Systems Biology
"Systems Biology"[Title/Abstract] AND ("2005/01/01"[PDAT] : "3000"[PDAT]); +13 new citations
13 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
"Systems Biology"[Title/Abstract] AND ("2005/01/01"[PDAT] : "3000"[PDAT])
These pubmed results were generated on 2016/07/09
PubMed comprises more than 24 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
Mutation at a distance caused by homopolymeric guanine repeats in Saccharomyces cerevisiae.
Mutation at a distance caused by homopolymeric guanine repeats in Saccharomyces cerevisiae.
Sci Adv. 2016 May;2(5):e1501033
Authors: McDonald MJ, Yu YH, Guo JF, Chong SY, Kao CF, Leu JY
Abstract
Mutation provides the raw material from which natural selection shapes adaptations. The rate at which new mutations arise is therefore a key factor that determines the tempo and mode of evolution. However, an accurate assessment of the mutation rate of a given organism is difficult because mutation rate varies on a fine scale within a genome. A central challenge of evolutionary genetics is to determine the underlying causes of this variation. In earlier work, we had shown that repeat sequences not only are prone to a high rate of expansion and contraction but also can cause an increase in mutation rate (on the order of kilobases) of the sequence surrounding the repeat. We perform experiments that show that simple guanine repeats 13 bp (base pairs) in length or longer (G 13+ ) increase the substitution rate 4- to 18-fold in the downstream DNA sequence, and this correlates with DNA replication timing (R = 0.89). We show that G 13+ mutagenicity results from the interplay of both error-prone translesion synthesis and homologous recombination repair pathways. The mutagenic repeats that we study have the potential to be exploited for the artificial elevation of mutation rate in systems biology and synthetic biology applications.
PMID: 27386516 [PubMed - as supplied by publisher]
New approaches and omics tools for mining of vaccine candidates against vector-borne diseases.
New approaches and omics tools for mining of vaccine candidates against vector-borne diseases.
Mol Biosyst. 2016 Jul 7;
Authors: Kuleš J, Horvatić A, Guillemin N, Galan A, Mrljak V, Bhide M
Abstract
Vector-borne diseases (VBDs) present a major threat to human and animal health, as well as place a substantial burden on livestock production. As a way of sustainable VBD control, focus is set on vaccine development. Advances in genomics and other "omics" over the past two decades have given rise to a "third generation" of vaccines based on technologies such as reverse vaccinology, functional genomics, immunomics, structural vaccinology and the systems biology approach. The application of omics approaches is shortening the time required to develop the vaccines and increasing the probability of discovery of potential vaccine candidates. Herein, we review the development of new generation vaccines for VBDs, and discuss technological advancement and overall challenges in the vaccine development pipeline. Special emphasis is placed on the development of anti-tick vaccines that can quell both vectors and pathogens.
PMID: 27384976 [PubMed - as supplied by publisher]
Rationale and design of the PREFERS (Preserved and Reduced Ejection Fraction Epidemiological Regional Study) Stockholm heart failure study: an epidemiological regional study in Stockholm county of 2.1 million inhabitants.
Rationale and design of the PREFERS (Preserved and Reduced Ejection Fraction Epidemiological Regional Study) Stockholm heart failure study: an epidemiological regional study in Stockholm county of 2.1 million inhabitants.
Eur J Heart Fail. 2016 Jul 7;
Authors: Linde C, Eriksson MJ, Hage C, Wallén H, Persson B, Corbascio M, Lundeberg J, Maret E, Ugander M, Persson H, Stockholm County/Karolinska Institutet 4D heart failure investigators
Abstract
AIMS: Heart failure (HF) with preserved (HFpEF) or reduced (HFrEF) ejection fraction is associated with poor prognosis and quality of life. While the incidence of HFrEF is declining and HF treatment is effective, HFpEF is increasing, with no established therapy. PREFERS Stockholm is an epidemiological study with the aim of improving clinical care and research in HF and to find new targets for drug treatment in HFpEF ( https://internwebben.ki.se/sites/default/files/20150605_4d_research_appendix_final.pdf).
METHODS: Patients with new-onset HF (n = 2000) will be characterized at baseline and after 1-year follow-up by standardized protocols for clinical evaluation, echocardiography, and ECG. In one subset undergoing elective coronary bypass surgery (n = 100) and classified according to LV function, myocardial biopsies will be collected during surgery, and cardiac magnetic resonance (CMR) imaging will be performed at baseline and after 1 year. Blood and tissue samples will be stored in a biobank. We will characterize and compare new-onset HFpEF and HFrEF patients regarding clinical findings and cardiac imaging, genomics, proteomics, and transcriptomics from blood and cardiac biopsies, and by established biomarkers of fibrosis, inflammation, haemodynamics, haemostasis, and thrombosis. The data will be explored by state-of-the-art bioinformatics methods to investigate gene expression patterns, sequence variation, DNA methylation, and post-translational modifications, and using systems biology approaches including pathway and network analysis.
CONCLUSIONS: In this epidemiological HF study with biopsy studies in a subset of patients, we aim to identify new biomarkers of disease progression and to find pathophysiological mechanisms to support explorations of new treatment regimens for HFpEF.
PMID: 27384611 [PubMed - as supplied by publisher]
Neural oscillations as a signature of efficient coding in the presence of synaptic delays.
Neural oscillations as a signature of efficient coding in the presence of synaptic delays.
Elife. 2016 Jul 7;5
Authors: Chalk M, Gutkin B, Denève S
Abstract
Cortical networks exhibit 'global oscillations', where neural spikes are entrained to an underlying oscillatory rhythm, but where individual neurons fire irregularly. While the network dynamics underlying global oscillations are well characterised, their function is debated. Here, we show that such global oscillations are a direct consequence of optimal efficient coding in spiking networks with synaptic delays. To avoid firing unnecessary spikes, neurons must share information about the network state. Ideally, membrane potentials should be correlated and reflect a 'prediction error' while spikes themselves are uncorrelated and occur rarely. We show that the most efficient representation is achieved when: (i) spikes are entrained to a global Gamma rhythm (implying a consistent representation of the error); but (ii) few neurons fire on each cycle (implying high efficiency), while (iii) excitation and inhibition are tightly balanced. This suggests that cortical networks exhibiting such dynamics are tuned to achieve a maximally efficient population code.
PMID: 27383272 [PubMed - as supplied by publisher]
Molecular dynamics-based renement and validation with Resolution Exchange MDFF for sub-5 Å cryo-electron microscopy maps.
Molecular dynamics-based renement and validation with Resolution Exchange MDFF for sub-5 Å cryo-electron microscopy maps.
Elife. 2016 Jul 7;5
Authors: Singharoy A, Teo I, McGreevy R, Stone JE, Zhao J, Schulten K
Abstract
Two structure determination methods, based on the molecular dynamics flexible fitting (MDFF) paradigm, are presented that resolve sub-5-Å cryo-electron microscopy (EM) maps with either single structures or ensembles of such structures. The methods, denoted cascade MDFF and resolution exchange MDFF, sequentially re-refine a search model against a series of maps of progressively higher resolutions, which ends with the original experimental resolution. Application of sequential re-refinement enables MDFF to achieve a convergence radius of ~25Å demonstrated with the accurate modeling of β-galactosidase and TRPV1 proteins at 3.2Å and 3.4Å resolution. The MDFF refinements uniquely offer map-model validation and B-factor determination criteria based on the inherent dynamics of the respective macromolecules studied, captured employing local root mean square fluctuations. The MDFF tools are made available to researchers through an easy-to-use and cost-effective cloud computing resource on Amazon Web Services.
PMID: 27383269 [PubMed - as supplied by publisher]
Metabolic network rewiring of propionate flux compensates vitamin B12 deficiency in C. elegans.
Metabolic network rewiring of propionate flux compensates vitamin B12 deficiency in C. elegans.
Elife. 2016 Jul 6;5
Authors: Walhout AJ, Watson E, Olin-Sandoval V, Hoy MJ, Li CH, Louisse T, Yao V, Mori A, Holdorf AD, Troyanskaya OG, Ralser M
Abstract
Metabolic network rewiring is the rerouting of metabolism through the use of alternate enzymes to adjust pathway flux and accomplish specific anabolic or catabolic objectives. Here, we report the first characterization of two parallel pathways for the breakdown of the short chain fatty acid propionate in Caenorhabditis elegans. Using genetic interaction mapping, gene co-expression analysis, pathway intermediate quantification and carbon tracing, we uncover a vitamin B12-independent propionate breakdown shunt that is transcriptionally activated on vitamin B12 deficient diets, or under genetic conditions mimicking the human diseases propionic- and methylmalonic acidemia, in which the canonical B12-dependent propionate breakdown pathway is blocked. Our study presents the first example of transcriptional vitamin-directed metabolic network rewiring to promote survival under vitamin deficiency. The ability to reroute propionate breakdown according to B12 availability may provide C. elegans with metabolic plasticity and thus a selective advantage on different diets in the wild.
PMID: 27383050 [PubMed - as supplied by publisher]
An integrated systems biology approach identifies positive cofactor 4 as a factor that increases reprogramming efficiency.
An integrated systems biology approach identifies positive cofactor 4 as a factor that increases reprogramming efficiency.
Nucleic Acids Res. 2016 Feb 18;44(3):1203-15
Authors: Jo J, Hwang S, Kim HJ, Hong S, Lee JE, Lee SG, Baek A, Han H, Lee JI, Lee I, Lee DR
Abstract
Spermatogonial stem cells (SSCs) can spontaneously dedifferentiate into embryonic stem cell (ESC)-like cells, which are designated as multipotent SSCs (mSSCs), without ectopic expression of reprogramming factors. Interestingly, SSCs express key pluripotency genes such as Oct4, Sox2, Klf4 and Myc. Therefore, molecular dissection of mSSC reprogramming may provide clues about novel endogenous reprogramming or pluripotency regulatory factors. Our comparative transcriptome analysis of mSSCs and induced pluripotent stem cells (iPSCs) suggests that they have similar pluripotency states but are reprogrammed via different transcriptional pathways. We identified 53 genes as putative pluripotency regulatory factors using an integrated systems biology approach. We demonstrated a selected candidate, Positive cofactor 4 (Pc4), can enhance the efficiency of somatic cell reprogramming by promoting and maintaining transcriptional activity of the key reprograming factors. These results suggest that Pc4 has an important role in inducing spontaneous somatic cell reprogramming via up-regulation of key pluripotency genes.
PMID: 26740582 [PubMed - indexed for MEDLINE]
Predicting Dental Caries Outcomes in Children: A "Risky" Concept.
Predicting Dental Caries Outcomes in Children: A "Risky" Concept.
J Dent Res. 2016 Mar;95(3):248-54
Authors: Divaris K
Abstract
In recent years, unprecedented gains in the understanding of the biology and mechanisms underlying human health and disease have been made. In the domain of oral health, although much remains to be learned, the complex interactions between different systems in play have begun to unravel: host genome, oral microbiome with its transcriptome, proteome and metabolome, and more distal influences, including relevant behaviors and environmental exposures. A reasonable expectation is that this emerging body of knowledge can help improve the oral health and optimize care for individuals and populations. These goals are articulated by the National Institutes of Health as "precision medicine" and the elimination of health disparities. Key processes in these efforts are the discovery of causal factors or mechanistic pathways and the identification of individuals or population segments that are most likely to develop (any or severe forms of) oral disease. This article critically reviews the fundamental concepts of risk assessment and outcome prediction, as they relate to early childhood caries (ECC)-a common complex disease with significant negative impacts on children, their families, and the health system. The article highlights recent work and advances in methods available to estimate caries risk and derive person-level caries propensities. It further discusses the reasons for their limited utility in predicting individual ECC outcomes and informing clinical decision making. Critical issues identified include the misconception of defining dental caries as a tooth or surface-level condition versus a person-level disease; the fallacy of applying population-level parameters to individuals, termed privatization of risk; and the inadequacy of using frequentist versus Bayesian modeling approaches to derive individual disease propensity estimates. The article concludes with the notion that accurate caries risk assessment at the population level and "precision dentistry" at the person level are both desirable and achievable but must be based on high-quality longitudinal data and rigorous methodology.
PMID: 26647391 [PubMed - indexed for MEDLINE]
Systems-level organization of yeast methylotrophic lifestyle.
Systems-level organization of yeast methylotrophic lifestyle.
BMC Biol. 2015;13:80
Authors: Rußmayer H, Buchetics M, Gruber C, Valli M, Grillitsch K, Modarres G, Guerrasio R, Klavins K, Neubauer S, Drexler H, Steiger M, Troyer C, Al Chalabi A, Krebiehl G, Sonntag D, Zellnig G, Daum G, Graf AB, Altmann F, Koellensperger G, Hann S, Sauer M, Mattanovich D, Gasser B
Abstract
BACKGROUND: Some yeasts have evolved a methylotrophic lifestyle enabling them to utilize the single carbon compound methanol as a carbon and energy source. Among them, Pichia pastoris (syn. Komagataella sp.) is frequently used for the production of heterologous proteins and also serves as a model organism for organelle research. Our current knowledge of methylotrophic lifestyle mainly derives from sophisticated biochemical studies which identified many key methanol utilization enzymes such as alcohol oxidase and dihydroxyacetone synthase and their localization to the peroxisomes. C1 assimilation is supposed to involve the pentose phosphate pathway, but details of these reactions are not known to date.
RESULTS: In this work we analyzed the regulation patterns of 5,354 genes, 575 proteins, 141 metabolites, and fluxes through 39 reactions of P. pastoris comparing growth on glucose and on a methanol/glycerol mixed medium, respectively. Contrary to previous assumptions, we found that the entire methanol assimilation pathway is localized to peroxisomes rather than employing part of the cytosolic pentose phosphate pathway for xylulose-5-phosphate regeneration. For this purpose, P. pastoris (and presumably also other methylotrophic yeasts) have evolved a duplicated methanol inducible enzyme set targeted to peroxisomes. This compartmentalized cyclic C1 assimilation process termed xylose-monophosphate cycle resembles the principle of the Calvin cycle and uses sedoheptulose-1,7-bisphosphate as intermediate. The strong induction of alcohol oxidase, dihydroxyacetone synthase, formaldehyde and formate dehydrogenase, and catalase leads to high demand of their cofactors riboflavin, thiamine, nicotinamide, and heme, respectively, which is reflected in strong up-regulation of the respective synthesis pathways on methanol. Methanol-grown cells have a higher protein but lower free amino acid content, which can be attributed to the high drain towards methanol metabolic enzymes and their cofactors. In context with up-regulation of many amino acid biosynthesis genes or proteins, this visualizes an increased flux towards amino acid and protein synthesis which is reflected also in increased levels of transcripts and/or proteins related to ribosome biogenesis and translation.
CONCLUSIONS: Taken together, our work illustrates how concerted interpretation of multiple levels of systems biology data can contribute to elucidation of yet unknown cellular pathways and revolutionize our understanding of cellular biology.
PMID: 26400155 [PubMed - indexed for MEDLINE]
The Kidney-Vascular-Bone Axis in the Chronic Kidney Disease-Mineral Bone Disorder.
The Kidney-Vascular-Bone Axis in the Chronic Kidney Disease-Mineral Bone Disorder.
Transplantation. 2016 Mar;100(3):497-505
Authors: Seifert ME, Hruska KA
Abstract
The last 25 years have been characterized by dramatic improvements in short-term patient and allograft survival after kidney transplantation. Long-term patient and allograft survival remains limited by cardiovascular disease and chronic allograft injury, among other factors. Cardiovascular disease remains a significant contributor to mortality in native chronic kidney disease as well as cardiovascular mortality in chronic kidney disease more than doubles that of the general population. The chronic kidney disease (CKD)-mineral bone disorder (MBD) is a syndrome recently coined to embody the biochemical, skeletal, and cardiovascular pathophysiology that results from disrupting the complex systems biology between the kidney, skeleton, and cardiovascular system in native and transplant kidney disease. The CKD-MBD is a unique kidney disease-specific syndrome containing novel cardiovascular risk factors, with an impact reaching far beyond traditional notions of renal osteodystrophy and hyperparathyroidism. This overview reviews current knowledge of the pathophysiology of the CKD-MBD, including emerging concepts surrounding the importance of circulating pathogenic factors released from the injured kidney that directly cause cardiovascular disease in native and transplant chronic kidney disease, with potential application to mechanisms of chronic allograft injury and vasculopathy.
PMID: 26356179 [PubMed - indexed for MEDLINE]
Analytical methods in sphingolipidomics: Quantitative and profiling approaches in food analysis.
Analytical methods in sphingolipidomics: Quantitative and profiling approaches in food analysis.
J Chromatogr A. 2016 Jan 8;1428:16-38
Authors: Canela N, Herrero P, Mariné S, Nadal P, Ras MR, Rodríguez MÁ, Arola L
Abstract
In recent years, sphingolipidomics has emerged as an interesting omic science that encompasses the study of the full sphingolipidome characterization, content, structure and activity in cells, tissues or organisms. Like other omics, it has the potential to impact biomarker discovery, drug development and systems biology knowledge. Concretely, dietary food sphingolipids have gained considerable importance due to their extensively reported bioactivity. Because of the complexity of this lipid family and their diversity among foods, powerful analytical methodologies are needed for their study. The analytical tools developed in the past have been improved with the enormous advances made in recent years in mass spectrometry (MS) and chromatography, which allow the convenient and sensitive identification and quantitation of sphingolipid classes and form the basis of current sphingolipidomics methodologies. In addition, novel hyphenated nuclear magnetic resonance (NMR) strategies, new ionization strategies, and MS imaging are outlined as promising technologies to shape the future of sphingolipid analyses. This review traces the analytical methods of sphingolipidomics in food analysis concerning sample extraction, chromatographic separation, the identification and quantification of sphingolipids by MS and their structural elucidation by NMR.
PMID: 26275862 [PubMed - indexed for MEDLINE]
Selection on Network Dynamics Drives Differential Rates of Protein Domain Evolution.
Selection on Network Dynamics Drives Differential Rates of Protein Domain Evolution.
PLoS Genet. 2016 Jul;12(7):e1006132
Authors: Mannakee BK, Gutenkunst RN
Abstract
The long-held principle that functionally important proteins evolve slowly has recently been challenged by studies in mice and yeast showing that the severity of a protein knockout only weakly predicts that protein's rate of evolution. However, the relevance of these studies to evolutionary changes within proteins is unknown, because amino acid substitutions, unlike knockouts, often only slightly perturb protein activity. To quantify the phenotypic effect of small biochemical perturbations, we developed an approach to use computational systems biology models to measure the influence of individual reaction rate constants on network dynamics. We show that this dynamical influence is predictive of protein domain evolutionary rate within networks in vertebrates and yeast, even after controlling for expression level and breadth, network topology, and knockout effect. Thus, our results not only demonstrate the importance of protein domain function in determining evolutionary rate, but also the power of systems biology modeling to uncover unanticipated evolutionary forces.
PMID: 27380265 [PubMed - as supplied by publisher]
Humoral Dysregulation Associated with Increased Systemic Inflammation among Injection Heroin Users.
Humoral Dysregulation Associated with Increased Systemic Inflammation among Injection Heroin Users.
PLoS One. 2016;11(7):e0158641
Authors: Piepenbrink MS, Samuel M, Zheng B, Carter B, Fucile C, Bunce C, Kiebala M, Khan AA, Thakar J, Maggirwar SB, Morse D, Rosenberg AF, Haughey NJ, Valenti W, Keefer MC, Kobie JJ
Abstract
BACKGROUND: Injection drug use is a growing major public health concern. Injection drug users (IDUs) have a higher incidence of co-morbidities including HIV, Hepatitis, and other infections. An effective humoral response is critical for optimal homeostasis and protection from infection; however, the impact of injection heroin use on humoral immunity is poorly understood. We hypothesized that IDUs have altered B cell and antibody profiles.
METHODS AND FINDINGS: A comprehensive systems biology-based cross-sectional assessment of 130 peripheral blood B cell flow cytometry- and plasma- based features was performed on HIV-/Hepatitis C-, active heroin IDUs who participated in a syringe exchange program (n = 19) and healthy control subjects (n = 19). The IDU group had substantial polydrug use, with 89% reporting cocaine injection within the preceding month. IDUs exhibited a significant, 2-fold increase in total B cells compared to healthy subjects, which was associated with increased activated B cell subsets. Although plasma total IgG titers were similar between groups, IDUs had significantly higher IgG3 and IgG4, suggestive of chronic B cell activation. Total IgM was also increased in IDUs, as well as HIV Envelope-specific IgM, suggestive of increased HIV exposure. IDUs exhibited numerous features suggestive of systemic inflammation, including significantly increased plasma sCD40L, TNF-α, TGF-α, IL-8, and ceramide metabolites. Machine learning multivariate analysis distilled a set of 10 features that classified samples based on group with absolute accuracy.
CONCLUSIONS: These results demonstrate broad alterations in the steady-state humoral profile of IDUs that are associated with increased systemic inflammation. Such dysregulation may impact the ability of IDUs to generate optimal responses to vaccination and infection, or lead to increased risk for inflammation-related co-morbidities, and should be considered when developing immune-based interventions for this growing population.
PMID: 27379802 [PubMed - as supplied by publisher]
Editorial: Protein Interaction Networks in Health and Disease.
Editorial: Protein Interaction Networks in Health and Disease.
Front Genet. 2016;7:111
Authors: Petrakis S, Andrade-Navarro MA
PMID: 27379161 [PubMed - as supplied by publisher]
Silicon: Potential to Promote Direct and Indirect Effects on Plant Defense Against Arthropod Pests in Agriculture.
Silicon: Potential to Promote Direct and Indirect Effects on Plant Defense Against Arthropod Pests in Agriculture.
Front Plant Sci. 2016;7:744
Authors: Reynolds OL, Padula MP, Zeng R, Gurr GM
Abstract
Silicon has generally not been considered essential for plant growth, although it is well recognized that many plants, particularly Poaceae, have substantial plant tissue concentrations of this element. Recently, however, the International Plant Nutrition Institute [IPNI] (2015), Georgia, USA has listed it as a "beneficial substance". This reflects that numerous studies have now established that silicon may alleviate both biotic and abiotic stress. This paper explores the existing knowledge and recent advances in elucidating the role of silicon in plant defense against biotic stress, particularly against arthropod pests in agriculture and attraction of beneficial insects. Silicon confers resistance to herbivores via two described mechanisms: physical and biochemical/molecular. Until recently, studies have mainly centered on two trophic levels; the herbivore and plant. However, several studies now describe tri-trophic effects involving silicon that operate by attracting predators or parasitoids to plants under herbivore attack. Indeed, it has been demonstrated that silicon-treated, arthropod-attacked plants display increased attractiveness to natural enemies, an effect that was reflected in elevated biological control in the field. The reported relationships between soluble silicon and the jasmonic acid (JA) defense pathway, and JA and herbivore-induced plant volatiles (HIPVs) suggest that soluble silicon may enhance the production of HIPVs. Further, it is feasible that silicon uptake may affect protein expression (or modify proteins structurally) so that they can produce additional, or modify, the HIPV profile of plants. Ultimately, understanding silicon under plant ecological, physiological, biochemical, and molecular contexts will assist in fully elucidating the mechanisms behind silicon and plant response to biotic stress at both the bi- and tri-trophic levels.
PMID: 27379104 [PubMed - as supplied by publisher]
AMIGO2, a toolbox for dynamic modeling, optimization and control in systems biology.
AMIGO2, a toolbox for dynamic modeling, optimization and control in systems biology.
Bioinformatics. 2016 Jul 4;
Authors: Balsa-Canto E, Henriques D, Gabor A, Banga JR
Abstract
MOTIVATION: Many problems of interest in dynamic modeling and control of biological systems can be posed as non-linear optimization problems subject to algebraic and dynamic constraints. In the context of modeling, this is the case of e.g. parameter estimation, optimal experimental design and dynamic flux balance analysis. In the context of control, model-based metabolic engineering or drug dose optimization problems can be formulated as (multi-objective) optimal control problems. Finding a solution to those problems is a very challenging task which requires advanced numerical methods.
RESULTS: This work presents the AMIGO2 toolbox: the first multiplatform software tool that automatizes the solution of all those problems, offering a suite of state-of-the-art (multi-objective) global optimizers and advanced simulation approaches.
AVAILABILITY: The toolbox and its documentation are available at: sites.google.com/site/amigo2toolbox CONTACT: ebalsa@iim.csic.es.
PMID: 27378288 [PubMed - as supplied by publisher]
Comparative genomic analysis of novel Acinetobacter symbionts: A combined systems biology and genomics approach.
Comparative genomic analysis of novel Acinetobacter symbionts: A combined systems biology and genomics approach.
Sci Rep. 2016;6:29043
Authors: Gupta V, Haider S, Sood U, Gilbert JA, Ramjee M, Forbes K, Singh Y, Lopes BS, Lal R
Abstract
The increasing trend of antibiotic resistance in Acinetobacter drastically limits the range of therapeutic agents required to treat multidrug resistant (MDR) infections. This study focused on analysis of novel Acinetobacter strains using a genomics and systems biology approach. Here we used a network theory method for pathogenic and non-pathogenic Acinetobacter spp. to identify the key regulatory proteins (hubs) in each strain. We identified nine key regulatory proteins, guaA, guaB, rpsB, rpsI, rpsL, rpsE, rpsC, rplM and trmD, which have functional roles as hubs in a hierarchical scale-free fractal protein-protein interaction network. Two key hubs (guaA and guaB) were important for insect-associated strains, and comparative analysis identified guaA as more important than guaB due to its role in effective module regulation. rpsI played a significant role in all the novel strains, while rplM was unique to sheep-associated strains. rpsM, rpsB and rpsI were involved in the regulation of overall network topology across all Acinetobacter strains analyzed in this study. Future analysis will investigate whether these hubs are useful as drug targets for treating Acinetobacter infections.
PMID: 27378055 [PubMed - as supplied by publisher]
CO2-evoked release of PGE2 modulates sighs and inspiration as demonstrated in brainstem organotypic culture.
CO2-evoked release of PGE2 modulates sighs and inspiration as demonstrated in brainstem organotypic culture.
Elife. 2016 Jul 5;5
Authors: Forsberg D, Horn Z, Tserga E, Smedler E, Silberberg G, Shvarev Y, Kaila K, Uhlén P, Herlenius E
Abstract
Inflammation-induced release of prostaglandin E2 (PGE2) changes breathing patterns and the response to CO2 levels. This may have fatal consequences in newborn babies and result in sudden infant death. To elucidate the underlying mechanisms, we present a novel breathing brainstem organotypic culture that generates rhythmic neural network and motor activity for 3 weeks. We show that increased CO2 elicits a gap junction-dependent release of PGE2. This alters neural network activity in the preBötzinger rhythm-generating complex and in the chemosensitive brainstem respiratory regions, thereby increasing sigh frequency and the depth of inspiration. We used mice lacking eicosanoid prostanoid 3 receptors (EP3R), breathing brainstem organotypic slices and optogenetic inhibition of EP3R(+/+)cells to demonstrate that the EP3R is important for the ventilatory response to hypercapnia. Our study identifies a novel pathway linking the inflammatory and respiratory systems, with implications for inspiration and sighs throughout life, and the ability to autoresuscitate when breathing fails.
PMID: 27377173 [PubMed - as supplied by publisher]
Piecewise linear approximations to model the dynamics of adaptation to osmotic stress by food-borne pathogens.
Piecewise linear approximations to model the dynamics of adaptation to osmotic stress by food-borne pathogens.
Int J Food Microbiol. 2016 Jun 22;
Authors: Métris A, George SM, Ropers D
Abstract
Addition of salt to food is one of the most ancient and most common methods of food preservation. However, little is known of how bacterial cells adapt to such conditions. We propose to use piecewise linear approximations to model the regulatory adaptation of Escherichiacoli to osmotic stress. We apply the method to eight selected genes representing the functions known to be at play during osmotic adaptation. The network is centred on the general stress response factor, sigma S, and also includes a module representing the catabolic repressor CRP-cAMP. Glutamate, potassium and supercoiling are combined to represent the intracellular regulatory signal during osmotic stress induced by salt. The output is a module where growth is represented by the concentration of stable RNAs and the transcription of the osmotic gene osmY. The time course of gene expression of transport of osmoprotectant represented by the symporter proP and of the osmY is successfully reproduced by the network. The behaviour of the rpoS mutant predicted by the model is in agreement with experimental data. We discuss the application of the model to food-borne pathogens such as Salmonella; although the genes considered have orthologs, it seems that supercoiling is not regulated in the same way. The model is limited to a few selected genes, but the regulatory interactions are numerous and span different time scales. In addition, they seem to be condition specific: the links that are important during the transition from exponential to stationary phase are not all needed during osmotic stress. This model is one of the first steps towards modelling adaptation to stress in food safety and has scope to be extended to other genes and pathways, other stresses relevant to the food industry, and food-borne pathogens. The method offers a good compromise between systems of ordinary differential equations, which would be unmanageable because of the size of the system and for which insufficient data are available, and the more abstract Boolean methods.
PMID: 27377009 [PubMed - as supplied by publisher]