Systems Biology
Design patterns for the construction of computational biological models
Brief Bioinform. 2024 May 23;25(4):bbae318. doi: 10.1093/bib/bbae318.
ABSTRACT
Computational biological models have proven to be an invaluable tool for understanding and predicting the behaviour of many biological systems. While it may not be too challenging for experienced researchers to construct such models from scratch, it is not a straightforward task for early stage researchers. Design patterns are well-known techniques widely applied in software engineering as they provide a set of typical solutions to common problems in software design. In this paper, we collect and discuss common patterns that are usually used during the construction and execution of computational biological models. We adopt Petri nets as a modelling language to provide a visual illustration of each pattern; however, the ideas presented in this paper can also be implemented using other modelling formalisms. We provide two case studies for illustration purposes and show how these models can be built up from the presented smaller modules. We hope that the ideas discussed in this paper will help many researchers in building their own future models.
PMID:38961813 | DOI:10.1093/bib/bbae318
Uncovering the Role of the Yeast Lysine Acetyltransferase NuA4 in the Regulation of Nuclear Shape and Lipid Metabolism
Mol Cell Biol. 2024 Jul 4:1-16. doi: 10.1080/10985549.2024.2366206. Online ahead of print.
ABSTRACT
Here, we report a novel role for the yeast lysine acetyltransferase NuA4 in regulating phospholipid availability for organelle morphology. Disruption of the NuA4 complex results in 70% of cells displaying nuclear deformations and nearly 50% of cells exhibiting vacuolar fragmentation. Cells deficient in NuA4 also show severe defects in the formation of nuclear-vacuole junctions (NJV), as well as a decrease in piecemeal microautophagy of the nucleus (PMN). To determine the cause of these defects we focused on Pah1, an enzyme that converts phosphatidic acid into diacylglycerol, favoring accumulation of lipid droplets over phospholipids that are used for membrane expansion. NuA4 subunit Eaf1 was required for Pah1 localization to the inner nuclear membrane and artificially tethering of Pah1 to the nuclear membrane rescued nuclear deformation and vacuole fragmentation defects, but not defects related to the formation of NVJs. Mutation of a NuA4-dependent acetylation site on Pah1 also resulted in aberrant Pah1 localization and defects in nuclear morphology and NVJ. Our work suggests a critical role for NuA4 in organelle morphology that is partially mediated through the regulation of Pah1 subcellular localization.
PMID:38961766 | DOI:10.1080/10985549.2024.2366206
Wheat TaNACα18 functions as a positive regulator of high-temperature adaptive responses and improves cell defense machinery
Plant J. 2024 Jul 3. doi: 10.1111/tpj.16913. Online ahead of print.
ABSTRACT
Global wheat production amounted to >780 MMT during 2022-2023 whose market size are valued at >$128 billion. Wheat is highly susceptible to high-temperature stress (HTS) throughout the life cycle and its yield declines 5-7% with the rise in each degree of temperature. Previously, we reported an array of HTS-response markers from a resilient wheat cv. Unnat Halna and described their putative role in heat acclimation. To complement our previous results and identify the key determinants of thermotolerance, here we examined the cytoplasmic proteome of a sensitive cv. PBW343. The HTS-triggered metabolite reprograming highlighted how proteostasis defects influence the formation of an integrated stress-adaptive response. The proteomic analysis identified several promising HTS-responsive proteins, including a NACα18 protein, designated TaNACα18, whose role in thermotolerance remains unknown. Dual localization of TaNACα18 suggests its crucial functions in the cytoplasm and nucleus. The homodimerization of TaNACα18 anticipated its function as a transcriptional coactivator. The complementation of TaNACα18 in yeast and overexpression in wheat demonstrated its role in thermotolerance across the kingdom. Altogether, our results suggest that TaNACα18 imparts tolerance through tight regulation of gene expression, cell wall remodeling and activation of cell defense responses.
PMID:38961633 | DOI:10.1111/tpj.16913
Molecular tumor board: molecularly adjusted therapy upon identification and functional validation of a novel ALK resistance mutation in a case of lung adenocarcinoma
Oncologist. 2024 Jul 3:oyae143. doi: 10.1093/oncolo/oyae143. Online ahead of print.
ABSTRACT
We report a case of a long-term surviving patient with EML4/ALK translocated non-small cell adenocarcinoma of the lung in UICC8 stage IVA. During recurrence under continuous crizotinib therapy, a hitherto insufficiently characterized missense mutation in the ALK gene (Arg1181His) was identified through targeted sequencing. The aforementioned EML4/ALK translocation could still be detected in this situation. Employing a 3D reconstruction of the ALK tertiary structure, considering its interaction with various ALK inhibitors at the molecular binding site, our analysis indicated the presence of a mutation associated with crizotinib resistance. To validate the biological relevance of this previously unknown mutation, we carried out an in vitro validation approach in cell culture in addition to the molecular diagnostics accompanied by the molecular tumor board. The tumor scenario was mimicked through retroviral transfection. Our comparative in vitro treatment regimen paired with the clinical trajectory of the patient, corroborated our initial clinical and biochemical suspicions. Our approach demonstrates preclinical, in silico, and clinical evidence of a novel crizotinib resistance mutation in ALK as well as sensitivity toward brigatinib and potentially lorlatinib. In future cases, this procedure represents an important contribution to functional diagnostics in the context of molecular tumor boards.
PMID:38960389 | DOI:10.1093/oncolo/oyae143
PPARγ/NF-κB axis contributes to cold-induced resolution of experimental colitis and preservation of intestinal barrier
Biochim Biophys Acta Mol Basis Dis. 2024 Jul 1:167326. doi: 10.1016/j.bbadis.2024.167326. Online ahead of print.
ABSTRACT
BACKGROUND: Environmental stress is a significant contributor to the development of inflammatory bowel disease (IBD). The involvement of temperature stimulation in the development of IBD remains uncertain. Our preliminary statistical data suggest that the prevalence of IBD is slightly lower in colder regions compared to non-cold regions. The observation indicates that temperature changes may play a key role in the occurrence and progression of IBD. Here, we hypothesized that cold stress has a protective effect on IBD.
METHODS: The cold exposure model for mice was placed in a constant temperature and humidity chamber, maintained at a temperature of 4 °C. Colitis models were induced in the mice using TNBS or DSS. To promote the detection methods more clinically, fluorescence confocal endoscopy was used to observe the mucosal microcirculation status of the colon in the live model. Changes in the colonic wall of the mice were detected using 9.4 T Magnetic Resonance Imaging (MRI) imaging and in vivo fluorescence imaging. Hematoxylin and eosin (H&E) and Immunofluorescence (IF) staining confirmed the pathological alterations in the colons of sacrificed mice. Molecular changes at the protein level were assessed through Western blotting and Enzyme-Linked Immunosorbent Assay (ELISA) assays. RNA sequencing (RNA-seq) and metabolomics (n = 18) were jointly analyzed to investigate the biological changes in the colon of mice treated by cold exposure.
RESULTS: Cold exposure decreased the pathologic and disease activity index scores in a mouse model. Endomicroscopy revealed that cold exposure preserved colonic mucosal microcirculation, and 9.4 T MRI imaging revealed alleviation of intestinal wall thickness. In addition, the expression of the TLR4 and PP65 proteins was downregulated and epithelial cell junctions were strengthened after cold exposure. Intriguingly, we found that cold exposure reversed the decrease in ZO-1 and occludin protein levels in dextran sulfate sodium (DSS)- and trinitrobenzenesulfonic acid-induced colitis mouse models. Multi-omics analysis revealed the biological landscape of DSS-induced colitis under cold exposure and identified that the peroxisome proliferator-activated receptor (PPAR) signaling pathway mediates the effects of cold on colitis. Subsequent administration of rosiglitazone (PPAR agonist) enhanced the protective effect of cold exposure on colitis, whereas GW9662 (PPAR antagonist) administration mitigated these protective effects. Overall, cold exposure ameliorated the progression of mouse colitis through the PPARγ/NF-κB signaling axis and preserved the intestinal mucosal barrier.
CONCLUSION: Our study provides a mechanistic link between intestinal inflammation and cold exposure, providing a theoretical framework for understanding the differences in the prevalence of IBD between the colder regions and non-cold regions, and offering new insights into IBD therapy.
PMID:38960052 | DOI:10.1016/j.bbadis.2024.167326
PANAMA-enabled high-sensitivity dual nanoflow LC-MS metabolomics and proteomics analysis
Cell Rep Methods. 2024 Jun 26:100803. doi: 10.1016/j.crmeth.2024.100803. Online ahead of print.
ABSTRACT
High-sensitivity nanoflow liquid chromatography (nLC) is seldom employed in untargeted metabolomics because current sample preparation techniques are inefficient at preventing nanocapillary column performance degradation. Here, we describe an nLC-based tandem mass spectrometry workflow that enables seamless joint analysis and integration of metabolomics (including lipidomics) and proteomics from the same samples without instrument duplication. This workflow is based on a robust solid-phase micro-extraction step for routine sample cleanup and bioactive molecule enrichment. Our method, termed proteomic and nanoflow metabolomic analysis (PANAMA), improves compound resolution and detection sensitivity without compromising the depth of coverage as compared with existing widely used analytical procedures. Notably, PANAMA can be applied to a broad array of specimens, including biofluids, cell lines, and tissue samples. It generates high-quality, information-rich metabolite-protein datasets while bypassing the need for specialized instrumentation.
PMID:38959888 | DOI:10.1016/j.crmeth.2024.100803
How are hydrogen peroxide messages relayed to affect cell signalling?
Curr Opin Chem Biol. 2024 Jul 2;81:102496. doi: 10.1016/j.cbpa.2024.102496. Online ahead of print.
ABSTRACT
H2O2 signals trigger adaptive responses affecting cell division, differentiation, migration, and survival. These signals are transduced by selective oxidation of cysteines on specific target proteins, with redox-sensitive cysteines now identified in many proteins, including both kinases and phosphatases. Assessing the contribution of these oxidation events to cell signalling presents several challenges including understanding how and when the selective oxidation of specific proteins takes place in vivo. In recent years, a combination of biochemical, structural, genetic, and computational approaches in fungi, plants, and animals have revealed different ways in which thiol peroxidases (peroxiredoxins) are bypassed or utilised in relaying these signals. Together, these mechanisms provide a conceptual framework for selectively oxidising proteins that will further advance understanding of how redox modifications contribute to health and disease.
PMID:38959751 | DOI:10.1016/j.cbpa.2024.102496
Genome-wide identification and expression analysis of calmodulin and calmodulin-like genes in passion fruit (Passiflora edulis) and their involvement in flower and fruit development
BMC Plant Biol. 2024 Jul 3;24(1):626. doi: 10.1186/s12870-024-05295-y.
ABSTRACT
BACKGROUND: The calmodulin (CaM) and calmodulin-like (CML) proteins play regulatory roles in plant growth and development, responses to biotic and abiotic stresses, and other biological processes. As a popular fruit and ornamental crop, it is important to explore the regulatory mechanism of flower and fruit development of passion fruit.
RESULTS: In this study, 32 PeCaM/PeCML genes were identified from passion fruit genome and were divided into 9 groups based on phylogenetic analysis. The structural analysis, including conserved motifs, gene structure and homologous modeling, illustrates that the PeCaM/PeCML in the same subgroup have relative conserved structural features. Collinearity analysis suggested that the expansion of the CaM/CML gene family likely took place mainly by segmental duplication, and the whole genome replication events were closely related with the rapid expansion of the gene group. PeCaM/PeCMLs were potentially required for different floral tissues development. Significantly, PeCML26 had extremely high expression levels during ovule and fruit development compared with other PeCML genes, suggesting that PeCML26 had potential functions involved in the development of passion fruit flowers and fruits. The co-presence of various cis-elements associated with growth and development, hormone responsiveness, and stress responsiveness in the promoter regions of these PeCaM/PeCMLs might contribute to their diverse regulatory roles. Furthermore, PeCaM/PeCMLs were also induced by various abiotic stresses. This work provides a comprehensive understanding of the CaM/CML gene family and valuable clues for future studies on the function and evolution of CaM/CML genes in passion fruit.
CONCLUSION: A total of 32 PeCaM/PeCML genes were divided into 9 groups. The PeCaM/PeCML genes showed differential expression patterns in floral tissues at different development stages. It is worth noting that PeCML26, which is highly homologous to AtCaM2, not only interacts with multiple BBR-BPC TFs, but also has high expression levels during ovule and fruit development, suggesting that PeCML26 had potential functions involved in the development of passion fruit flowers and fruits. This research lays the foundation for future investigations and validation of the potential function of PeCaM/PeCML genes in the growth and development of passion fruit.
PMID:38961401 | DOI:10.1186/s12870-024-05295-y
Key gene modules and hub genes associated with pyrethroid and organophosphate resistance in Anopheles mosquitoes: a systems biology approach
BMC Genomics. 2024 Jul 3;25(1):665. doi: 10.1186/s12864-024-10572-z.
ABSTRACT
Indoor residual spraying (IRS) and insecticide-treated nets (ITNs) are the main methods used to control mosquito populations for malaria prevention. The efficacy of these strategies is threatened by the spread of insecticide resistance (IR), limiting the success of malaria control. Studies of the genetic evolution leading to insecticide resistance could enable the identification of molecular markers that can be used for IR surveillance and an improved understanding of the molecular mechanisms associated with IR. This study used a weighted gene co-expression network analysis (WGCNA) algorithm, a systems biology approach, to identify genes with similar co-expression patterns (modules) and hub genes that are potential molecular markers for insecticide resistance surveillance in Kenya and Benin. A total of 20 and 26 gene co-expression modules were identified via average linkage hierarchical clustering from Anopheles arabiensis and An. gambiae, respectively, and hub genes (highly connected genes) were identified within each module. Three specific genes stood out: serine protease, E3 ubiquitin-protein ligase, and cuticular proteins, which were top hub genes in both species and could serve as potential markers and targets for monitoring IR in these malaria vectors. In addition to the identified markers, we explored molecular mechanisms using enrichment maps that revealed a complex process involving multiple steps, from odorant binding and neuronal signaling to cellular responses, immune modulation, cellular metabolism, and gene regulation. Incorporation of these dynamics into the development of new insecticides and the tracking of insecticide resistance could improve the sustainable and cost-effective deployment of interventions.
PMID:38961324 | DOI:10.1186/s12864-024-10572-z
Evolution and stability of complex microbial communities driven by trade-offs
Mol Syst Biol. 2024 Jul 3. doi: 10.1038/s44320-024-00051-8. Online ahead of print.
ABSTRACT
Microbial communities are ubiquitous in nature and play an important role in ecology and human health. Cross-feeding is thought to be core to microbial communities, though it remains unclear precisely why it emerges. Why have multi-species microbial communities evolved in many contexts and what protects microbial consortia from invasion? Here, we review recent insights into the emergence and stability of coexistence in microbial communities. A particular focus is the long-term evolutionary stability of coexistence, as observed for microbial communities that spontaneously evolved in the E. coli long-term evolution experiment (LTEE). We analyze these findings in the context of recent work on trade-offs between competing microbial objectives, which can constitute a mechanistic basis for the emergence of coexistence. Coexisting communities, rather than monocultures of the 'fittest' single strain, can form stable endpoints of evolutionary trajectories. Hence, the emergence of coexistence might be an obligatory outcome in the evolution of microbial communities. This implies that rather than embodying fragile metastable configurations, some microbial communities can constitute formidable ecosystems that are difficult to disrupt.
PMID:38961275 | DOI:10.1038/s44320-024-00051-8
A unified metric of human immune health
Nat Med. 2024 Jul 3. doi: 10.1038/s41591-024-03092-6. Online ahead of print.
ABSTRACT
Immunological health has been challenging to characterize but could be defined as the absence of immune pathology. While shared features of some immune diseases and the concept of immunologic resilience based on age-independent adaptation to antigenic stimulation have been developed, general metrics of immune health and its utility for assessing clinically healthy individuals remain ill defined. Here we integrated transcriptomics, serum protein, peripheral immune cell frequency and clinical data from 228 patients with 22 monogenic conditions impacting key immunological pathways together with 42 age- and sex-matched healthy controls. Despite the high penetrance of monogenic lesions, differences between individuals in diverse immune parameters tended to dominate over those attributable to disease conditions or medication use. Unsupervised or supervised machine learning independently identified a score that distinguished healthy participants from patients with monogenic diseases, thus suggesting a quantitative immune health metric (IHM). In ten independent datasets, the IHM discriminated healthy from polygenic autoimmune and inflammatory disease states, marked aging in clinically healthy individuals, tracked disease activities and treatment responses in both immunological and nonimmunological diseases, and predicted age-dependent antibody responses to immunizations with different vaccines. This discriminatory power goes beyond that of the classical inflammatory biomarkers C-reactive protein and interleukin-6. Thus, deviations from health in diverse conditions, including aging, have shared systemic immune consequences, and we provide a web platform for calculating the IHM for other datasets, which could empower precision medicine.
PMID:38961223 | DOI:10.1038/s41591-024-03092-6
Venetoclax resistance in acute lymphoblastic leukemia is characterized by increased mitochondrial activity and can be overcome by co-targeting oxidative phosphorylation
Cell Death Dis. 2024 Jul 3;15(7):475. doi: 10.1038/s41419-024-06864-7.
ABSTRACT
Deregulated apoptosis signaling is characteristic for many cancers and contributes to leukemogenesis and treatment failure in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Apoptosis is controlled by different pro- and anti-apoptotic molecules. Inhibition of anti-apoptotic molecules like B-cell lymphoma 2 (BCL-2) has been developed as therapeutic strategy. Venetoclax (VEN), a selective BCL-2 inhibitor has shown clinical activity in different lymphoid malignancies and is currently evaluated in first clinical trials in BCP-ALL. However, insensitivity to VEN has been described constituting a major clinical concern. Here, we addressed and modeled VEN-resistance in BCP-ALL, investigated the underlying mechanisms in cell lines and patient-derived xenograft (PDX) samples and identified potential strategies to overcome VEN-insensitivity. Leukemia lines with VEN-specific resistance were generated in vitro and further characterized using RNA-seq analysis. Interestingly, gene sets annotated to the citric/tricarboxylic acid cycle and the respiratory electron transport chain were significantly enriched and upregulated, indicating increased mitochondrial metabolism in VEN-resistant ALL. Metabolic profiling showed sustained high mitochondrial metabolism in VEN-resistant lines as compared to control lines. Accordingly, primary PDX-ALL samples with intrinsic VEN-insensitivity showed higher oxygen consumption and ATP production rates, further highlighting that increased mitochondrial activity is a characteristic feature of VEN-resistant ALL. VEN-resistant PDX-ALL showed significant higher mitochondrial DNA content and differed in mitochondria morphology with significantly larger and elongated structures, further corroborating our finding of augmented mitochondrial metabolism upon VEN-resistance. Using Oligomycin, an inhibitor of the complex V/ATPase subunit, we found synergistic activity and apoptosis induction in VEN-resistant BCP-ALL cell lines and PDX samples, demonstrating that acquired and intrinsic VEN-insensitivity can be overcome by co-targeting BCL-2 and the OxPhos pathway. These findings of reprogrammed, high mitochondrial metabolism in VEN-resistance and synergistic activity upon co-targeting BCL-2 and oxidative phosphorylation strongly suggest further preclinical and potential clinical evaluation in VEN-resistant BCP-ALL.
PMID:38961053 | DOI:10.1038/s41419-024-06864-7
Targeting IL-1 controls refractory pityriasis rubra pilaris
Sci Adv. 2024 Jul 5;10(27):eado2365. doi: 10.1126/sciadv.ado2365. Epub 2024 Jul 3.
ABSTRACT
Pityriasis rubra pilaris (PRP) is a rare inflammatory skin disease with a poorly understood pathogenesis. Through a molecularly driven precision medicine approach and an extensive mechanistic pathway analysis in PRP skin samples, compared to psoriasis, atopic dermatitis, healed PRP, and healthy controls, we identified IL-1β as a key mediator, orchestrating an NF-κB-mediated IL-1β-CCL20 axis, including activation of CARD14 and NOD2. Treatment of three patients with the IL-1 antagonists anakinra and canakinumab resulted in rapid clinical improvement and reversal of the PRP-associated molecular signature with a 50% improvement in skin lesions after 2 to 3 weeks. This transcriptional signature was consistent with in vitro stimulation of keratinocytes with IL-1β. With the central role of IL-1β underscoring its potential as a therapeutic target, our findings propose a redefinition of PRP as an autoinflammatory keratinization disorder. Further clinical trials are needed to validate the efficacy of IL-1β antagonists in PRP.
PMID:38959302 | DOI:10.1126/sciadv.ado2365
Light-Induced Transformation of Virus-Like Particles on TiO<sub>2</sub>
ACS Appl Mater Interfaces. 2024 Jul 3. doi: 10.1021/acsami.4c07151. Online ahead of print.
ABSTRACT
Titanium dioxide (TiO2) shows significant potential as a self-cleaning material to inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and prevent virus transmission. This study provides insights into the impact of UV-A light on the photocatalytic inactivation of adsorbed SARS-CoV-2 virus-like particles (VLPs) on a TiO2 surface at the molecular and atomic levels. X-ray photoelectron spectroscopy, combined with density functional theory calculations, reveals that spike proteins can adsorb on TiO2 predominantly via their amine and amide functional groups in their amino acids blocks. We employ atomic force microscopy and grazing-incidence small-angle X-ray scattering (GISAXS) to investigate the molecular-scale morphological changes during the inactivation of VLPs on TiO2 under light irradiation. Notably, in situ measurements reveal photoinduced morphological changes of VLPs, resulting in increased particle diameters. These results suggest that the denaturation of structural proteins induced by UV irradiation and oxidation of the virus structure through photocatalytic reactions can take place on the TiO2 surface. The in situ GISAXS measurements under an N2 atmosphere reveal that the virus morphology remains intact under UV light. This provides evidence that the presence of both oxygen and UV light is necessary to initiate photocatalytic reactions on the surface and subsequently inactivate the adsorbed viruses. The chemical insights into the virus inactivation process obtained in this study contribute significantly to the development of solid materials for the inactivation of enveloped viruses.
PMID:38959130 | DOI:10.1021/acsami.4c07151
Design Principles for Perfect Adaptation in Biological Networks with Nonlinear Dynamics
Bull Math Biol. 2024 Jul 3;86(8):100. doi: 10.1007/s11538-024-01318-9.
ABSTRACT
Establishing a mapping between the emergent biological properties and the repository of network structures has been of great relevance in systems and synthetic biology. Adaptation is one such biological property of paramount importance that promotes regulation in the presence of environmental disturbances. This paper presents a nonlinear systems theory-driven framework to identify the design principles for perfect adaptation with respect to external disturbances of arbitrary magnitude. Based on the prior information about the network, we frame precise mathematical conditions for adaptation using nonlinear systems theory. We first deduce the mathematical conditions for perfect adaptation for constant input disturbances. Subsequently, we translate these conditions to specific necessary structural requirements for adaptation in networks of small size and then extend to argue that there exist only two classes of architectures for a network of any size that can provide local adaptation in the entire state space, namely, incoherent feed-forward (IFF) structure and negative feedback loop with buffer node (NFB). The additional positiveness constraints further narrow the admissible set of network structures. This also aids in establishing the global asymptotic stability for the steady state given a constant input disturbance. The proposed method does not assume any explicit knowledge of the underlying rate kinetics, barring some minimal assumptions. Finally, we also discuss the infeasibility of certain IFF networks in providing adaptation in the presence of downstream connections. Moreover, we propose a generic and novel algorithm based on non-linear systems theory to unravel the design principles for global adaptation. Detailed and extensive simulation studies corroborate the theoretical findings.
PMID:38958824 | DOI:10.1007/s11538-024-01318-9
Return of genetic research results in 21,532 individuals with autism
Genet Med. 2024 Jun 29:101202. doi: 10.1016/j.gim.2024.101202. Online ahead of print.
ABSTRACT
PURPOSE: The aim of this study is to identify likely pathogenic (LP) and pathogenic (P) genetic results for autism that can be returned to participants in SPARK (SPARKforAutism.org): a large recontactable cohort of people with autism in the United States. We also describe the process to return these clinically confirmed genetic findings.
METHODS: We present results from microarray genotyping and exome sequencing (ES) of 21,532 individuals with autism and 17,785 of their parents. We returned LP and P (American College of Medical genetics (ACMG) criteria) copy number variants (CNVs), chromosomal aneuploidies, and variants in genes with strong evidence of association with autism and intellectual disability.
RESULTS: We identified 1903 'returnable' LP/P variants in 1861 individuals with autism (8.6%). 89.5% of these variants were not known to participants. The diagnostic genetic result was returned to 589 participants (53% of those contacted). Features associated with a higher probability of having a returnable result include cognitive and medically complex features, being female, being White (versus non-White) and being diagnosed more than 20 years ago. We also find results among autistics across the spectrum, as well as in transmitting parents with neuropsychiatric features but no autism diagnosis.
CONCLUSION: SPARK offers an opportunity to assess returnable results among autistic people who have not been ascertained clinically. SPARK also provides practical experience returning genetic results for a behavioral condition at a large scale.
PMID:38958063 | DOI:10.1016/j.gim.2024.101202
4-week stretching program after submaximal strength exercise affects performance but not heart rate variability and lactate clearance. An exploratory study
Front Sports Act Living. 2024 Jun 18;6:1424756. doi: 10.3389/fspor.2024.1424756. eCollection 2024.
ABSTRACT
Previous research has demonstrated that stretching can enhance athletic performance and induce cardiovascular adaptations. This study aims to assess whether a 4-week preventative stretching routine can enhance heart rate variability and heart rate recovery, faster blood lactate clearance, and improve performance following submaximal strength exercises. Twenty-four healthy adults were recruited and randomly allocated to either the experimental group or the control group. Both groups engaged in submaximal strength exercises (5 sets to voluntary failure at 60% of 1RM) comprising bench press and back squat exercises under baseline conditions and after stretching protocol. The experimental group followed the Stretching Protocol, while the control group adhered to their regular training routine. ANOVA analysis revealed a significant pre-post interaction effect between groups in the variable of squat repetitions, although no notable pre- or post-differences were observed in heart rate variability, heart rate recovery, blood lactate concentration, or bench repetitions in either group. A 4-week preventative stretching program does not appear adequate to enhance lactate clearance and cardiovascular adaptation after submaximal strength exercises in resistance-trained individuals compared to the control group. However, it is plausible that such a stretching routine may mitigate muscle fatigue, though further investigation is warranted to substantiate this hypothesis.
PMID:38957877 | PMC:PMC11217188 | DOI:10.3389/fspor.2024.1424756
Corrigendum: Bipartite networks represent causality better than simple networks: Evidence, algorithms, and applications
Front Genet. 2024 Jun 18;15:1440665. doi: 10.3389/fgene.2024.1440665. eCollection 2024.
ABSTRACT
[This corrects the article DOI: 10.3389/fgene.2024.1371607.].
PMID:38957809 | PMC:PMC11218565 | DOI:10.3389/fgene.2024.1440665
Moderate-intensity aerobic exercise training improves CD8<sup>+</sup> tumor-infiltrating lymphocytes effector function by reducing mitochondrial loss
iScience. 2024 May 27;27(6):110121. doi: 10.1016/j.isci.2024.110121. eCollection 2024 Jun 21.
ABSTRACT
Aerobic exercise training (AET) has emerged as a strategy to reduce cancer mortality, however, the mechanisms explaining AET on tumor development remain unclear. Tumors escape immune detection by generating immunosuppressive microenvironments and impaired T cell function, which is associated with T cell mitochondrial loss. AET improves mitochondrial content and function, thus we tested whether AET would modulate mitochondrial metabolism in tumor-infiltrating lymphocytes (TIL). Balb/c mice were subjected to a treadmill AET protocol prior to CT26 colon carcinoma cells injection and until tumor harvest. Tissue hypoxia, TIL infiltration and effector function, and mitochondrial content, morphology and function were evaluated. AET reduced tumor growth, improved survival, and decreased tumor hypoxia. An increased CD8+ TIL infiltration, IFN-γ and ATP production promoted by AET was correlated with reduced mitochondrial loss in these cells. Collectively, AET decreases tumor growth partially by increasing CD8+ TIL effector function through an improvement in their mitochondrial content and function.
PMID:38957793 | PMC:PMC11217614 | DOI:10.1016/j.isci.2024.110121
Heterogeneous pseudobulk simulation enables realistic benchmarking of cell-type deconvolution methods
Genome Biol. 2024 Jul 1;25(1):169. doi: 10.1186/s13059-024-03292-w.
ABSTRACT
BACKGROUND: Computational cell type deconvolution enables the estimation of cell type abundance from bulk tissues and is important for understanding tissue microenviroment, especially in tumor tissues. With rapid development of deconvolution methods, many benchmarking studies have been published aiming for a comprehensive evaluation for these methods. Benchmarking studies rely on cell-type resolved single-cell RNA-seq data to create simulated pseudobulk datasets by adding individual cells-types in controlled proportions.
RESULTS: In our work, we show that the standard application of this approach, which uses randomly selected single cells, regardless of the intrinsic difference between them, generates synthetic bulk expression values that lack appropriate biological variance. We demonstrate why and how the current bulk simulation pipeline with random cells is unrealistic and propose a heterogeneous simulation strategy as a solution. The heterogeneously simulated bulk samples match up with the variance observed in real bulk datasets and therefore provide concrete benefits for benchmarking in several ways. We demonstrate that conceptual classes of deconvolution methods differ dramatically in their robustness to heterogeneity with reference-free methods performing particularly poorly. For regression-based methods, the heterogeneous simulation provides an explicit framework to disentangle the contributions of reference construction and regression methods to performance. Finally, we perform an extensive benchmark of diverse methods across eight different datasets and find BayesPrism and a hybrid MuSiC/CIBERSORTx approach to be the top performers.
CONCLUSIONS: Our heterogeneous bulk simulation method and the entire benchmarking framework is implemented in a user friendly package https://github.com/humengying0907/deconvBenchmarking and https://doi.org/10.5281/zenodo.8206516 , enabling further developments in deconvolution methods.
PMID:38956606 | DOI:10.1186/s13059-024-03292-w