protein targets of COVID19. Finally, we propose that the identified inhibitors represent a novel lead molecule to design a more effective inhibitor to stop the progress of pathogen. Communicated by Ramaswamy H. Sarma.

PMID: 33155531 [PubMed - as supplied by publisher]

Categories: Literature Watch

Repurposing Antimalarials to Tackle the COVID-19 Pandemic.

Tue, 2020-11-10 12:37
Related Articles

Repurposing Antimalarials to Tackle the COVID-19 Pandemic.

Trends Parasitol. 2020 Oct 19;:

Authors: Krishna S, Augustin Y, Wang J, Xu C, Staines HM, Platteeuw H, Kamarulzaman A, Sall A, Kremsner P

Abstract
Artemisinin-based combination therapies (ACTs) have demonstrated in vitro inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Artemisinins have also shown anti-inflammatory effects, including inhibition of interleukin-6 (IL-6) that plays a key role in the development of severe coronavirus disease 2019 (COVID-19). There is now sufficient evidence for the effectiveness of ACTs, and in particular artesunate/pyronaridine, to support clinical studies for COVID-19 infections.

PMID: 33153922 [PubMed - as supplied by publisher]

Categories: Literature Watch

"drug repositioning" OR "drug repurposing"; +7 new citations

Fri, 2020-11-06 07:28

7 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:

"drug repositioning" OR "drug repurposing"

These pubmed results were generated on 2020/11/06

PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

Categories: Literature Watch

A review on drug repurposing applicable to COVID-19.

Thu, 2020-11-05 06:54
Related Articles

A review on drug repurposing applicable to COVID-19.

Brief Bioinform. 2020 Nov 05;:

Authors: Dotolo S, Marabotti A, Facchiano A, Tagliaferri R

Abstract
Drug repurposing involves the identification of new applications for existing drugs at a lower cost and in a shorter time. There are different computational drug-repurposing strategies and some of these approaches have been applied to the coronavirus disease 2019 (COVID-19) pandemic. Computational drug-repositioning approaches applied to COVID-19 can be broadly categorized into (i) network-based models, (ii) structure-based approaches and (iii) artificial intelligence (AI) approaches. Network-based approaches are divided into two categories: network-based clustering approaches and network-based propagation approaches. Both of them allowed to annotate some important patterns, to identify proteins that are functionally associated with COVID-19 and to discover novel drug-disease or drug-target relationships useful for new therapies. Structure-based approaches allowed to identify small chemical compounds able to bind macromolecular targets to evaluate how a chemical compound can interact with the biological counterpart, trying to find new applications for existing drugs. AI-based networks appear, at the moment, less relevant since they need more data for their application.

PMID: 33147623 [PubMed - as supplied by publisher]

Categories: Literature Watch

Pages