Systems Biology
"systems biology"; +16 new citations
16 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
These pubmed results were generated on 2018/04/12
PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
"systems biology"; +41 new citations
41 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
These pubmed results were generated on 2018/04/11
PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
"systems biology"; +28 new citations
28 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
These pubmed results were generated on 2018/04/10
PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
"systems biology"; +26 new citations
26 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
These pubmed results were generated on 2018/04/10
PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
Lipidomic profiling of plasma samples from patients with mitochondrial disease.
Lipidomic profiling of plasma samples from patients with mitochondrial disease.
Biochem Biophys Res Commun. 2018 Apr 05;:
Authors: Ren C, Liu J, Zhou J, Liang H, Zhu Y, Wang Q, Leng Y, Zhang Z, Yuan Y, Wang Z, Yin Y
Abstract
Mitochondrial disease (MD) is a rare mitochondrial respiratory chain disorder with a high mortality and extremely challenging to treat. Although genomic, transcriptomic, and proteomic analyses have been performed to investigate the pathogenesis of MD, the role of metabolomics in MD, particularly of lipidomics remains unclear. This study was undertaken to identify potential lipid biomarkers of MD. An untargeted lipidomic approach was used to compare the plasma lipid metabolites in 20 MD patients and 20 controls through Liquid Chromatography coupled to Mass Spectrometry. Volcano plot analysis was performed to identify the different metabolites. Receiver operating characteristic (ROC) curves were constructed and the area under the ROC curves (AUC) was calculated to determine the potentially sensitive and specific biomarkers. A total of 41 lipids were significantly different in MD patients and controls. ROC curve analysis showed the top 5 AUC values of lipids (phosphatidylinositols 38:6, lysoPC 20:0, 19:0, 18:0, 17:0) are more than 0.99. Multivariate ROC curve based exploratory analysis showed the AUC of combination of top 5 lipids is 1, indicating they may be potentially sensitive and specific biomarkers for MD. We propose combination of these lipid species may be more valuable in predicting the development and progression of MD, and this will have important implications for the diagnosis and treatment of MD.
PMID: 29627572 [PubMed - as supplied by publisher]
MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae.
MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae.
Metab Eng. 2018 Apr 05;:
Authors: Zhou Y, Li G, Dong J, Xing XH, Dai J, Zhang C
Abstract
Facing boosting ability to construct combinatorial metabolic pathways, how to search the metabolic sweet spot has become the rate-limiting step. We here reported an efficient Machine-learning workflow in conjunction with YeastFab Assembly strategy (MiYA) for combinatorial optimizing the large biosynthetic genotypic space of heterologous metabolic pathways in Saccharomyces cerevisiae. Using β-carotene biosynthetic pathway as example, we first demonstrated that MiYA has the power to search only a small fraction (2~5%) of combinatorial space to precisely tune the expression level of each gene with a machine-learning algorithm of ANN ensemble to avoid over-fitting problem when dealing with a small number of training samples. We then applied MiYA to improve the biosynthesis of violacein. Feed with initial data from a colorimetric plate-based, pre-screened pool of 24 strains producing violacein, MiYA successfully predicted, and verified experimentally, the existence of a strain that showed a 2.42-fold titer improvement in violacein production among 3,125 possible designs. Furthermore, MiYA was able to largely avoid the branch pathway of violacein biosynthesis that makes deoxyviolacein, and produces very pure violacein. Together, MiYA combines the advantages of standardized building blocks and machine learning to accelerate the Design-Build-Test-Learn (DBTL) cycle for combinatorial optimization of metabolic pathways, which could significantly accelerate the development of microbial cell factories.
PMID: 29627507 [PubMed - as supplied by publisher]
Prioritizing complex disease risk genes by integrating multiple data.
Prioritizing complex disease risk genes by integrating multiple data.
Genomics. 2018 Apr 05;:
Authors: Guo S, Wei B, Dong B, Li W, Wu S, He Y, Wang Y, Zhao X, Chen L, He W
Abstract
Complex diseases, such as obesity, type II diabetes and chronic obstructive pulmonary disease (COPD) as metabolic disorder-related diseases are major concern for worldwide public health in the 21st century. The identification of these disease risk genes has attracted increasing interest in computational systems biology. In this paper, a novel method was proposed to prioritize disease risk genes (PDRG) by integrating functional annotations, protein interactions and gene expression information to assess similarity between genes in a disease-related metabolic network. The gene prioritization method was successfully carried out for obesity and COPD, the effectiveness of which was superior to those of ToppGene and ToppNet in both literature validation and recall rate by LOOCV. Our method could be applied broadly to other metabolism-related diseases, helping to prioritize novel disease risk genes, and could shed light on diagnosis and effective therapies.
PMID: 29627504 [PubMed - as supplied by publisher]
Osteoblast-secreted WISP-1 promotes adherence of prostate cancer cells to bone via the VCAM-1/integrin α4β1 system.
Osteoblast-secreted WISP-1 promotes adherence of prostate cancer cells to bone via the VCAM-1/integrin α4β1 system.
Cancer Lett. 2018 Apr 05;:
Authors: Chang AC, Chen PC, Lin YF, Su CM, Liu JF, Lin TH, Chuang SM, Tang CH
Abstract
Bone metastasis is a frequent occurrence in prostate cancer (PCa) that is associated with severe complications such as fracture, bone pain and hypercalcemia. The cross-talk between metastatic cancer cells and bone is critical to the development and progression of bone metastases. In our previous data, we have described how the involvement of the Wnt-induced secreted protein-1/vascular cell adhesion molecule-1 (WISP-1/VCAM-1) system in this tumor-bone interaction contributes to human PCa cell motility. In this study, we found that WISP-1 regulates bone mineralization by inducing bone morphogenetic protein-2 (BMP2), BMP4 and osteopontin (OPN) expression in osteoblasts. We also found that WISP-1 inhibited RANKL-dependent osteoclastogenesis. Moreover, osteoblast-derived WISP-1 enhanced VCAM-1 expression in PCa cells and subsequently promoted the adherence of cancer cells to osteoblasts. Furthermore, endothelin-1 (ET-1) expression in PCa cells was regulated by osteoblast-derived WISP-1, which promoted integrin α4β1 expression in osteoblasts via the MAPK pathway. Pretreatment of PCa cells with VCAM-1 antibody or osteoblasts with integrin α4β1 antibody attenuated the adherence of PCa cells to osteoblasts, suggesting that integrin α4β1 serves as a ligand that captures VCAM-1+ metastatic tumor cells adhering to osteoblasts. Our findings reveal that osteoblast-derived WISP-1 plays a key role in regulating the adhesion of PCa cells to osteoblasts via the VCAM-1/integrin α4β1 system. Osteoblast-derived WISP-1 is a promising target for the prevention and inhibition of PCa-bone interaction.
PMID: 29627497 [PubMed - as supplied by publisher]
Assessing the real-time activation of the cannabinoid CB1 receptor and the associated structural changes using a FRET biosensor.
Assessing the real-time activation of the cannabinoid CB1 receptor and the associated structural changes using a FRET biosensor.
Int J Biochem Cell Biol. 2018 Apr 04;:
Authors: Liu Y, Chen LY, Zeng H, Ward R, Wu N, Ma L, Mu X, Li QL, Yang Y, An S, Guo XX, Hao Q, Xu TR
Abstract
The cannabinoid receptor 1 (CB1) is mainly expressed in the nervous system and regulates learning, memory processes, pain and energy metabolism. However, there is no way to directly measure its activation. In this study, we constructed a CB1 intramolecular fluorescence resonance energy transfer (FRET) sensor, which could measure CB1 activation by monitoring structural changes between the third intracellular loop and the C-terminal tail. CB1 agonists induced a time- and concentration-dependent increase in the FRET signal, corresponding to a reduction in the distance between the third intracellular loop and the C-terminal tail. This, in turn, mobilized intracellular Ca2+, inhibited cAMP accumulation, and increased phosphorylation of the ERK1/2 MAP kinases. The activation kinetics detected using this method were consistent with those from previous reports. Moreover, the increased FRET signal was markedly inhibited by the CB1 antagonist rimonabant, which also reduced phosphorylation of the ERK1/2 MAP kinases. We mutated a single cysteine residue in the sensor (at position 257 or 264) to alanine. Both mutation reduced the agonist-induced increase in FRET signal and structural changes in the CB1 receptor, which attenuated phosphorylation of the ERK1/2 MAP kinases. In summary, our sensor directly assesses the kinetics of CB1 activation in real-time and can be used to monitor CB1 structure and function.
PMID: 29626639 [PubMed - as supplied by publisher]
Proteomics study of silver nanoparticles on Caco-2 cells.
Proteomics study of silver nanoparticles on Caco-2 cells.
Toxicol In Vitro. 2018 Apr 04;:
Authors: Gioria S, Urbán P, Hajduch M, Barboro P, Cabaleiro N, La Spina R, Chassaigne H
Abstract
Silver nanoparticles (AgNPs) have been incorporated into several consumer products. While these advances in technology are promising and exciting, the effects of these nanoparticles have not equally been studied. Due to the size, AgNPs can penetrate the body through oral exposure and reach the gastrointestinal tract. The present study was designed as a comparative proteomic analysis of Caco-2 cells, used as an in vitro model of the small intestine, exposed to 30 nm citrate stabilized-silver nanoparticles (AgNPs) for 24 or 72 h. Using two complementary proteomic approaches, 2D gel-based and label-free mass spectrometry, we present insight into the effects of AgNPs at proteins level. Exposure of 1 or 10 μg/mL AgNPs to Caco-2 cells resulted in 56 and 88 altered proteins at 24 h and 72 h respectively, by 2D gel-based technique. Ten of these proteins were found to be common between the two time-points. Using label-free mass spectrometry technique, 291 and 179 altered proteins were found at 24 h and 72 h, of which 24 were in common. Analysis of the proteomes showed several major biological processes altered, from which, cell cycle, cell morphology, cellular function and maintenance were the most affected.
PMID: 29626626 [PubMed - as supplied by publisher]
"Summer Shift": A Potential Effect of Sunshine on the Time Onset of ST-Elevation Acute Myocardial Infarction.
"Summer Shift": A Potential Effect of Sunshine on the Time Onset of ST-Elevation Acute Myocardial Infarction.
J Am Heart Assoc. 2018 Apr 06;7(8):
Authors: Cannistraci CV, Nieminen T, Nishi M, Khachigian LM, Viikilä J, Laine M, Cianflone D, Maseri A, Yeo KK, Bhindi R, Ammirati E
Abstract
BACKGROUND: ST-elevation acute myocardial infarction (STEMI) represents one of the leading causes of death. The time of STEMI onset has a circadian rhythm with a peak during diurnal hours, and the occurrence of STEMI follows a seasonal pattern with a salient peak of cases in the winter months and a marked reduction of cases in the summer months. Scholars investigated the reason behind the winter peak, suggesting that environmental and climatic factors concur in STEMI pathogenesis, but no studies have investigated whether the circadian rhythm is modified with the seasonal pattern, in particular during the summer reduction in STEMI occurrence.
METHODS AND RESULTS: Here, we provide a multiethnic and multination epidemiological study (from both hemispheres at different latitudes, n=2270 cases) that investigates whether the circadian variation of STEMI onset is altered in the summer season. The main finding is that the difference between numbers of diurnal (6:00 to 18:00) and nocturnal (18:00 to 6:00) STEMI is markedly decreased in the summer season, and this is a prodrome of a complex mechanism according to which the circadian rhythm of STEMI time onset seems season dependent.
CONCLUSIONS: The "summer shift" of STEMI to the nocturnal interval is consistent across different populations, and the sunshine duration (a measure related to cloudiness and solar irradiance) underpins this season-dependent circadian perturbation. Vitamin D, which in our results seems correlated with this summer shift, is also primarily regulated by the sunshine duration, and future studies should investigate their joint role in the mechanisms of STEMI etiogenesis.
PMID: 29626152 [PubMed - in process]
Co-inhibitory Molecule B7 Superfamily Member 1 Expressed by Tumor-Infiltrating Myeloid Cells Induces Dysfunction of Anti-tumor CD8+ T Cells.
Co-inhibitory Molecule B7 Superfamily Member 1 Expressed by Tumor-Infiltrating Myeloid Cells Induces Dysfunction of Anti-tumor CD8+ T Cells.
Immunity. 2018 Mar 29;:
Authors: Li J, Lee Y, Li Y, Jiang Y, Lu H, Zang W, Zhao X, Liu L, Chen Y, Tan H, Yang Z, Zhang MQ, Mak TW, Ni L, Dong C
Abstract
The molecular mechanisms whereby CD8+ T cells become "exhausted" in the tumor microenvironment remain unclear. Programmed death ligand-1 (PD-L1) is upregulated on tumor cells and PD-1-PD-L1 blockade has significant efficacy in human tumors; however, most patients do not respond, suggesting additional mechanisms underlying T cell exhaustion. B7 superfamily member 1 (B7S1), also called B7-H4, B7x, or VTCN1, negatively regulates T cell activation. Here we show increased B7S1 expression on myeloid cells from human hepatocellular carcinoma correlated with CD8+ T cell dysfunction. B7S1 inhibition suppressed development of murine tumors. Putative B7S1 receptor was co-expressed with PD-1 but not T cell immunoglobulin and mucin-domain containing-3 (Tim-3) at an activated state of early tumor-infiltrating CD8+ T cells, and B7S1 promoted T cell exhaustion, possibly through Eomes overexpression. Combinatorial blockade of B7S1 and PD-1 synergistically enhanced anti-tumor immune responses. Collectively, B7S1 initiates dysfunction of tumor-infiltrating CD8+ T cells and may be targeted for cancer immunotherapy.
PMID: 29625896 [PubMed - as supplied by publisher]
"systems biology"; +35 new citations
35 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
These pubmed results were generated on 2018/04/07
PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
"systems biology"; +34 new citations
34 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
These pubmed results were generated on 2018/04/07
PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
"systems biology"; +26 new citations
26 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
These pubmed results were generated on 2018/04/06
PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
"systems biology"; +32 new citations
32 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
These pubmed results were generated on 2018/04/05
PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
"systems biology"; +20 new citations
20 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
These pubmed results were generated on 2018/04/04
PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
"systems biology"; +20 new citations
20 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
These pubmed results were generated on 2018/04/04
PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
"systems biology"; +37 new citations
37 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
These pubmed results were generated on 2018/04/03
PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
"systems biology"; +37 new citations
37 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
These pubmed results were generated on 2018/04/03
PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.