Systems Biology

Integration of transcriptomic data and metabolic networks in cancer samples reveals highly significant prognostic power.

Mon, 2018-09-24 08:37
Related Articles

Integration of transcriptomic data and metabolic networks in cancer samples reveals highly significant prognostic power.

J Biomed Inform. 2018 Sep 20;:

Authors: Graudenzi A, Maspero D, Filippo MD, Gnugnolo M, Isella C, Mauri G, Medico E, Antoniotti M, Damani C

Abstract
Effective stratification of cancer patients on the basis of their molecular make-up is a key open challenge. Given the altered and heterogenous nature of cancer metabolism, we here propose to use the overall expression of central carbon metabolism as biomarker to characterize groups of patients with important characteristics, such as response to ad-hoc therapeutic strategies and survival expectancy. To this end, we here introduce the data integration framework named Metabolic Reaction Enrichment Analysis (MaREA), which strives to characterize the metabolic deregulations that distinguish cancer phenotypes, by projecting RNA-seq data onto metabolic networks, without requiring metabolic measurements. MaREA computes a score for each network reaction, based on the expression of the set of genes encoding for the associated enzyme(s). The scores are first used as features for cluster analysis and then to rank and visualize in an organized fashion the metabolic deregulations that distinguish cancer sub-types. We applied our method to recent lung and breast cancer RNA-seq datasets from The Cancer Genome Atlas and we were able to identify subgroups of patients with significant differences in survival expectancy. We show how the prognostic power of MaREA improves when an extracted and further curated core model focusing on central carbon metabolism is used rather than the genome-wide reference network. The visualization of the metabolic differences between the groups with best and worst prognosis allowed to identify and analyze key metabolic properties related to cancer aggressiveness. Some of these properties are shared across different cancer (sub)types, e.g., the up-regulation of nucleic acid and amino acid synthesis, whereas some other appear to be tumor-specific, such as the up- or down-regulation of the phosphoenolpyruvate carboxykinase reaction, which display different patterns in distinct tumor (sub)types. These results might be soon employed to deliver highly automated diagnostic and prognostic strategies for cancer patients.

PMID: 30244122 [PubMed - as supplied by publisher]

Categories: Literature Watch

Mechanisms shaping the mutational landscape of the FRA3B/FHIT-deficient cancer genome.

Sun, 2018-09-23 08:02
Related Articles

Mechanisms shaping the mutational landscape of the FRA3B/FHIT-deficient cancer genome.

Genes Chromosomes Cancer. 2018 Sep 22;:

Authors: Saldivar JC, Park D

Abstract
Genome instability is an enabling characteristic of cancer, that facilitates the acquisition of oncogenic mutations that drive tumorigenesis. Underlying much of the instability in cancer is DNA replication stress, which causes both chromosome structural changes and single base-pair mutations. Common fragile sites are some of the earliest and most frequently altered loci in tumors. Notably, the fragile locus, FRA3B, lies within the fragile histidine triad (FHIT) gene, and consequently deletions within FHIT are common in cancer. We review the evidence in support of FHIT as a DNA caretaker and discuss the mechanism by which FHIT promotes genome stability. FHIT increases thymidine kinase 1 (TK1) translation to balance the deoxyribonucleotide triphosphates (dNTPs) for efficient DNA replication. Consequently, FHIT-loss causes replication stress, DNA breaks, aneuploidy, copy-number changes (CNCs), small insertions and deletions, and point mutations. Moreover, FHIT-loss-induced replication stress and DNA breaks cooperate with APOBEC3B overexpression to catalyze DNA hypermutation in cancer, as APOBEC family enzymes prefer single-stranded DNA (ssDNA) as substrates and ssDNA is enriched at sites of both replication stress and DNA breaks. Consistent with the frequent loss of FHIT across a broad spectrum of cancer types, FHIT-deficiency is highly associated with the ubiquitous, clock-like mutation signature 5 occurring in all cancer types thus far examined. The ongoing destabilization of the genome caused by FHIT loss underlies recurrent inactivation of tumor suppressors and activation of oncogenes. Considering that more than 50% of cancers are FHIT-deficient, we propose that FRA3B/FHIT fragility shapes the mutational landscape of cancer genomes. This article is protected by copyright. All rights reserved.

PMID: 30242938 [PubMed - as supplied by publisher]

Categories: Literature Watch

Genome Engineering of Hybridomas to Generate Stable Cell Lines for Antibody Expression.

Sun, 2018-09-23 08:02
Related Articles

Genome Engineering of Hybridomas to Generate Stable Cell Lines for Antibody Expression.

Methods Mol Biol. 2018;1850:79-111

Authors: Parola C, Mason DM, Zingg A, Neumeier D, Reddy ST

Abstract
From the perspective of academic and small research laboratories, the most common and practical strategy for recombinant expression of full-length monoclonal antibodies is to perform transient plasmid transfection of mammalian cells, resulting in small-scale and limited protein production. The generation of stable antibody producing mammalian cell lines enables larger-scale and consistent expression, however this approach is rarely pursued due to the time-consuming and expensive process of single colony screening and characterization. In order to bridge the gap between the simplicity of transient transfection and consistent production by stable cell lines, we describe a method to stably integrate antibody genes into the endogenous immunogenomic loci of hybridoma cells using CRISPR/Cas9 genome editing. Initially, the antibody variable light (VL) chain is deleted by multiplexed Cas9 cleavage; subsequently, the variable heavy (VH) chain is replaced by a fluorescent reporter gene (mRuby) by Cas9-assisted homology-directed repair (HDR). This cell line is customized by replacing mRuby with a synthetic antibody (consisting of a VL, light constant region and VH) by once again using Cas9-assisted HDR. Due to hybridomas' inherent ability to surface display and secrete antibodies, they provide a suitable host for both the selection and the production process, substantially streamlining the process for stable cell line generation, and thus we refer to this platform as plug-and-(dis)play (PnP) hybridomas.

PMID: 30242682 [PubMed - in process]

Categories: Literature Watch

Transient Expression of Recombinant Membrane-eGFP Fusion Proteins in HEK293 Cells.

Sun, 2018-09-23 08:02
Related Articles

Transient Expression of Recombinant Membrane-eGFP Fusion Proteins in HEK293 Cells.

Methods Mol Biol. 2018;1850:17-31

Authors: Pieprzyk J, Pazicky S, Löw C

Abstract
Membrane proteins play important roles in many biological processes and are a major drug target. However, only a limited number of structures of eukaryotic membrane proteins have been determined so far. Besides the challenges in crystallizing these proteins, one of the main bottlenecks in structure determination is their recombinant expression. The mammalian HEK293 cell line provides a natural environment for expression of eukaryotic membrane proteins but optimization of transfection and cultivation time is often necessary to yield amounts of protein suitable for structural studies.Here we describe a detailed protocol for expression and purification of membrane proteins from HEK293 cells with an example of the human peptide transporter, PepT2. In the first part, we focus on the expression optimization by changing transfection protocol and cultivation time. In the second part, we describe a robust protocol for large-scale expression and purification of membrane proteins based on affinity chromatography and gel filtration.

PMID: 30242677 [PubMed - in process]

Categories: Literature Watch

Biomechanical interplay between anisotropic re-organization of cells and the surrounding matrix underlies transition to invasive cancer spread.

Sun, 2018-09-23 08:02
Related Articles

Biomechanical interplay between anisotropic re-organization of cells and the surrounding matrix underlies transition to invasive cancer spread.

Sci Rep. 2018 Sep 21;8(1):14210

Authors: Kim DH, Ewald AJ, Park J, Kshitiz, Kwak M, Gray RS, Su CY, Seo J, An SS, Levchenko A

Abstract
The root cause of cancer mortality and morbidity is the metastatic spread of the primary tumor, but underlying mechanisms remain elusive. Here we investigate biomechanical interactions that may accompany invasive spread of melanoma cells. We find that metastatic cells can exert considerable traction forces and modify local collagen organization within a 3D matrix. When this re-organization is mimicked using a nano-fabricated model of aligned extracellular matrix fibers, metastatic cells, including less invasive melanoma cells, were in turn induced to align, elongate and migrate, guided by the local ridge orientations. Strikingly, we found that this aligned migration of melanoma cells was accompanied by long-range regulation of cytoskeletal remodeling that show anisotropic stiffening in the direction of fiber orientation suggestive of a positive feedback between ECM fiber alignment and forces exerted by cancer cells. Taken together, our findings suggest that the invasive spread of cancer cells can be defined by complex interplay with the surrounding matrix, during which they both modify the matrix and use the matrix alignment as a persistent migration cue, leading to more extensive and rapid invasive spread.

PMID: 30242256 [PubMed - in process]

Categories: Literature Watch

Plasma lipid profiling of tissue-specific insulin resistance in human obesity.

Sun, 2018-09-23 08:02
Related Articles

Plasma lipid profiling of tissue-specific insulin resistance in human obesity.

Int J Obes (Lond). 2018 Sep 21;:

Authors: van der Kolk BW, Vogelzangs N, Jocken JWE, Valsesia A, Hankemeier T, Astrup A, Saris WHM, Arts ICW, van Greevenbroek MMJ, Blaak EE, DiOGenes consortium

Abstract
BACKGROUND/OBJECTIVES: Obesity-associated insulin resistance (IR) may develop in multiple organs, representing different aetiologies towards cardiometabolic diseases. This study aimed to identify distinct plasma lipid profiles in overweight/obese individuals who show muscle-IR and/or liver-IR.
SUBJECTS/METHODS: Baseline data of the European multicenter DiOGenes project were used (n = 640; 401 women, nondiabetic BMI: 27-45 kg/m2). Muscle insulin sensitivity index (MISI) and hepatic insulin resistance index (HIRI) were derived from a 5-point oral glucose tolerance test. The 140 plasma lipids were quantified by liquid chromatography-mass spectrometry. Linear mixed models were used to evaluate associations between MISI, HIRI and plasma lipids.
RESULTS: MISI was comparable between sexes while HIRI and triacylglycerol (TAG) levels were lower in women than in men. MISI was associated with higher lysophosphatidylcholine (LPC) levels (standardized (std)β = 0.126; FDR-p = 0.032). Sex interactions were observed for associations between HIRI, TAG and diacylglycerol (DAG) lipid classes. In women, but not in men, HIRI was associated with higher levels of TAG (44 out of 55 species) and both DAG species (stdβ: 0.139-0.313; FDR-p < 0.05), a lower odd-chain/even-chain TAG ratio (stdβ = -0.182; FDR-p = 0.005) and a lower very-long-chain/long-chain TAG ratio (stdβ = -0.156; FDR-p = 0.037).
CONCLUSIONS: In overweight/obese individuals, muscle insulin sensitivity is associated with higher plasma LPC concentrations. Women have less hepatic IR and lower TAG than men. Nevertheless, hepatic IR is associated with higher plasma TAG and DAG concentrations and a lower abundance of odd-chain and very-long-chain TAG in women, but not in men. This suggests a more pronounced worsening of plasma lipid profile in women with the progression of hepatic IR.

PMID: 30242234 [PubMed - as supplied by publisher]

Categories: Literature Watch

Growing Research Networks on Mycorrhizae for Mutual Benefits.

Sun, 2018-09-23 08:02
Related Articles

Growing Research Networks on Mycorrhizae for Mutual Benefits.

Trends Plant Sci. 2018 Sep 18;:

Authors: Ferlian O, Biere A, Bonfante P, Buscot F, Eisenhauer N, Fernandez I, Hause B, Herrmann S, Krajinski-Barth F, Meier IC, Pozo MJ, Rasmann S, Rillig MC, Tarkka MT, van Dam NM, Wagg C, Martinez-Medina A

Abstract
Research on mycorrhizal interactions has traditionally developed into separate disciplines addressing different organizational levels. This separation has led to an incomplete understanding of mycorrhizal functioning. Integration of mycorrhiza research at different scales is needed to understand the mechanisms underlying the context dependency of mycorrhizal associations, and to use mycorrhizae for solving environmental issues. Here, we provide a road map for the integration of mycorrhiza research into a unique framework that spans genes to ecosystems. Using two key topics, we identify parallels in mycorrhiza research at different organizational levels. Based on two current projects, we show how scientific integration creates synergies, and discuss future directions. Only by overcoming disciplinary boundaries, we will achieve a more comprehensive understanding of the functioning of mycorrhizal associations.

PMID: 30241736 [PubMed - as supplied by publisher]

Categories: Literature Watch

A reverse metabolic approach to weaning: in silico identification of immune-beneficial infant gut bacteria, mining their metabolism for prebiotic feeds and sourcing these feeds in the natural product space.

Sun, 2018-09-23 08:02
Related Articles

A reverse metabolic approach to weaning: in silico identification of immune-beneficial infant gut bacteria, mining their metabolism for prebiotic feeds and sourcing these feeds in the natural product space.

Microbiome. 2018 Sep 21;6(1):171

Authors: Michelini S, Balakrishnan B, Parolo S, Matone A, Mullaney JA, Young W, Gasser O, Wall C, Priami C, Lombardo R, Kussmann M

Abstract
BACKGROUND: Weaning is a period of marked physiological change. The introduction of solid foods and the changes in milk consumption are accompanied by significant gastrointestinal, immune, developmental, and microbial adaptations. Defining a reduced number of infections as the desired health benefit for infants around weaning, we identified in silico (i.e., by advanced public domain mining) infant gut microbes as potential deliverers of this benefit. We then investigated the requirements of these bacteria for exogenous metabolites as potential prebiotic feeds that were subsequently searched for in the natural product space.
RESULTS: Using public domain literature mining and an in silico reverse metabolic approach, we constructed probiotic-prebiotic-food associations, which can guide targeted feeding of immune health-beneficial microbes by weaning food; analyzed competition and synergy for (prebiotic) nutrients between selected microbes; and translated this information into designing an experimental complementary feed for infants enrolled in a pilot clinical trial ( http://www.nourishtoflourish.auckland.ac.nz/ ).
CONCLUSIONS: In this study, we applied a benefit-oriented microbiome research strategy for enhanced early-life immune health. We extended from "classical" to molecular nutrition aiming to identify nutrients, bacteria, and mechanisms that point towards targeted feeding to improve immune health in infants around weaning. Here, we present the systems biology-based approach we used to inform us on the most promising prebiotic combinations known to support growth of beneficial gut bacteria ("probiotics") in the infant gut, thereby favorably promoting development of the immune system.

PMID: 30241567 [PubMed - in process]

Categories: Literature Watch

An ensemble of mathematical models showing diauxic growth behaviour.

Sun, 2018-09-23 08:02
Related Articles

An ensemble of mathematical models showing diauxic growth behaviour.

BMC Syst Biol. 2018 Sep 21;12(1):82

Authors: Kremling A, Geiselmann J, Ropers D, de Jong H

Abstract
BACKGROUND: Carbon catabolite repression (CCR) controls the order in which different carbon sources are metabolised. Although this system is one of the paradigms of regulation in bacteria, the underlying mechanisms remain controversial. CCR involves the coordination of different subsystems of the cell - responsible for the uptake of carbon sources, their breakdown for the production of energy and precursors, and the conversion of the latter to biomass. The complexity of this integrated system, with regulatory mechanisms cutting across metabolism, gene expression, and signalling, has motivated important modelling efforts over the past four decades, especially in the enterobacterium Escherichia coli.
RESULTS: Starting from a simple core model with only four intracellular metabolites, we develop an ensemble of model variants, all showing diauxic growth behaviour during a batch process. The model variants fall into one of the four categories: flux balance models, kinetic models with growth dilution, kinetic models with regulation, and resource allocation models. The model variants differ from one another in only a single aspect, each breaking the symmetry between the two substrate assimilation pathways in a different manner, and can be quantitatively compared using a so-called diauxic growth index. For each of the model variants, we predict the behaviour in two new experimental conditions, namely a glucose pulse for a culture growing in minimal medium with lactose and a batch culture with different initial concentrations of the components of the transport systems. When qualitatively comparing these predictions with experimental data for these two conditions, a number of models can be excluded while other model variants are still not discriminable. The best-performing model variants are based on inducer inclusion and activation of enzymatic genes by a global transcription factor, but the other proposed factors may complement these well-known regulatory mechanisms.
CONCLUSIONS: The model ensemble presented here offers a better understanding of the variety of mechanisms that have been proposed to play a role in CCR. In addition, it provides an educational resource for systems biology, as it gives an introduction to a broad range of modeling approaches in the context of a simple but biologically relevant example.

PMID: 30241537 [PubMed - in process]

Categories: Literature Watch

Initial state perturbations as a validation method for data-driven fuzzy models of cellular networks.

Sun, 2018-09-23 08:02
Related Articles

Initial state perturbations as a validation method for data-driven fuzzy models of cellular networks.

BMC Bioinformatics. 2018 Sep 21;19(1):333

Authors: Magdevska L, Mraz M, Zimic N, Moškon M

Abstract
BACKGROUND: Data-driven methods that automatically learn relations between attributes from given data are a popular tool for building mathematical models in computational biology. Since measurements are prone to errors, approaches dealing with uncertain data are especially suitable for this task. Fuzzy models are one such approach, but they contain a large amount of parameters and are thus susceptible to over-fitting. Validation methods that help detect over-fitting are therefore needed to eliminate inaccurate models.
RESULTS: We propose a method to enlarge the validation datasets on which a fuzzy dynamic model of a cellular network can be tested. We apply our method to two data-driven dynamic models of the MAPK signalling pathway and two models of the mammalian circadian clock. We show that random initial state perturbations can drastically increase the mean error of predictions of an inaccurate computational model, while keeping errors of predictions of accurate models small.
CONCLUSIONS: With the improvement of validation methods, fuzzy models are becoming more accurate and are thus likely to gain new applications. This field of research is promising not only because fuzzy models can cope with uncertainty, but also because their run time is short compared to conventional modelling methods that are nowadays used in systems biology.

PMID: 30241464 [PubMed - in process]

Categories: Literature Watch

The Role of Tumor Microenvironment in Chemoresistance: 3D Extracellular Matrices as Accomplices.

Sun, 2018-09-23 08:02
Related Articles

The Role of Tumor Microenvironment in Chemoresistance: 3D Extracellular Matrices as Accomplices.

Int J Mol Sci. 2018 Sep 20;19(10):

Authors: Senthebane DA, Jonker T, Rowe A, Thomford NE, Munro D, Dandara C, Wonkam A, Govender D, Calder B, Soares NC, Blackburn JM, Parker MI, Dzobo K

Abstract
BACKGROUND: The functional interplay between tumor cells and their adjacent stroma has been suggested to play crucial roles in the initiation and progression of tumors and the effectiveness of chemotherapy. The extracellular matrix (ECM), a complex network of extracellular proteins, provides both physical and chemicals cues necessary for cell proliferation, survival, and migration. Understanding how ECM composition and biomechanical properties affect cancer progression and response to chemotherapeutic drugs is vital to the development of targeted treatments.
METHODS: 3D cell-derived-ECMs and esophageal cancer cell lines were used as a model to investigate the effect of ECM proteins on esophageal cancer cell lines response to chemotherapeutics. Immunohistochemical and qRT-PCR evaluation of ECM proteins and integrin gene expression was done on clinical esophageal squamous cell carcinoma biopsies. Esophageal cancer cell lines (WHCO1, WHCO5, WHCO6, KYSE180, KYSE 450 and KYSE 520) were cultured on decellularised ECMs (fibroblasts-derived ECM; cancer cell-derived ECM; combinatorial-ECM) and treated with 0.1% Dimethyl sulfoxide (DMSO), 4.2 µM cisplatin, 3.5 µM 5-fluorouracil and 2.5 µM epirubicin for 24 h. Cell proliferation, cell cycle progression, colony formation, apoptosis, migration and activation of signaling pathways were used as our study endpoints.
RESULTS: The expression of collagens, fibronectin and laminins was significantly increased in esophageal squamous cell carcinomas (ESCC) tumor samples compared to the corresponding normal tissue. Decellularised ECMs abrogated the effect of drugs on cancer cell cycling, proliferation and reduced drug induced apoptosis by 20⁻60% that of those plated on plastic. The mitogen-activated protein kinase-extracellular signal-regulated kinase (MEK-ERK) and phosphoinositide 3-kinase-protein kinase B (PI3K/Akt) signaling pathways were upregulated in the presence of the ECMs. Furthermore, our data show that concomitant addition of chemotherapeutic drugs and the use of collagen- and fibronectin-deficient ECMs through siRNA inhibition synergistically increased cancer cell sensitivity to drugs by 30⁻50%, and reduced colony formation and cancer cell migration.
CONCLUSION: Our study shows that ECM proteins play a key role in the response of cancer cells to chemotherapy and suggest that targeting ECM proteins can be an effective therapeutic strategy against chemoresistant tumors.

PMID: 30241395 [PubMed - in process]

Categories: Literature Watch

"systems biology"; +25 new citations

Sat, 2018-09-22 07:27

25 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:

"systems biology"

These pubmed results were generated on 2018/09/22

PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

Categories: Literature Watch

"systems biology"; +21 new citations

Fri, 2018-09-21 10:02

21 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:

"systems biology"

These pubmed results were generated on 2018/09/21

PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

Categories: Literature Watch

"systems biology"; +18 new citations

Fri, 2018-09-21 06:00

18 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:

"systems biology"

These pubmed results were generated on 2018/09/21

PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

Categories: Literature Watch

"systems biology"; +15 new citations

Thu, 2018-09-20 09:32

15 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:

"systems biology"

These pubmed results were generated on 2018/09/20

PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

Categories: Literature Watch

"systems biology"; +13 new citations

Thu, 2018-09-20 06:00

13 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:

"systems biology"

These pubmed results were generated on 2018/09/20

PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

Categories: Literature Watch

"systems biology"; +23 new citations

Wed, 2018-09-19 08:59

23 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:

"systems biology"

These pubmed results were generated on 2018/09/19

PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

Categories: Literature Watch

"systems biology"; +33 new citations

Tue, 2018-09-18 08:27

33 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:

"systems biology"

These pubmed results were generated on 2018/09/18

PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

Categories: Literature Watch

Systems Oncology: Bridging Pancreatic and Castrate Resistant Prostate Cancer.

Mon, 2018-09-17 11:07
Related Articles

Systems Oncology: Bridging Pancreatic and Castrate Resistant Prostate Cancer.

Pathol Oncol Res. 2018 Sep 16;:

Authors: Fucic A, Aghajanyan A, Culig Z, Le Novere N

Abstract
Large investments by pharmaceutical companies in the development of new antineoplastic drugs have not been resulting in adequate advances of new therapies. Despite the introduction of new methods, technologies, translational medicine and bioinformatics, the usage of collected knowledge is unsatisfactory. In this paper, using examples of pancreatic ductal adenocarcinoma (PaC) and castrate-resistant prostate cancer (CRPC), we proposed a concept showing that, in order to improve applicability of current knowledge in oncology, the re-clustering of clinical and scientific data is crucial. Such an approach, based on systems oncology, would include bridging of data on biomarkers and pathways between different cancer types. Proposed concept would introduce a new matrix, which enables combining of already approved therapies between cancer types. Paper provides a (a) detailed analysis of similarities in mechanisms of etiology and progression between PaC and CRPC, (b) diabetes as common hallmark of both cancer types and (c) knowledge gaps and directions of future investigations. Proposed horizontal and vertical matrix in cancer profiling has potency to improve current antineoplastic therapy efficacy. Systems biology map using Systems Biology Graphical Notation Language is used for summarizing complex interactions and similarities of mechanisms in biology of PaC and CRPC.

PMID: 30220022 [PubMed - as supplied by publisher]

Categories: Literature Watch

Thermus sediminis sp. nov., a thiosulfate-oxidizing and arsenate-reducing organism isolated from Little Hot Creek in the Long Valley Caldera, California.

Mon, 2018-09-17 11:07
Related Articles

Thermus sediminis sp. nov., a thiosulfate-oxidizing and arsenate-reducing organism isolated from Little Hot Creek in the Long Valley Caldera, California.

Extremophiles. 2018 Sep 15;:

Authors: Zhou EM, Xian WD, Mefferd CC, Thomas SC, Adegboruwa AL, Williams N, Murugapiran SK, Dodsworth JA, Ganji R, Li MM, Ding YP, Liu L, Woyke T, Li WJ, Hedlund BP

Abstract
Thermus species are widespread in natural and artificial thermal environments. Two new yellow-pigmented strains, L198T and L423, isolated from Little Hot Creek, a geothermal spring in eastern California, were identified as novel organisms belonging to the genus Thermus. Cells are Gram-negative, rod-shaped, and non-motile. Growth was observed at temperatures from 45 to 75 °C and at salinities of 0-2.0% added NaCl. Both strains grow heterotrophically or chemolithotrophically by oxidation of thiosulfate to sulfate. L198T and L423 grow by aerobic respiration or anaerobic respiration with arsenate as the terminal electron acceptor. Values for 16S rRNA gene identity (≤ 97.01%), digital DNA-DNA hybridization (≤ 32.7%), OrthoANI (≤ 87.5%), and genome-to-genome distance (0.13) values to all Thermus genomes were less than established criteria for microbial species. The predominant respiratory quinone was menaquinone-8 and the major cellular fatty acids were iso-C15:0, iso-C17:0 and anteiso-C15:0. One unidentified phospholipid (PL1) and one unidentified glycolipid (GL1) dominated the polar lipid pattern. The new strains could be differentiated from related taxa by β-galactosidase and β-glucosidase activity and the presence of hydroxy fatty acids. Based on phylogenetic, genomic, phenotypic, and chemotaxonomic evidence, the novel species Thermus sediminis sp. nov. is proposed, with the type strain L198T (= CGMCC 1.13590T = KCTC XXX).

PMID: 30219948 [PubMed - as supplied by publisher]

Categories: Literature Watch

Pages