Systems Biology

Epithelial‑derived head and neck squamous tumourigenesis (Review)

Mon, 2024-09-02 06:00

Oncol Rep. 2024 Oct;52(4):141. doi: 10.3892/or.2024.8800. Epub 2024 Sep 2.

ABSTRACT

Head and neck squamous cell carcinomas (HNSCCs), a heterogeneous group of cancers that arise from the mucosal epithelia cells in the head and neck areas, present great challenges in diagnosis, treatment and prognosis due to their complex aetiology and various clinical manifestations. Several factors, including smoking, alcohol consumption, oncogenic genes, growth factors, Epstein‑Barr virus and human papillomavirus infections can contribute to HNSCC development. The unpredictable tumour microenvironment adds to the complexity of managing HNSCC. Despite significant advances in therapies, the prediction of outcome after treatment for patients with HNSCC remains poor, and the 5‑year overall survival rate is low due to late diagnosis. Early detection greatly increases the chances of successful treatment. The present review aimed to bring together the latest findings related to the molecular mechanisms of HNSCC carcinogenesis and progression. Comprehensive genomic, transcriptomic, metabolomic, microbiome and proteomic analyses allow researchers to identify important biological markers such as genetic alterations, gene expression signatures and protein markers that drive HNSCC tumours. These biomarkers associated with the stages of initiation, progression and metastasis of cancer are useful in the management of patients with cancer in order to improve their life expectancy and quality of life.

PMID:39219259 | DOI:10.3892/or.2024.8800

Categories: Literature Watch

Fluorescence-based techniques for investigating estrogen receptor dynamics

Mon, 2024-09-02 06:00

BMB Rep. 2024 Sep 2:6277. Online ahead of print.

ABSTRACT

Understanding estrogen receptor (ER) signaling pathways is crucial for uncovering the mechanisms behind estrogen-related diseases, such as breast cancer, and addressing the effects of environmental estrogenic disruptors. Traditionally, ER signaling involves genomic events, including ligand binding, receptor dimerization, and transcriptional modulation within cellular nuclei. However, recent research have revealed ERs also participate in non-genomic signaling pathways, adding complexity to their functions. Researchers use advanced fluorescence-based techniques, leveraging fluorescent probes (FPb) to study ER dynamics in living cells, such as spatial distribution, expression kinetics, and functional activities. This review systematically examines the application of fluorescent probes in ER signaling research, covering the visualization of ER, ligandreceptor interactions, receptor dimerization, estrogen response elements (EREs)-mediated transcriptional activation, and G-proteincoupled estrogen receptor (GPER) signaling. Our aim is to provide researchers with valuable insights for employing FPb in their explorations of ER signaling.

PMID:39219049

Categories: Literature Watch

Challenges in Understanding the Biological and Pharmacological Responses Based on Emergent Complexity in Biological Systems: From Bone Metabolism to General Physiology

Sun, 2024-09-01 06:00

Yakugaku Zasshi. 2024;144(9):865-870. doi: 10.1248/yakushi.24-00127.

ABSTRACT

Biological systems are complex, and although researchers strive to understand them, the accumulated knowledge often complicates integrative comprehension. Consolidating this knowledge can provide insights into the landscape of specific biological events. Our study on bone metabolism, focusing on the behavior of the receptor activator of nuclear factor kappa B (RANK) and its ligand (RANKL) highlighted the challenges in understanding its role across different cell types. At the same time, the study underscores the importance of exploring interactions between various players (cell types and genes/proteins) in complex systems, which is a core focus of systems biology. Analysis by mathematical models is a potentially powerful tool for describing the dynamic behavior of components in the interaction networks. However, such model-based analyses are limited by parameter availability and reliability. To address this, we proposed two approaches, i.e., sequential simulation and system-wide behavior constraints. Sequential simulation of small dynamic models offers potential in reproducing behavior in larger networks, as seen in toxicity analysis of sunitinib-related adverse effects. System-wide constraints derived from "homeostasis" help reduce the parameter search space in large-scale models, as demonstrated in model-based analysis of the effects of non-steroidal anti-inflammatory drugs (NSAIDs) on the arachidonic acid pathway. These analytical approaches offer insights into biological system dynamics and can enhance our understanding of pharmacological effects that result from perturbations in complexities of biological systems.

PMID:39218653 | DOI:10.1248/yakushi.24-00127

Categories: Literature Watch

Cyclin-dependent kinase 4 drives cystic kidney disease in the absence of mTORC1 signaling activity

Sun, 2024-09-01 06:00

Kidney Int. 2024 Aug 30:S0085-2538(24)00627-6. doi: 10.1016/j.kint.2024.08.021. Online ahead of print.

ABSTRACT

Progression of cystic kidney disease has been linked to activation of the mTORC1 signaling pathway. Yet the utility of mTORC1 inhibitors to treat patients with polycystic kidney disease remains controversial despite promising preclinical data. To define the cell intrinsic role of mTORC1 for cyst development, the mTORC1 subunit gene Raptor was selectively inactivated in kidney tubular cells lacking cilia due to simultaneous deletion of the kinesin family member gene Kif3A. In contrast to a rapid onset of cyst formation and kidney failure in mice with defective ciliogenesis, both kidney function, cyst formation discerned by magnetic resonance imaging and overall survival were strikingly improved in mice additionally lacking Raptor. However, these mice eventually succumbed to cystic kidney disease despite mTORC1 inactivation. In-depth transcriptome analysis revealed the rapid activation of other growth-promoting signaling pathways, overriding the effects of mTORC1 deletion and identified cyclin-dependent kinase (CDK) 4 as an alternate driver of cyst growth. Additional inhibition of CDK4-dependent signaling by the CDK4/6 inhibitor Palbociclib markedly slowed disease progression in mice and human organoid models of polycystic kidney disease and potentiated the effects of mTORC1 deletion/inhibition. Our findings indicate that cystic kidneys rapidly adopt bypass mechanisms typically observed in drug resistant cancers. Thus, future clinical trials need to consider combinatorial or sequential therapies to improve therapeutic efficacy in patients with cystic kidney disease.

PMID:39218392 | DOI:10.1016/j.kint.2024.08.021

Categories: Literature Watch

The effects of Staphylococcus aureus protein a (SpA) on the expression of inflammatory cytokines in autoimmune patients and their probable immune response modulation mechanisms

Sun, 2024-09-01 06:00

Cytokine. 2024 Aug 31;183:156745. doi: 10.1016/j.cyto.2024.156745. Online ahead of print.

ABSTRACT

The recombinant Staphylococcal protein A (SpA) is widely used in biotechnology to purify polyclonal and monoclonal IgG antibodies. At very low concentrations, the highly-purified form of the protein A can down-regulate the activation of human B-lymphocytes and macrophages which are the key cells in determining autoimmune diseases. In the present study, the efficiency of three different forms of protein A, including native full-length SpA, the recombinant full-length SpA, and a recombinant truncated form of SpA on the reduction of 4 inflammatory cytokines, including IL-8, IL-1β, TNF-α, and IL-6 by peripheral blood mononuclear cell (PBMCs) were studied and compared to an anti-rheumatoid arthritis commercial drug, Enbrel. The recombinant proteins were expressed in E. coli and the native form of SpA was commercially provided. PBMCs were obtained from adult patients with active rheumatoid arthritis (RA) and healthy control donors. Then, the effect of different doses of the three pure forms of SpA in comparison with Enbrel was investigated by analyzing the expression of selected cytokines using ELISA. The results showed that the truncated form of recombinant SpA significantly reduced the expression of cytokines more effectively than the other full-length formulations as well as the commercial drug Enbrel. In silico analysis shows that in the truncated protein, as the radius of gyration increases, the structure of IgG-binding domains become more open and more exposed to IgG. To summarize, our findings indicate that the truncated form of protein A is the most efficient form of SpA as it significantly decreases the secretion of evaluated cytokines from PBMCs in vitro.

PMID:39217914 | DOI:10.1016/j.cyto.2024.156745

Categories: Literature Watch

Protocol for establishing and evaluating a cancer cachexia mouse model

Sun, 2024-09-01 06:00

STAR Protoc. 2024 Aug 31;5(3):103281. doi: 10.1016/j.xpro.2024.103281. Online ahead of print.

ABSTRACT

Cancer cachexia mouse models are needed to recapitulate the clinical features of patients with cachexia. Here, we present a protocol for the establishment and evaluation of cancer cachexia mouse models. We delineate the steps in preparing tumor cells for inoculation and surgical procedures. After the establishment of these mouse models, we describe essential techniques to assess cancer cachexia, including grip strength evaluation, tissue collection, and the calculation of cross-sectional areas of muscle tissue. For complete details on the use and execution of this protocol, please refer to Liu et al.,1 Yang et al.,2 Shi et al.,3 and Zhou et al.4.

PMID:39217610 | DOI:10.1016/j.xpro.2024.103281

Categories: Literature Watch

Nucleocapsids of the Rift Valley fever virus ambisense S segment contain an exposed RNA element in the center that overlaps with the intergenic region

Sat, 2024-08-31 06:00

Nat Commun. 2024 Sep 1;15(1):7602. doi: 10.1038/s41467-024-52058-2.

ABSTRACT

Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen. Its RNA genome consists of two negative-sense segments (L and M) with one gene each, and one ambisense segment (S) with two opposing genes separated by the noncoding "intergenic region" (IGR). These vRNAs and the complementary cRNAs are encapsidated by nucleoprotein (N). Using iCLIP2 (individual-nucleotide resolution UV crosslinking and immunoprecipitation) to map all N-vRNA and N-cRNA interactions, we detect N coverage along the L and M segments. However, the S segment vRNA and cRNA each contain approximately 100 non-encapsidated nucleotides stretching from the IGR into the 5'-adjacent reading frame. These exposed regions are RNase-sensitive and predicted to form stem-loop structures with the mRNA transcription termination motif positioned near the top. Moreover, optimal S segment transcription and replication requires the entire exposed region rather than only the IGR. Thus, the RVFV S segment contains a central, non-encapsidated RNA region with a functional role.

PMID:39217162 | DOI:10.1038/s41467-024-52058-2

Categories: Literature Watch

Regulatory transposable elements in the encyclopedia of DNA elements

Sat, 2024-08-31 06:00

Nat Commun. 2024 Aug 31;15(1):7594. doi: 10.1038/s41467-024-51921-6.

ABSTRACT

Transposable elements (TEs) comprise ~50% of our genome, but knowledge of how TEs affect genome evolution remains incomplete. Leveraging ENCODE4 data, we provide the most comprehensive study to date of TE contributions to the regulatory genome. We find 236,181 (~25%) human candidate cis-regulatory elements (cCREs) are TE-derived, with over 90% lineage-specific since the human-mouse split, accounting for 8-36% of lineage-specific cCREs. Except for SINEs, cCRE-associated transcription factor (TF) motifs in TEs are derived from ancestral TE sequence more than expected by chance. We show that TEs may adopt similar regulatory activities of elements near their integration site. Since human-mouse divergence, TEs have contributed 3-56% of TF binding site turnover events across 30 examined TFs. Finally, TE-derived cCREs are similar to non-TE cCREs in terms of MPRA activity and GWAS variant enrichment. Overall, our results substantiate the notion that TEs have played an important role in shaping the human regulatory genome.

PMID:39217141 | DOI:10.1038/s41467-024-51921-6

Categories: Literature Watch

Biomarker-based prediction of sinus rhythm in atrial fibrillation patients: the EAST-AFNET 4 biomolecule study

Sat, 2024-08-31 06:00

Eur Heart J. 2024 Aug 31:ehae611. doi: 10.1093/eurheartj/ehae611. Online ahead of print.

ABSTRACT

BACKGROUND AND AIMS: In patients with atrial fibrillation (AF), recurrent AF and sinus rhythm during follow-up are determined by interactions between cardiovascular disease processes and rhythm-control therapy. Predictors of attaining sinus rhythm at follow-up are not well known.

METHODS: To quantify the interaction between cardiovascular disease processes and rhythm outcomes, 14 biomarkers reflecting AF-related cardiovascular disease processes in 1586 patients in the EAST-AFNET 4 biomolecule study (71 years old, 46% women) were quantified at baseline. Mixed logistic regression models including clinical features were constructed for each biomarker. Biomarkers were interrogated for interaction with early rhythm control. Outcome was sinus rhythm at 12 months. Results were validated at 24 months and in external datasets.

RESULTS: Higher baseline concentrations of three biomarkers were independently associated with a lower chance of sinus rhythm at 12 months: angiopoietin 2 (ANGPT2) (odds ratio [OR] 0.76 [95% confidence interval 0.65-0.89], p=0.001), bone morphogenetic protein 10 (BMP10) (OR 0.83 [0.71-0.97], p=0.017) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) (OR 0.73 [0.60-0.88], p=0.001). Analysis of rhythm at 24 months confirmed the results. Early rhythm control interacted with the predictive potential of NT-proBNP (pinteraction=0.033). The predictive effect of NT-proBNP was reduced in patients randomized to early rhythm control (usual care: OR 0.64 [0.51-0.80], p<0.001; early rhythm control: OR 0.90 [0.69-1.18], p=0.453). External validation confirmed that low concentrations of ANGPT2, BMP10 and NT-proBNP predict sinus rhythm during follow-up.

CONCLUSIONS: Low concentrations of ANGPT2, BMP10 and NT-proBNP identify patients with AF who are likely to attain sinus rhythm during follow-up. The predictive ability of NT-proBNP is attenuated in patients receiving rhythm control.

PMID:39215973 | DOI:10.1093/eurheartj/ehae611

Categories: Literature Watch

Genomic analyses of intricate interaction of TE-lncRNA overlapping genes with miRNAs in human diseases

Sat, 2024-08-31 06:00

Genes Genomics. 2024 Aug 31. doi: 10.1007/s13258-024-01547-1. Online ahead of print.

ABSTRACT

BACKGROUND: Transposable elements (TEs) are known to be inserted into genome to create transcript isoforms or to generate long non-coding RNA (lncRNA) sequences. The insertion of TEs generates a gene protein sequence within the genome, but also provides a microRNA (miRNA) regulatory region.

OBJECTIVE: To determine the effect of gene sequence changes caused by TE insertion on miRNA binding and to investigate the formation of an overlapping lncRNA that represses it.

METHODS: The distribution of overlapping regions between exons and TE regions with lncRNA was examined using the Bedtools. miRNAs that can bind to those overlapping regions were identified through the miRDB web program. For TE-lncRNA overlapping genes, bioinformatic analysis was conducted using DAVID web database. Differential expression analysis was conducted using data from the GEO dataset and TCGA.

RESULTS: Most TEs were distributed more frequently in untranslated regions than open reading frames. There were 30 annotated TE-lncRNA overlapping genes with same strand that could bind to the same miRNA. As a result of identifying the association between these 30 genes and diseases, TGFB2, FCGR2A, DCTN5, and IFI6 were associated with breast cancer, and HMGCS1, FRMD4A, EDNRB, and SNCA were associated with Alzheimer's disease. Analysis of the GEO and TCGA data showed that the relevant expression of miR-891a and miR-28, which bind to the TE overlapping region of DCTN5 and HMGCS1, decreased.

CONCLUSION: This study indicates that the interaction between TE-lncRNA overlapping genes and miRNAs can affect disease progression.

PMID:39215947 | DOI:10.1007/s13258-024-01547-1

Categories: Literature Watch

Multi-epitope vaccine design of African swine fever virus considering T cell and B cell immunogenicity

Sat, 2024-08-31 06:00

AMB Express. 2024 Aug 31;14(1):95. doi: 10.1186/s13568-024-01749-6.

ABSTRACT

T and B cell activation are equally important in triggering and orchestrating adaptive host responses to design multi-epitope African swine fever virus (ASFV) vaccines. However, few design methods have considered the trade-off between T and B cell immunogenicity when identifying promising ASFV epitopes. This work proposed a novel Pareto front-based ASFV screening method PFAS to identify promising epitopes for designing multi-epitope vaccines utilizing five ASFV Georgia 2007/1 sequences. To accurately predict T cell immunogenicity, four scoring methods were used to estimate the T cell activation in the four stages, including proteasomal cleavage probability, transporter associated with antigen processing transport efficiency, class I binding affinity of the major histocompatibility complex, and CD8 + cytotoxic T cell immunogenicity. PFAS ranked promising epitopes using a Pareto front method considering T and B cell immunogenicity. The coefficient of determination between the Pareto ranks of multi-epitope vaccines and survival days of swine vaccinations was R2 = 0.95. Consequently, PFAS scored complete epitope profiles and identified 72 promising top-ranked epitopes, including 46 CD2v epitopes, two p30 epitopes, 10 p72 epitopes, and 14 pp220 epitopes. PFAS is the first method of using the Pareto front approach to identify promising epitopes that considers the objectives of maximizing both T and B cell immunogenicity. The top-ranked promising epitopes can be cost-effectively validated in vitro. The Pareto front approach can be adaptively applied to various epitope predictors for bacterial, viral and cancer vaccine developments. The MATLAB code of the Pareto front method was available at https://github.com/NYCU-ICLAB/PFAS .

PMID:39215890 | DOI:10.1186/s13568-024-01749-6

Categories: Literature Watch

Selection on genome-wide gene expression plasticity of rice in wet and dry field environments

Sat, 2024-08-31 06:00

Mol Ecol. 2024 Aug 30:e17522. doi: 10.1111/mec.17522. Online ahead of print.

ABSTRACT

Gene expression can be highly plastic in response to environmental variation. However, we know little about how expression plasticity is shaped by natural selection and evolves in wild and domesticated species. We used genotypic selection analysis to characterize selection on drought-induced plasticity of over 7,500 leaf transcripts of 118 rice accessions (genotypes) from different environmental conditions grown in a field experiment. Gene expression plasticity was neutral for most gradually plastic transcripts, but transcripts with discrete patterns of expression showed stronger selection on expression plasticity. Whether plasticity was adaptive and co-gradient or maladaptive and counter-gradient varied among varietal groups. No transcripts that experienced selection for plasticity across environments showed selection against plasticity within environments, indicating a lack of evidence for costs of adaptive plasticity that may constrain its evolution. Selection on expression plasticity was influenced by degree of plasticity, transcript length and gene body methylation. We observed positive selection on plasticity of co-expression modules containing transcripts involved in photosynthesis, translation and responsiveness to abiotic stress. Taken together, these results indicate that patterns of selection on expression plasticity were context-dependent and likely associated with environmental conditions of varietal groups, but that the evolution of adaptive plasticity would likely not be constrained by opposing patterns of selection on plasticity within compared to across environments. These results offer a genome-wide view of patterns of selection and ecological constraints on gene expression plasticity and provide insights into the interplay between plastic and evolutionary responses to drought at the molecular level.

PMID:39215462 | DOI:10.1111/mec.17522

Categories: Literature Watch

Influence of selection on the probability of fixation at a locus with multiple alleles

Fri, 2024-08-30 06:00

BMC Genomics. 2024 Aug 30;25(1):819. doi: 10.1186/s12864-024-10733-0.

ABSTRACT

BACKGROUND: Genes exist in a population in a variety of forms (alleles), as a consequence of multiple mutation events that have arisen over the course of time. In this work we consider a locus that is subject to either multiplicative or additive selection, and has n alleles, where n can take the values 2, 3, 4, … . We focus on determining the probability of fixation of each of the n alleles. For n = 2 alleles, analytical results, that are 'exact', under the diffusion approximation, can be found for the fixation probability. However generally there are no equally exact results for n ≥ 3 alleles. In the absence of such exact results, we proceed by finding results for the fixation probability, under the diffusion approximation, as a power series in scaled strengths of selection such as R i , j = 2 N e ( s i - s j ) , where N e is the effective population size, while s i and s j are the selection coefficients associated with alleles i and j, respectively.

RESULTS: We determined the fixation probability when all terms up to second order in the R i , j are kept. The truncation of the power series requires that the R i , j cannot be indefinitely large. For magnitudes of the R i , j up to a value of approximately 1, numerical evidence suggests that the results work well. Additionally, results given for the particular case of n = 3 alleles illustrate a general feature that holds for n ≥ 3 alleles, that the fixation probability of a particular allele depends on that allele's initial frequency, but generally, this fixation probability also depends on the initial frequencies of other alleles at the locus, as well as their selective effects.

CONCLUSIONS: We have analytically exposed the leading way the probability of fixation, at a locus with multiple alleles, is affected by selection. This result may offer important insights into CDCV traits that have extreme phenotypic variance due to numerous, low-penetrance susceptibility alleles.

PMID:39215209 | DOI:10.1186/s12864-024-10733-0

Categories: Literature Watch

UNSEG: unsupervised segmentation of cells and their nuclei in complex tissue samples

Fri, 2024-08-30 06:00

Commun Biol. 2024 Aug 30;7(1):1062. doi: 10.1038/s42003-024-06714-4.

ABSTRACT

Multiplexed imaging technologies have made it possible to interrogate complex tissue microenvironments at sub-cellular resolution within their native spatial context. However, proper quantification of this complexity requires the ability to easily and accurately segment cells into their sub-cellular compartments. Within the supervised learning paradigm, deep learning-based segmentation methods demonstrating human level performance have emerged. However, limited work has been done in developing such generalist methods within the unsupervised context. Here we present an easy-to-use unsupervised segmentation (UNSEG) method that achieves deep learning level performance without requiring any training data via leveraging a Bayesian-like framework, and nucleus and cell membrane markers. We show that UNSEG is internally consistent and better at generalizing to the complexity of tissue morphology than current deep learning methods, allowing it to unambiguously identify the cytoplasmic compartment of a cell, and localize molecules to their correct sub-cellular compartment. We also introduce a perturbed watershed algorithm for stably and automatically segmenting a cluster of cell nuclei into individual nuclei that increases the accuracy of classical watershed. Finally, we demonstrate the efficacy of UNSEG on a high-quality annotated gastrointestinal tissue dataset we have generated, on publicly available datasets, and in a range of practical scenarios.

PMID:39215205 | DOI:10.1038/s42003-024-06714-4

Categories: Literature Watch

Engineering artificial non-coding RNAs for targeted protein degradation

Fri, 2024-08-30 06:00

Nat Chem Biol. 2024 Aug 30. doi: 10.1038/s41589-024-01719-w. Online ahead of print.

ABSTRACT

Targeted protein degradation has become a notable drug development strategy, but its application has been limited by the dependence on protein-based chimeras with restricted genetic manipulation capabilities. The use of long non-coding RNAs (lncRNAs) has emerged as a viable alternative, offering interactions with cellular proteins to modulate pathways and enhance degradation capabilities. Here we introduce a strategy employing artificial lncRNAs (alncRNAs) for precise targeted protein degradation. By integrating RNA aptamers and sequences from the lncRNA HOTAIR, our alncRNAs specifically target and facilitate the ubiquitination and degradation of oncogenic transcription factors and tumor-related proteins, such as c-MYC, NF-κB, ETS-1, KRAS and EGFR. These alncRNAs show potential in reducing malignant phenotypes in cells, both in vitro and in vivo, offering advantages in efficiency, adaptability and versatility. This research enhances knowledge of lncRNA-driven protein degradation and presents an effective method for targeted therapies.

PMID:39215101 | DOI:10.1038/s41589-024-01719-w

Categories: Literature Watch

Direct inhibition of tumor hypoxia response with synthetic transcriptional repressors

Fri, 2024-08-30 06:00

Nat Chem Biol. 2024 Aug 30. doi: 10.1038/s41589-024-01716-z. Online ahead of print.

ABSTRACT

Many oncogenic transcription factors (TFs) are considered to be undruggable because of their reliance on large protein-protein and protein-DNA interfaces. TFs such as hypoxia-inducible factors (HIFs) and X-box-binding protein 1 (XBP1) are induced by hypoxia and other stressors in solid tumors and bind to unfolded protein response element (UPRE) and hypoxia-induced response element (HRE) motifs to control oncogenic gene programs. Here, we report a strategy to create synthetic transcriptional repressors (STRs) that mimic the basic leucine zipper domain of XBP1 and recognize UPRE and HRE motifs. A lead molecule, STR22, binds UPRE and HRE DNA sequences with high fidelity and competes with both TFs in cells. Under hypoxia, STR22 globally suppresses HIF1α binding to HRE-containing promoters and enhancers, inhibits hypoxia-induced gene expression and blocks protumorigenic phenotypes in triple-negative breast cancer (TNBC) cells. In vivo, intratumoral and systemic STR22 treatment inhibited hypoxia-dependent gene expression, primary tumor growth and metastasis of TNBC tumors. These data validate a novel strategy to target the tumor hypoxia response through coordinated inhibition of TF-DNA binding.

PMID:39215099 | DOI:10.1038/s41589-024-01716-z

Categories: Literature Watch

Legionella pneumophila evades host-autophagic clearance using phosphoribosyl-polyubiquitin chains

Fri, 2024-08-30 06:00

Nat Commun. 2024 Aug 30;15(1):7480. doi: 10.1038/s41467-024-51277-x.

NO ABSTRACT

PMID:39214961 | DOI:10.1038/s41467-024-51277-x

Categories: Literature Watch

Editorial: Emerging investigators in chemical biology in China

Fri, 2024-08-30 06:00

Bioorg Chem. 2024 Aug 10:107713. doi: 10.1016/j.bioorg.2024.107713. Online ahead of print.

NO ABSTRACT

PMID:39214826 | DOI:10.1016/j.bioorg.2024.107713

Categories: Literature Watch

International Union of Basic and Clinical Pharmacology. CXVII: Taste 2 receptors: Structures, functions, activators and blockers

Fri, 2024-08-30 06:00

Pharmacol Rev. 2024 Aug 30:PHARMREV-INR-2023-001140. doi: 10.1124/pharmrev.123.001140. Online ahead of print.

ABSTRACT

Bitter perception plays a critical role for the detection of potentially harmful substances in food items for most vertebrates. The detection of bitter compounds is facilitated by specialized receptors located in taste buds of the oral cavity. This work focuses on the receptors, including their sensitivities, structure-function relationships, agonists and antagonists. Moreover, the existence of numerous bitter taste receptor variants in the human population and the fact that several of them affect individual bitter tasting profoundly, is discussed as well. The identification of bitter taste receptors in numerous tissues outside the oral cavity and their multiple proposed roles in these tissues is also described briefly. Although this work is mainly focused on human bitter taste receptors, it is imperative to compare human bitter taste with that of other animals to understand which evolutionary forces might have shaped bitter taste receptors and their functions and to distinguish apparent typical human from rather general features. For the readers who are not too familiar with the gustatory system short descriptions of taste anatomy, signal transduction and oral bitter taste receptor expression are included in the beginning of this article. Significance Statement Apart from their role as sensors for potentially harmful substances in the oral cavity, the numerous additional roles of bitter taste receptors in tissues outside the gustatory system have received much attention recently. For the careful assessment of functions inside and outside the taste system a solid knowledge about the specific and general pharmacological features of these receptors and the growing toolbox available for studying them is imperative and provided in this work.

PMID:39214702 | DOI:10.1124/pharmrev.123.001140

Categories: Literature Watch

Biological Sex Is an Effect Modifier of Allergen-Mediated Alteration of the Lung Proteome

Fri, 2024-08-30 06:00

J Proteome Res. 2024 Aug 30. doi: 10.1021/acs.jproteome.4c00025. Online ahead of print.

ABSTRACT

Asthma exhibits a distinct sex bias in the disease prevalence, severity, and response to therapy. However, sex-related differences in alterations of the lung proteome mediated by aeroallergens critical in asthma, such as house dust mites (HDM), remain unknown. In this study, we define sex-related differences in the lung proteome using an HDM-challenged mouse model by 1D LC-MS/MS. Sex-disaggregated data analysis showed that 406 proteins were uniquely altered in females, 273 proteins were uniquely altered in males, and 414 proteins were altered in both females and males in response to HDM. In a linear mixed model analysis, sex modified the HDM exposure effect for 163 proteins, i.e., a significant sex:exposure interaction was identified in 84 proteins in females and 35 proteins in males. Of these, 12 proteins showed a significant sex effect in both female and male lungs. We further selected 3 proteins Tjp1, Lamtor1, and G3BP2 for independent confirmation studies. Our findings detail the sex-specific lung proteome in response to an aeroallergen critical in asthma and demonstrate that sex is a significant effect modifier of HDM response. These results will serve as a valuable resource for delineating sex-specific mechanisms in aeroallergen-driven responses in asthma research.

PMID:39214566 | DOI:10.1021/acs.jproteome.4c00025

Categories: Literature Watch

Pages