Drug Repositioning
Managing Bardet-Biedl Syndrome-Now and in the Future.
Managing Bardet-Biedl Syndrome-Now and in the Future.
Front Pediatr. 2018;6:23
Authors: Forsythe E, Kenny J, Bacchelli C, Beales PL
Abstract
Bardet-Biedl syndrome is a rare autosomal recessive multisystem disorder caused by defects in genes encoding for proteins that localize to the primary cilium/basal body complex. Twenty-one disease-causing genes have been identified to date. It is one of the most well-studied conditions in the family of diseases caused by defective cilia collectively known as ciliopathies. In this review, we provide an update on diagnostic developments, clinical features, and progress in the management of Bardet-Biedl syndrome. Advances in diagnostic technologies including exome and whole genome sequencing are expanding the spectrum of patients who are diagnosed with Bardet-Biedl syndrome and increasing the number of cases with diagnostic uncertainty. As a result of the diagnostic developments, a small number of patients with only one or two clinical features of Bardet-Biedl syndrome are being diagnosed. Our understanding of the syndrome-associated renal disease has evolved and is reviewed here. Novel interventions are developing at a rapid pace and are explored in this review including genetic therapeutics such as gene therapy, exon skipping therapy, nonsense suppression therapy, and gene editing. Other non-genetic therapies such as gene repurposing, targeted therapies, and non-pharmacological interventions are also discussed.
PMID: 29487844 [PubMed]
Repurposing the anthelmintic drug niclosamide to combat Helicobacter pylori.
Repurposing the anthelmintic drug niclosamide to combat Helicobacter pylori.
Sci Rep. 2018 Feb 27;8(1):3701
Authors: Tharmalingam N, Port J, Castillo D, Mylonakis E
Abstract
There is an urgent need to discover novel antimicrobial therapies. Drug repurposing can reduce the time and cost risk associated with drug development. We report the inhibitory effects of anthelmintic drugs (niclosamide, oxyclozanide, closantel, rafoxanide) against Helicobacter pylori strain 60190 and pursued further characterization of niclosamide against H. pylori. The MIC of niclosamide against H. pylori was 0.25 μg/mL. Niclosamide was stable in acidic pH and demonstrated partial synergy with metronidazole and proton pump inhibitors, such as omeprazole and pantoprazole. Niclosamide administration at 1 × MIC concentration, eliminated 3-log10 CFU of H. pylori adhesion/invasion to AGS cells. Interestingly, no resistance developed even after exposure of H. pylori bacteria to niclosamide for 30 days. The cytotoxic assay demonstrated that niclosamide is not hemolytic and has an IC50 of 4 μg/mL in hepatic and gastric cell lines. Niclosamide administration decreased transmembrane pH as determined by DiSC3(5) assay indicating that the mechanism of action of the anti-H. pylori activity of niclosamide was the disruption of H. pylori proton motive force. Niclosamide was effective in the Galleria mellonella-H. pylori infection model (p = 0.0001) and it can be develop further to combat H. pylori infection. However, results need to be confirmed with other H. pylori and clinical strains.
PMID: 29487357 [PubMed - in process]
An allosteric inhibitor of Mycobacterium tuberculosis ArgJ: Implications to a novel combinatorial therapy.
An allosteric inhibitor of Mycobacterium tuberculosis ArgJ: Implications to a novel combinatorial therapy.
EMBO Mol Med. 2018 Feb 26;:
Authors: Mishra A, Mamidi AS, Rajmani RS, Ray A, Roy R, Surolia A
Abstract
The existing treatment regime against tuberculosis is not adequate, and novel therapeutic interventions are required to target Mycobacterium tuberculosis (Mtb) pathogenesis. We report Pranlukast (PRK) as a novel allosteric inhibitor of Mtb's arginine biosynthetic enzyme, Ornithine acetyltransferase (MtArgJ). PRK treatment remarkably abates the survival of free as well as macrophage-internalized Mtb, and shows enhanced efficacy in combination with standard-of-care drugs. Notably, PRK also reduces the 5-lipoxygenase (5-LO) signaling in the infected macrophages, thereby surmounting an enhanced response against intracellular pathogen. Further, treatment with PRK alone or with rifampicin leads to significant decrease in Mtb burden and tubercular granulomas in Mtb-infected mice lungs. Taken together, this study demonstrates a novel allosteric inhibitor of MtArgJ, which acts as a dual-edged sword, by targeting the intracellular bacteria as well as the bacterial pro-survival signaling in the host. PRK is highly effective against in vitro and in vivo survival of Mtb and being an FDA-approved drug, it shows a potential for development of advanced combinatorial therapy against tuberculosis.
PMID: 29483133 [PubMed - as supplied by publisher]
Patient-customized Drug Combination Prediction and Testing for T-cell Prolymphocytic Leukemia Patients.
Patient-customized Drug Combination Prediction and Testing for T-cell Prolymphocytic Leukemia Patients.
Cancer Res. 2018 Feb 26;:
Authors: He L, Tang J, Andersson EI, Timonen S, Koschmieder S, Wennerberg K, Mustjoki S, Aittokallio T
Abstract
The molecular pathways that drive cancer progression and treatment resistance are highly redundant and variable between individual patients with the same cancer type. To tackle this complex rewiring of pathway crosstalk, personalized combination treatments targeting multiple cancer growth and survival pathways are required. Here we implemented a computational-experimental drug combination prediction and testing (DCPT) platform for efficient in silico prioritization and ex vivo testing in patient-derived samples to identify customized synergistic combinations for individual cancer patients. DCPT used drug-target interaction networks to traverse the massive combinatorial search spaces among 218 compounds (a total of 23,653 pairwise combinations) and identified cancer-selective synergies by using differential single-compound sensitivity profiles between patient cells and healthy controls, hence reducing the likelihood of toxic combination effects. A polypharmacology-based machine learning modeling and network visualization made use of baseline genomic and molecular profiles to guide patient-specific combination testing and clinical translation phases. Using T cell prolymphocytic leukemia (T-PLL) as a first case study, we show how the DCPT platform successfully predicted distinct synergistic combinations for each of the three T-PLL patients, each presenting with different resistance patterns and synergy mechanisms. In total, 10/24 (42%) of selective combination predictions were experimentally confirmed to show synergy in patient-derived samples ex vivo. The identified selective synergies among approved drugs, including tacrolimus and temsirolimus combined with BCL-2 inhibitor venetoclax, may offer novel drug repurposing opportunities for treating T-PLL.
PMID: 29483097 [PubMed - as supplied by publisher]
A Computational Workflow Translates a 58-Gene Signature to a Formalin-Fixed, Paraffin-Embedded Sample-Based Companion Diagnostic for Personalized Treatment of the BRAF-Mutation-Like Subtype of Colorectal Cancers.
A Computational Workflow Translates a 58-Gene Signature to a Formalin-Fixed, Paraffin-Embedded Sample-Based Companion Diagnostic for Personalized Treatment of the BRAF-Mutation-Like Subtype of Colorectal Cancers.
High Throughput. 2017 Nov 06;6(4):
Authors: In 't Veld SGJG, Duong KN, Snel M, Witteveen A, Beumer IJ, Delahaye LJMJ, Wehkamp D, Bernards R, Glas AM, Tian S
Abstract
Colorectal cancer patients with the BRAF(p.V600E) mutation have poor prognosis in metastatic setting. Personalized treatment options and companion diagnostics are needed to better treat these patients. Previously, we developed a 58-gene signature to characterize the distinct gene expression pattern of BRAF-mutation-like subtype (accuracy 91.1%). Further experiments repurposed drug Vinorelbine as specifically lethal to this BRAF-mutation-like subtype. The aim of this study is to translate this 58-gene signature from a research setting to a robust companion diagnostic that can use formalin-fixed, paraffin-embedded (FFPE) samples to select patients with the BRAF-mutation-like subtype. BRAF mutation and gene expression data of 302 FFPE samples were measured (mutants = 57, wild-type = 245). The performance of the 58-gene signature in FFPE samples showed a high sensitivity of 89.5%. In the identified BRAF-mutation-like subtype group, 50% of tumours were known BRAF mutants, and 50% were BRAF wild-type. The stability of the 58-gene signature in FFPE samples was evaluated by two control samples over 40 independent experiments. The standard deviations (SD) were within the predefined criteria (control 1: SD = 0.091, SD/Range = 3.0%; control 2: SD = 0.169, SD/Range = 5.5%). The fresh frozen version and translated FFPE version of this 58-gene signature were compared using 170 paired fresh frozen and FFPE samples and the result showed high consistency (agreement = 99.3%). In conclusion, we translated this 58-gene signature to a robust companion diagnostic that can use FFPE samples.
PMID: 29479053 [PubMed]
Genome-wide CRISPR-Cas9 Screen Identifies Leukemia-Specific Dependence on a Pre-mRNA Metabolic Pathway Regulated by DCPS.
Genome-wide CRISPR-Cas9 Screen Identifies Leukemia-Specific Dependence on a Pre-mRNA Metabolic Pathway Regulated by DCPS.
Cancer Cell. 2018 Feb 08;:
Authors: Yamauchi T, Masuda T, Canver MC, Seiler M, Semba Y, Shboul M, Al-Raqad M, Maeda M, Schoonenberg VAC, Cole MA, Macias-Trevino C, Ishikawa Y, Yao Q, Nakano M, Arai F, Orkin SH, Reversade B, Buonamici S, Pinello L, Akashi K, Bauer DE, Maeda T
Abstract
To identify novel targets for acute myeloid leukemia (AML) therapy, we performed genome-wide CRISPR-Cas9 screening using AML cell lines, followed by a second screen in vivo. Here, we show that the mRNA decapping enzyme scavenger (DCPS) gene is essential for AML cell survival. The DCPS enzyme interacted with components of pre-mRNA metabolic pathways, including spliceosomes, as revealed by mass spectrometry. RG3039, a DCPS inhibitor originally developed to treat spinal muscular atrophy, exhibited anti-leukemic activity via inducing pre-mRNA mis-splicing. Humans harboring germline biallelic DCPS loss-of-function mutations do not exhibit aberrant hematologic phenotypes, indicating that DCPS is dispensable for human hematopoiesis. Our findings shed light on a pre-mRNA metabolic pathway and identify DCPS as a target for AML therapy.
PMID: 29478914 [PubMed - as supplied by publisher]
Development of anti-fungal pesticides from protein kinase inhibitor-based anticancer agents.
Development of anti-fungal pesticides from protein kinase inhibitor-based anticancer agents.
Eur J Med Chem. 2018 Feb 15;148:349-358
Authors: Ma Y, Liang S, Zhang Y, Yang D, Wang R
Abstract
Repurposing the novel p21-activated protein kinase inhibitor compound 15 identified its antifungal activity against five selected species of phytopathogenic fungi. Lead optimization based on its structure gave rise to a focused library of 20 derivatives, among which compound 3c demonstrated increased activity over compound 15 and even comparable to that of some commercialized fungicides in the market including carbendazim, tebuconazole, and pyraclostrobin. This study showed that p21-activated protein kinase inhibitor compound 15 was able to serve as a molecular platform to develop effective fungicides against fungal phytopathogens and indicate that screening existing protein kinase inhibitors might be an effective way to identify lead compounds for antifungal pesticides development.
PMID: 29475155 [PubMed - as supplied by publisher]
Repurposing of Kinase Inhibitors as Broad-Spectrum Antiviral Drugs.
Repurposing of Kinase Inhibitors as Broad-Spectrum Antiviral Drugs.
DNA Cell Biol. 2018 Feb;37(2):63-69
Authors: Schor S, Einav S
Abstract
The high cost of drug development and the narrow spectrum of coverage typically provided by direct-acting antivirals limit the scalability of this antiviral approach. This review summarizes progress and challenges in the repurposing of approved kinase inhibitors as host-targeted broad-spectrum antiviral therapies.
PMID: 29148875 [PubMed - indexed for MEDLINE]
Repurposing ospemifene for potentiating an antigen-specific immune response.
Repurposing ospemifene for potentiating an antigen-specific immune response.
Menopause. 2017 Apr;24(4):437-451
Authors: Kao CJ, Wurz GT, Lin YC, Vang DP, Phong B, DeGregorio MW
Abstract
OBJECTIVE: Ospemifene, an estrogen receptor agonist/antagonist approved for the treatment of dyspareunia and vaginal dryness in postmenopausal women, has potential new indications as an immune modulator. The overall objective of the present series of preclinical studies was to evaluate the immunomodulatory activity of ospemifene in combination with a peptide cancer vaccine.
METHODS: Immune regulating effects, mechanism of action and structure activity relationships of ospemifene and related compounds were evaluated by examining expression of T-cell activating cytokines in vitro, and antigen-specific immune response and cytotoxic T-lymphocyte activity in vivo. The effects of ospemifene (OSP) on the immune response to a peptide cancer vaccine (PV) were evaluated after chronic [control (n = 22); OSP 50 mg/kg (n = 16); PV (n = 6); OSP+PV (n = 11)], intermittent [control (n = 10); OSP 10 and 50 mg/kg (n = 11); PV (n = 11); combination treatment (n = 11 each dose)] and pretreatment [control; OSP 100 mg/kg; PV 100 μg; combination treatment (n = 8 all groups)] ospemifene oral dosing schedules in a total of 317 mixed-sex tumor-bearing and nontumor-bearing mice.
RESULTS: The results showed that ospemifene induced expression of the key TH1 cytokines interferon gamma and interleukin-2 in vitro, which may be mediated by stimulating T-cells through phosphoinositide 3-kinase and calmodulin signaling pathways. In combination with an antigen-specific peptide cancer vaccine, ospemifene increased antigen-specific immune response and increased cytotoxic T-lymphocyte activity in tumor-bearing and nontumor-bearing mice. The pretreatment, intermittent, and chronic dosing schedules of ospemifene activate naive T-cells, modulate antigen-induced tolerance and reduce tumor-associated, pro-inflammatory cytokines, respectively.
CONCLUSIONS: Taken together, ospemifene's dose response and schedule-dependent immune modulating activity offers a method of tailoring and augmenting the efficacy of previously failed antigen-specific cancer vaccines for a wide range of malignancies.
PMID: 27922937 [PubMed - indexed for MEDLINE]
Repurposing anticancer drugs for targeting necroptosis.
Repurposing anticancer drugs for targeting necroptosis.
Cell Cycle. 2018 Feb 21;:1-8
Authors: Fulda S
Abstract
Necroptosis represents a form of programmed cell death that can be engaged by various upstream signals, for example by ligation of death receptors, by viral sensors or by pattern recognition receptors. It depends on several key signaling proteins, including the kinases Receptor-Interacting Protein (RIP)1 and RIP3 and the pseudokinase mixed-lineage kinase domain-like protein (MLKL). Necroptosis has been implicated in a number of physiological and pathophysiological conditions and is disturbed in many human diseases. Thus, targeted interference with necroptosis signaling may offer new opportunities for the treatment of human diseases. Besides structure-based drug design, in recent years drug repositioning has emerged as a promising alternative to develop drug-like compounds. There is accumulating evidence showing that multi-targeting kinase inhibitors, for example Dabrafenib, Vemurafenib, Sorafenib, Pazopanib and Ponatinib, used for the treatment of cancer also display anti-necroptotic activity. This review summarizes recent evidence indicating that some anticancer kinase inhibitors also negatively affect necroptosis signaling. This implies that some cancer therapeutics may be repurposed for other pathologies, e.g. ischemic or inflammatory diseases.
PMID: 29464983 [PubMed - as supplied by publisher]
Do Cancer Drugs Counteract Neurodegeneration? Repurposing for Alzheimer's Disease.
Do Cancer Drugs Counteract Neurodegeneration? Repurposing for Alzheimer's Disease.
J Alzheimers Dis. 2017;55(4):1295-1306
Authors: Monacelli F, Cea M, Borghi R, Odetti P, Nencioni A
Abstract
In spite of in depth investigations in the field of the amyloid cascade hypothesis, so far, no disease modifying therapy has been developed for Alzheimer's disease (AD). The pathophysiology provides some evidence of the inverse correlation between cancer and AD. Both AD and cancer are characterized by abnormal cellular behaviors; trigger factors along with a meta synchronously action is expected to drive cancer or neurodegeneration, supporting, respectively, progressive neuronal loss or uncontrolled cell proliferation in cancer cells. So far, cancer and AD are seemingly two opposite ends of the same biological spectrum. Basic science increasingly indicates shared molecular mechanisms between cancer and AD and gives weight to key relevant biological theories; according to them, the inverse tuning of clustered gene expression, the sharing of mutual independent pathway or the deregulated unfolded proteins system (UPR) may count for this inverse association. Additionally, the common biological background gave credibility to the recent discovery of a repurposing role for cancer drugs in AD. It refers to the development of new uses for existing pharmaceuticals having the same role as the original mechanism or to the discovery of a new drug action with disease modifying effects. The present review summarizes the most important biological theories that link neurodegeneration and cancer and provides an up-to-date revision of the repurposing cancer agents for AD. The review also addresses the gap of knowledge, since drug cancer repositioning holds an important promise but further investigations are warranted to ascertain the clinical relevance of such attractive clinical candidate compounds for AD.
PMID: 27834781 [PubMed - indexed for MEDLINE]
Repurposing phenformin for the targeting of glioma stem cells and the treatment of glioblastoma.
Repurposing phenformin for the targeting of glioma stem cells and the treatment of glioblastoma.
Oncotarget. 2016 Aug 30;7(35):56456-56470
Authors: Jiang W, Finniss S, Cazacu S, Xiang C, Brodie Z, Mikkelsen T, Poisson L, Shackelford DB, Brodie C
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor with poor prognosis. Here, we studied the effects of phenformin, a mitochondrial complex I inhibitor and more potent chemical analog of the diabetes drug metformin on the inhibition of cell growth and induction of apoptosis of glioma stem cells (GSCs) using both in vitro and in vivo models. Phenformin inhibited the self-renewal of GSCs, decreased the expression of stemness and mesenchymal markers and increased the expression of miR-124, 137 and let-7. Silencing of let-7 abrogated phenformin effects on the self-renewal of GSCs via a pathway associated with inhibition of H19 and HMGA2 expression. Moreover, we demonstrate that phenformin inhibited tumor growth and prolonged the overall survival of mice orthotopically transplanted with GSCs. Combined treatments of phenformin and temozolomide exerted an increased antitumor effect on GSCs in vitro and in vivo. In addition, dichloroacetate, an inhibitor of the glycolysis enzyme pyruvate dehydrogenase kinase, that decreases lactic acidosis induced by biguanides, enhanced phenformin effects on the induction of cell death in GSCs and prolonged the survival of xenograft-bearing mice. Our results demonstrate for the first time that phenformin targets GSCs and can be efficiently combined with current therapies for GBM treatment and GSC eradication.
PMID: 27486821 [PubMed - indexed for MEDLINE]
Calcium Channel Blockers as Drug Repurposing Candidates for Gestational Diabetes: Mining large scale genomic and electronic health records data to repurpose medications.
Calcium Channel Blockers as Drug Repurposing Candidates for Gestational Diabetes: Mining large scale genomic and electronic health records data to repurpose medications.
Pharmacol Res. 2018 Feb 12;:
Authors: Goldstein JA, Bastarache LA, Denny JC, Roden DM, Pulley JM, Aronoff DM
Abstract
New therapeutic approaches are needed for gestational diabetes mellitus (GDM), but must show safety and efficacy in a historically understudied population. We studied associations between electronic medical record (EMR) phenotypes and genetic variants to uncover drugs currently considered safe in pregnancy that could treat or prevent GDM. We identified 129 systemically active drugs considered safe in pregnancy targeting the proteins produced from 196 genes. We tested for associations between GDM and/or type 2 diabetes (DM2) and 306 SNPs in 130 genes represented on the Illumina Infinium Human Exome Bead Chip (DM2 was included due to shared pathophysiological features with GDM). In parallel, we tested the association between drugs and glucose tolerance during pregnancy as measured by the glucose recorded during a routine 50-gram glucose tolerance test (GTT). We found an association between GDM/DM2 and the genes targeted by 11 drug classes. In the EMR analysis, 6 drug classes were associated with changes in GTT. Two classes were identified in both analyses. L-type calcium channel blocking antihypertensives (CCBs), were associated with a 3.18 mg/dL (95% CI -6.18 to -0.18) decrease in glucose during GTT, and Serotonin receptor type 3 (5HT-3) antagonist antinausea medications were associated with a 3.54 mg/dL (95% CI 1.86 to 5.23) increase in glucose during GTT. CCBs were identified as a class of drugs considered safe in pregnancy could have efficacy in treating or preventing GDM. 5HT-3 antagonists may be associated with worse glucose tolerance.
PMID: 29448118 [PubMed - as supplied by publisher]
Anticancer Drugs as Antibiofilm Agents in Candida albicans: Potential Targets.
Anticancer Drugs as Antibiofilm Agents in Candida albicans: Potential Targets.
Assay Drug Dev Technol. 2018 Feb 15;:
Authors: Wakharde AA, Halbandge SD, Phule DB, Karuppayil SM
Abstract
The human pathogen Candida albicans can grow as a biofilm on host tissues and on the surfaces of different prosthetic devices in a patient's body. Various studies have reported that biofilms formed by C. albicans are resistant to most of the currently used antibiotics including the widely prescribed drug, fluconazole. As such, novel strategies for the treatment of drug-resistant biofilms are required. Drug repositioning or the use of drugs outside their unique indication has the potential to radically change drug development. We have tested 16 anticancer drugs for their activities against C. albicans. For the first time, we are reporting repositioning of anticancer drugs as potential antibiofilm agents in C. albicans. Nine categories of drugs with different chemical modes of action effectively inhibited biofilms at a concentration range of 0.25-4 mg/mL, establishing their potential for the inhibition of biofilms. Human genes targeted by these drugs show significant identity with their homologous genes in C. albicans at the amino acid as well as nucleotide levels. This study indicates that anticancer drugs could be potential candidates for repositioning as anti-Candida biofilm agents.
PMID: 29446984 [PubMed - as supplied by publisher]
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
Oncotarget. 2018 Jan 12;9(4):4758-4772
Authors: Shen M, Asawa R, Zhang YQ, Cunningham E, Sun H, Tropsha A, Janzen WP, Muratov EN, Capuzzi SJ, Farag S, Jadhav A, Blatt J, Simeonov A, Martinez NJ
Abstract
Drug repurposing approaches have the potential advantage of facilitating rapid and cost-effective development of new therapies. Particularly, the repurposing of drugs with known safety profiles in children could bypass or streamline toxicity studies. We employed a phenotypic screening paradigm on a panel of well-characterized cell lines derived from pediatric solid tumors against a collection of ∼3,800 compounds spanning approved drugs and investigational agents. Specifically, we employed titration-based screening where compounds were tested at multiple concentrations for their effect on cell viability. Molecular and cellular target enrichment analysis indicated that numerous agents across different therapeutic categories and modes of action had an antiproliferative effect, notably antiparasitic/protozoal drugs with non-classic antineoplastic activity. Focusing on active compounds with dosing and safety information in children according to the Children's Pharmacy Collaborative database, we identified compounds with therapeutic potential through further validation using 3D tumor spheroid models. Moreover, we show that antiparasitic agents induce cell death via apoptosis induction. This study demonstrates that our screening platform enables the identification of chemical agents with cytotoxic activity in pediatric cancer cell lines of which many have known safety/toxicity profiles in children. These agents constitute attractive candidates for efficacy studies in pre-clinical models of pediatric solid tumors.
PMID: 29435139 [PubMed]
The antihelminthic drug niclosamide effectively inhibits the malignant phenotypes of uveal melanoma in vitro and in vivo.
The antihelminthic drug niclosamide effectively inhibits the malignant phenotypes of uveal melanoma in vitro and in vivo.
Theranostics. 2017;7(6):1447-1462
Authors: Zhou J, Jin B, Jin Y, Liu Y, Pan J
Abstract
Uveal melanoma (UM) is a lethal intraocular malignancy with an average survival of only 2~8 months in patients with hepatic metastasis. Currently, there is no effective therapy for metastatic UM. Here, we reported that niclosamide, an effective repellence of tapeworm that has been approved for use in patients for approximately 50 years, exhibited strong antitumor activity in UM cells in vitro and in vivo. We showed that niclosamide potently inhibited UM cell proliferation, induced apoptosis and reduced migration and invasion. p-Niclosamide, a water-soluble niclosamide, exerted potent in vivo antitumor activity in a UM xenograft mouse model. Mechanistically, niclosamide abrogated the activation of the NF-κB pathway induced by tumor necrosis factor α (TNFα) in UM cells, while niclosamide elevated the levels of intracellullar and mitochondrial reactive oxygen species (ROS) in UM cells. Quenching ROS by N-acetylcysteine (NAC) weakened the ability of niclosamide-mediated apoptosis. Matrix metalloproteinase 9 (MMP-9) knockdown by shRNA potentiated, while ectopic expression of MMP-9 rescued, the niclosamide-attenuated invasion, implying that MMP-9 is pivotal for invasion blockage by niclosamide in UM cells. Furthermore, our results showed that niclosamide eliminated cancer stem-like cells (CSCs) as reflected by a decrease in the Aldefluor+ percentage and serial re-plating melanosphere formation, and these phenotypes were associated with the suppressed Wnt/β-catenin pathway by niclosamide in UM. Niclosamide caused a dose- and time-dependent reduction of β-catenin and the key components [e.g., DVLs, phospho-GSK3β (S9), c-Myc and Cyclin D1] in the canonical Wnt/β-catenin pathway. Additionally, niclosamide treatment in UM cells reduced ATP and cAMP contents, and decreased PKA-dependent phosphorylation of β-catenin at S552 and S675 which determine the stability of β-catenin protein, suggesting that niclosamide may work as a mitochondrial un-coupler. Taken together, our results shed light on the mechanism of antitumor action of niclosamide and warrant clinical trial for treatment of UM patients.
PMID: 28529629 [PubMed - indexed for MEDLINE]
Do statins, ACE inhibitors or sartans improve outcome in primary glioblastoma?
Do statins, ACE inhibitors or sartans improve outcome in primary glioblastoma?
J Neurooncol. 2018 Feb 08;:
Authors: Happold C, Gorlia T, Nabors LB, Erridge SC, Reardon DA, Hicking C, Picard M, Stupp R, Weller M, EORTC Brain Tumor Group and on behalf of the CENTRIC and CORE Clinical Trial Groups
Abstract
Glioblastomas are malignant brain tumors with poor prognosis. Lately, data from clinical studies assessing the role of co-medications in different cancer types suggested reduced mortality and potential anti-tumor activity for statins, angiotensin-I converting enzyme inhibitors (ACEI) and angiotensin II receptor blockers (sartans). Here, we analysed the association of co-treatment with statins, ACEI or sartans with outcome in a cohort of 810 patients enrolled in the phase III CENTRIC and phase II CORE trials on the role of the integrin antagonist, cilengitide, in newly diagnosed glioblastoma with or without O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. Progression-free survival (PFS) and overall survival (OS) were analysed for each medication in the pooled patient group. No association was found for co-medication with either drug for PFS or OS. Median OS was 22.1 (statins) versus 22.2 (control) months (HR 1.06, 95% CI 0.81-1.39, p = 0.69), 20.4 (ACEI) versus 22.6 (control) months (HR 1.25, 95% CI 0.96-1.62, p = 0.10), and 21.7 (sartans) versus 22.3 (control) months (HR 0.86, 95% CI 0.61-1.21, p = 0.38). None of the comparisons showed a signal for different PFS or OS when analyses were controlled for MGMT promoter methylation or treatment group (TMZ/RT → TMZ vs. RT + CIL + TMZ → TMZ + CIL). This secondary analysis of two large glioblastoma trials thus was unable to detect evidence for an association of the use of statins, ACEI or sartans with outcome in patients with newly diagnosed glioblastoma. These data challenge the rationale for prospective studies on the possible role of these non-tumor-specific drugs within the concept of drug repurposing.
PMID: 29423540 [PubMed - as supplied by publisher]
A diseasome cluster-based drug repurposing of soluble guanylate cyclase activators from smooth muscle relaxation to direct neuroprotection.
A diseasome cluster-based drug repurposing of soluble guanylate cyclase activators from smooth muscle relaxation to direct neuroprotection.
NPJ Syst Biol Appl. 2018;4:8
Authors: Langhauser F, Casas AI, Dao VT, Guney E, Menche J, Geuss E, Kleikers PWM, López MG, Barabási AL, Kleinschnitz C, Schmidt HHHW
Abstract
Network medicine utilizes common genetic origins, markers and co-morbidities to uncover mechanistic links between diseases. These links can be summarized in the diseasome, a comprehensive network of disease-disease relationships and clusters. The diseasome has been influential during the past decade, although most of its links are not followed up experimentally. Here, we investigate a high prevalence unmet medical need cluster of disease phenotypes linked to cyclic GMP. Hitherto, the central cGMP-forming enzyme, soluble guanylate cyclase (sGC), has been targeted pharmacologically exclusively for smooth muscle modulation in cardiology and pulmonology. Here, we examine the disease associations of sGC in a non-hypothesis based manner in order to identify possibly previously unrecognized clinical indications. Surprisingly, we find that sGC, is closest linked to neurological disorders, an application that has so far not been explored clinically. Indeed, when investigating the neurological indication of this cluster with the highest unmet medical need, ischemic stroke, pre-clinically we find that sGC activity is virtually absent post-stroke. Conversely, a heme-free form of sGC, apo-sGC, was now the predominant isoform suggesting it may be a mechanism-based target in stroke. Indeed, this repurposing hypothesis could be validated experimentally in vivo as specific activators of apo-sGC were directly neuroprotective, reduced infarct size and increased survival. Thus, common mechanism clusters of the diseasome allow direct drug repurposing across previously unrelated disease phenotypes redefining them in a mechanism-based manner. Specifically, our example of repurposing apo-sGC activators for ischemic stroke should be urgently validated clinically as a possible first-in-class neuroprotective therapy.
PMID: 29423274 [PubMed]
CONCORD biomarker prediction for novel drug introduction to different cancer types.
CONCORD biomarker prediction for novel drug introduction to different cancer types.
Oncotarget. 2018 Jan 02;9(1):1091-1106
Authors: Kim Y, Dillon PM, Park T, Lee JK
Abstract
Many cancer therapeutic agents have shown to be effective for treating multiple cancer types. Yet major challenges exist toward introducing a novel drug used in one cancer type to different cancer types, especially when a relatively small number of patients with the other cancer type often benefit from anti-cancer therapy with the drug. Recently, many novel agents were introduced to different cancer types together with companion biomarkers which were obtained or biologically assumed from the original cancer type. However, there is no guarantee that biomarkers from one cancer can directly predict a therapeutic response in another. To tackle this challenging question, we have developed a concordant expression biomarker-based technique ("CONCORD") that overcomes these limitations. CONCORD predicts drug responses from one cancer type to another by identifying concordantly co-expressed biomarkers across different cancer systems. Application of CONCORD to three standard chemotherapeutic agents and two targeted agents demonstrated its ability to accurately predict the effectiveness of a drug against new cancer types and predict therapeutic response in patients.
PMID: 29416679 [PubMed]
Open-source chemogenomic data-driven algorithms for predicting drug-target interactions.
Open-source chemogenomic data-driven algorithms for predicting drug-target interactions.
Brief Bioinform. 2018 Feb 06;:
Authors: Hao M, Bryant SH, Wang Y
Abstract
While novel technologies such as high-throughput screening have advanced together with significant investment by pharmaceutical companies during the past decades, the success rate for drug development has not yet been improved prompting researchers looking for new strategies of drug discovery. Drug repositioning is a potential approach to solve this dilemma. However, experimental identification and validation of potential drug targets encoded by the human genome is both costly and time-consuming. Therefore, effective computational approaches have been proposed to facilitate drug repositioning, which have proved to be successful in drug discovery. Doubtlessly, the availability of open-accessible data from basic chemical biology research and the success of human genome sequencing are crucial to develop effective in silico drug repositioning methods allowing the identification of potential targets for existing drugs. In this work, we review several chemogenomic data-driven computational algorithms with source codes publicly accessible for predicting drug-target interactions (DTIs). We organize these algorithms by model properties and model evolutionary relationships. We re-implemented five representative algorithms in R programming language, and compared these algorithms by means of mean percentile ranking, a new recall-based evaluation metric in the DTI prediction research field. We anticipate that this review will be objective and helpful to researchers who would like to further improve existing algorithms or need to choose appropriate algorithms to infer potential DTIs in the projects. The source codes for DTI predictions are available at: https://github.com/minghao2016/chemogenomicAlg4DTIpred.
PMID: 29420684 [PubMed - as supplied by publisher]