Systems Biology

Zaxinone Synthase overexpression modulates rice physiology and metabolism, enhancing nutrient uptake, growth and productivity

Wed, 2024-06-26 06:00

Plant Cell Environ. 2024 Jun 26. doi: 10.1111/pce.15016. Online ahead of print.

ABSTRACT

The rice Zaxinone Synthase (ZAS) gene encodes a carotenoid cleavage dioxygenase (CCD) that forms the apocarotenoid growth regulator zaxinone in vitro. Here, we generated and characterized constitutive ZAS-overexpressing rice lines, to better understand ZAS role in determining zaxinone content and regulating growth and architecture. ZAS overexpression enhanced endogenous zaxinone level, promoted root growth and increased the number of productive tillers, leading to about 30% higher grain yield per plant. Hormone analysis revealed a decrease in strigolactone (SL) content, which we confirmed by rescuing the high-tillering phenotype through application of a SL analogue. Metabolomics analysis revealed that ZAS overexpressing plants accumulate higher amounts of monosaccharide sugars, in line with transcriptome analysis. Moreover, transgenic plants showed higher carbon (C) assimilation rate and elevated root phosphate, nitrate and sulphate level, enhancing the tolerance towards low phosphate (Pi). Our study confirms ZAS as an important determinant of rice growth and architecture and shows that ZAS regulates hormone homoeostasis and a combination of physiological processes to promote growth and grain yield, which makes this gene an excellent candidate for sustainable crop improvement.

PMID:38924092 | DOI:10.1111/pce.15016

Categories: Literature Watch

A review on <em>Mitragyna speciosa</em> (Rubiaceae) as a prominent medicinal plant based on ethnobotany, phytochemistry and pharmacological activities

Wed, 2024-06-26 06:00

Nat Prod Res. 2024 Jun 26:1-17. doi: 10.1080/14786419.2024.2371564. Online ahead of print.

ABSTRACT

Mitragyna speciosa Korth (kratom) is a tropical indigenous tree of Southeast Asia. It is commonly consumed by the people due to its various pharmacological properties. The leaves of this plant are traditionally used for the treatment of several diseases including pain, fever, cough, anxiety, depression, obesity, diarrhoea, wound healing, diabetes, hypertension as well as for the prevention of cancer and improvement of sexual performance. Phytochemical investigations have confirmed the presence of more than forty alkaloids along with the presence of other bioactive secondary metabolites. Among the alkaloids isolated, mitragynine and 7-hydroxymitragynine along with their derivatives have been widely evaluated and reported to possess various pharmacological effects. Hence, the aim of this review is to shed light on the traditional uses of kratom and the scientific studies to justify the folkloric claims and active principles responsible for the various medicinal effects associated with the leaves of this plant. This review highlights the potential benefits and toxicities associated with M. speciosa leaves along with the phytochemistry. Moreover, the existing gaps in the field of M. speciosa study have been identified along with the future directions to further avail the benefits of this plant species.

PMID:38923960 | DOI:10.1080/14786419.2024.2371564

Categories: Literature Watch

A Network Toxicology Approach for Mechanistic Modelling of Nanomaterial Hazard and Adverse Outcomes

Wed, 2024-06-26 06:00

Adv Sci (Weinh). 2024 Jun 25:e2400389. doi: 10.1002/advs.202400389. Online ahead of print.

ABSTRACT

Hazard assessment is the first step in evaluating the potential adverse effects of chemicals. Traditionally, toxicological assessment has focused on the exposure, overlooking the impact of the exposed system on the observed toxicity. However, systems toxicology emphasizes how system properties significantly contribute to the observed response. Hence, systems theory states that interactions store more information than individual elements, leading to the adoption of network based models to represent complex systems in many fields of life sciences. Here, they develop a network-based approach to characterize toxicological responses in the context of a biological system, inferring biological system specific networks. They directly link molecular alterations to the adverse outcome pathway (AOP) framework, establishing direct connections between omics data and toxicologically relevant phenotypic events. They apply this framework to a dataset including 31 engineered nanomaterials with different physicochemical properties in two different in vitro and one in vivo models and demonstrate how the biological system is the driving force of the observed response. This work highlights the potential of network-based methods to significantly improve their understanding of toxicological mechanisms from a systems biology perspective and provides relevant considerations and future data-driven approaches for the hazard assessment of nanomaterials and other advanced materials.

PMID:38923832 | DOI:10.1002/advs.202400389

Categories: Literature Watch

An ANXA11 P93S variant dysregulates TDP‐43 and causes corticobasal syndrome

Wed, 2024-06-26 06:00

Alzheimers Dement. 2024 Jun 26. doi: 10.1002/alz.13915. Online ahead of print.

ABSTRACT

INTRODUCTION: Variants of uncertain significance (VUS) surged with affordable genetic testing, posing challenges for determining pathogenicity. We examine the pathogenicity of a novel VUS P93S in Annexin A11 (ANXA11) - an amyotrophic lateral sclerosis/frontotemporal dementia-associated gene - in a corticobasal syndrome kindred. Established ANXA11 mutations cause ANXA11 aggregation, altered lysosomal-RNA granule co-trafficking, and transactive response DNA binding protein of 43 kDa (TDP-43) mis-localization.

METHODS: We described the clinical presentation and explored the phenotypic diversity of ANXA11 variants. P93S's effect on ANXA11 function and TDP-43 biology was characterized in induced pluripotent stem cell-derived neurons alongside multiomic neuronal and microglial profiling.

RESULTS: ANXA11 mutations were linked to corticobasal syndrome cases. P93S led to decreased lysosome colocalization, neuritic RNA, and nuclear TDP-43 with cryptic exon expression. Multiomic microglial signatures implicated immune dysregulation and interferon signaling pathways.

DISCUSSION: This study establishes ANXA11 P93S pathogenicity, broadens the phenotypic spectrum of ANXA11 mutations, underscores neuronal and microglial dysfunction in ANXA11 pathophysiology, and demonstrates the potential of cellular models to determine variant pathogenicity.

HIGHLIGHTS: ANXA11 P93S is a pathogenic variant. Corticobasal syndrome is part of the ANXA11 phenotypic spectrum. Hybridization chain reaction fluorescence in situ hybridization (HCR FISH) is a new tool for the detection of cryptic exons due to TDP-43-related loss of splicing regulation. Microglial ANXA11 and related immune pathways are important drivers of disease. Cellular models are powerful tools for adjudicating variants of uncertain significance.

PMID:38923692 | DOI:10.1002/alz.13915

Categories: Literature Watch

Nucleic acid-induced NADase activation of a short Sir2-associated prokaryotic Argonaute system

Wed, 2024-06-26 06:00

Cell Rep. 2024 Jun 25;43(7):114391. doi: 10.1016/j.celrep.2024.114391. Online ahead of print.

ABSTRACT

Inhibition of nucleic acid targets is mediated by Argonaute (Ago) proteins guided by RNA or DNA. Although the mechanisms underpinning the functions of eukaryotic and "long" prokaryotic Ago proteins (pAgos) are well understood, those for short pAgos remain enigmatic. Here, we determine two cryoelectron microscopy structures of short pAgos in association with the NADase-domain-containing protein Sir2-APAZ from Geobacter sulfurreducens (GsSir2/Ago): the guide RNA-target DNA-loaded GsSir2/Ago quaternary complex (2.58 Å) and the dimer of the quaternary complex (2.93Å). These structures show that the nucleic acid binding causes profound conformational changes that result in disorder or partial dissociation of the Sir2 domain, suggesting that it adopts a NADase-active conformation. Subsequently, two RNA-/DNA-loaded GsSir2/Ago complexes form a dimer through their MID domains, further enhancing NADase activity through synergistic effects. The findings provide a structural basis for short-pAgo-mediated defense against invading nucleic acids.

PMID:38923459 | DOI:10.1016/j.celrep.2024.114391

Categories: Literature Watch

Use of GRF-GIF chimeras and a ternary vector system to improve maize (Zea mays L.) transformation frequency

Wed, 2024-06-26 06:00

Plant J. 2024 Jun 23. doi: 10.1111/tpj.16880. Online ahead of print.

ABSTRACT

Maize (Zea mays L.) is an important crop that has been widely studied for its agronomic and industrial applications and is one of the main classical model organisms for genetic research. Agrobacterium-mediated transformation of immature maize embryos is a commonly used method to introduce transgenes, but a low transformation frequency remains a bottleneck for many gene-editing applications. Previous approaches to enhance transformation included the improvement of tissue culture media and the use of morphogenic regulators such as BABY BOOM and WUSCHEL2. Here, we show that the frequency can be increased using a pVS1-VIR2 virulence helper plasmid to improve T-DNA delivery, and/or expressing a fusion protein between a GROWTH-REGULATING FACTOR (GRF) and GRF-INTERACTING FACTOR (GIF) protein to improve regeneration. Using hygromycin as a selection agent to avoid escapes, the transformation frequency in the maize inbred line B104 significantly improved from 2.3 to 8.1% when using the pVS1-VIR2 helper vector with no effect on event quality regarding T-DNA copy number. Combined with a novel fusion protein between ZmGRF1 and ZmGIF1, transformation frequencies further improved another 3.5- to 6.5-fold with no obvious impact on plant growth, while simultaneously allowing efficient CRISPR-/Cas9-mediated gene editing. Our results demonstrate how a GRF-GIF chimera in conjunction with a ternary vector system has the potential to further improve the efficiency of gene-editing applications and molecular biology studies in maize.

PMID:38923048 | DOI:10.1111/tpj.16880

Categories: Literature Watch

Circulation pattern and genetic variation of rhinovirus infection among hospitalized children on Hainan Island, before and after the dynamic zero-COVID policy, from 2021 to 2023

Wed, 2024-06-26 06:00

J Med Virol. 2024 Jun;96(6):e29755. doi: 10.1002/jmv.29755.

ABSTRACT

Throughout the COVID-19 pandemic, rhinovirus (RV) remained notable persistence, maintaining its presence while other seasonal respiratory viruses were largely suppressed by pandemic restrictions during national lockdowns. This research explores the epidemiological dynamics of RV infections among pediatric populations on Hainan Island, China, specifically focusing on the impact before and after the zero-COVID policy was lifted. From January 2021 to December 2023, 19 680 samples were collected from pediatric patients hospitalized with acute lower respiratory tract infections (ARTIs) at the Hainan Maternal and Child Health Hospital. The infection of RV was detected by tNGS. RV species and subtypes were identified in 32 RV-positive samples representing diverse time points by analyzing the VP4/VP2 partial regions. Among the 19 680 pediatric inpatients with ARTIs analyzed, 21.55% were found to be positive for RV infection, with notable peaks observed in April 2021 and November 2022. A gradual annual decline in RV infections was observed, alongside a seasonal pattern of higher prevalence during the colder months. The highest proportion of RV infections was observed in the 0-1-year age group. Phylogenetic analysis on 32 samples indicated a trend from RV-A to RV-C in 2022. This observation suggests potential evolving dynamics within the RV species although further studies are needed due to the limited sample size. The research emphasizes the necessity for ongoing surveillance and targeted management, particularly for populations highly susceptible to severe illnesses caused by RV infections.

PMID:38922896 | DOI:10.1002/jmv.29755

Categories: Literature Watch

Application of Crotonylation Modification in Pan-vascular Diseases

Wed, 2024-06-26 06:00

J Drug Target. 2024 Jun 26:1-19. doi: 10.1080/1061186X.2024.2372316. Online ahead of print.

ABSTRACT

Pan-vascular diseases, based on systems biology theory, explore the commonalities and individualities of important target organs such as cardiovascular, cerebrovascular, and peripheral blood vessels, starting from the systemic and holistic aspects of vascular diseases. The purpose is to understand the interrelationships and results between them, achieve vascular health or sub-health, and comprehensively improve the physical and mental health of the entire population. Post-translational modification (PTM) is an important part of epigenetics, including phosphorylation, acetylation, ubiquitination, methylation, etc., playing a crucial role in the pan-vascular system. Crotonylation is a novel type of post-translational modification that has made significant progress in the research of pan-vascular related diseases in recent years. Based on the review of previous studies, this article summarizes the various regulatory factors of crotonylation, physiological functions and the mechanisms of histone and non-histone crotonylation in regulating pan-vascular related diseases to explore the possibility of precise regulation of crotonylation sites as potential targets for disease treatment and the value of clinical translation.

PMID:38922829 | DOI:10.1080/1061186X.2024.2372316

Categories: Literature Watch

Accurate prediction of CDR-H3 loop structures of antibodies with deep learning

Wed, 2024-06-26 06:00

Elife. 2024 Jun 26;12:RP91512. doi: 10.7554/eLife.91512.

ABSTRACT

Accurate prediction of the structurally diverse complementarity determining region heavy chain 3 (CDR-H3) loop structure remains a primary and long-standing challenge for antibody modeling. Here, we present the H3-OPT toolkit for predicting the 3D structures of monoclonal antibodies and nanobodies. H3-OPT combines the strengths of AlphaFold2 with a pre-trained protein language model and provides a 2.24 Å average RMSDCα between predicted and experimentally determined CDR-H3 loops, thus outperforming other current computational methods in our non-redundant high-quality dataset. The model was validated by experimentally solving three structures of anti-VEGF nanobodies predicted by H3-OPT. We examined the potential applications of H3-OPT through analyzing antibody surface properties and antibody-antigen interactions. This structural prediction tool can be used to optimize antibody-antigen binding and engineer therapeutic antibodies with biophysical properties for specialized drug administration route.

PMID:38921957 | DOI:10.7554/eLife.91512

Categories: Literature Watch

Multi Omics Applications in Biological Systems

Wed, 2024-06-26 06:00

Curr Issues Mol Biol. 2024 Jun 11;46(6):5777-5793. doi: 10.3390/cimb46060345.

ABSTRACT

Traditional methodologies often fall short in addressing the complexity of biological systems. In this regard, system biology omics have brought invaluable tools for conducting comprehensive analysis. Current sequencing capabilities have revolutionized genetics and genomics studies, as well as the characterization of transcriptional profiling and dynamics of several species and sample types. Biological systems experience complex biochemical processes involving thousands of molecules. These processes occur at different levels that can be studied using mass spectrometry-based (MS-based) analysis, enabling high-throughput proteomics, glycoproteomics, glycomics, metabolomics, and lipidomics analysis. Here, we present the most up-to-date techniques utilized in the completion of omics analysis. Additionally, we include some interesting examples of the applicability of multi omics to a variety of biological systems.

PMID:38921016 | DOI:10.3390/cimb46060345

Categories: Literature Watch

Down-Regulation of AKT Proteins Slows the Growth of Mutant-KRAS Pancreatic Tumors

Wed, 2024-06-26 06:00

Cells. 2024 Jun 19;13(12):1061. doi: 10.3390/cells13121061.

ABSTRACT

Serine/threonine kinase AKT isoforms play a well-established role in cell metabolism and growth. Most pancreatic adenocarcinomas (PDACs) harbor activation mutations of KRAS, which activates the PI3K/AKT signaling pathway. However, AKT inhibitors are not effective in the treatment of pancreatic cancer. To better understand the role of AKT signaling in mutant-KRAS pancreatic tumors, this study utilized proteolysis-targeting chimeras (PROTACs) and CRISPR-Cas9-genome editing to investigate AKT proteins. The PROTAC down-regulation of AKT proteins markedly slowed the growth of three pancreatic tumor cell lines harboring mutant KRAS. In contrast, the inhibition of AKT kinase activity alone had very little effect on the growth of these cell lines. The concurrent genetic deletion of all AKT isoforms (AKT1, AKT2, and AKT3) in the KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cell line also dramatically slowed its growth in vitro and when orthotopically implanted in syngeneic mice. Surprisingly, insulin-like growth factor-1 (IGF-1), but not epidermal growth factor (EGF), restored KPC cell growth in serum-deprived conditions, and the IGF-1 growth stimulation effect was AKT-dependent. The RNA-seq analysis of AKT1/2/3-deficient KPC cells suggested that reduced cholesterol synthesis may be responsible for the decreased response to IGF-1 stimulation. These results indicate that the presence of all three AKT isoforms supports pancreatic tumor cell growth, and the pharmacological degradation of AKT proteins may be more effective than AKT catalytic inhibitors for treating pancreatic cancer.

PMID:38920688 | DOI:10.3390/cells13121061

Categories: Literature Watch

D-MAINS: A Deep-Learning Model for the Label-Free Detection of Mitosis, Apoptosis, Interphase, Necrosis, and Senescence in Cancer Cells

Wed, 2024-06-26 06:00

Cells. 2024 Jun 8;13(12):1004. doi: 10.3390/cells13121004.

ABSTRACT

BACKGROUND: Identifying cells engaged in fundamental cellular processes, such as proliferation or living/death statuses, is pivotal across numerous research fields. However, prevailing methods relying on molecular biomarkers are constrained by high costs, limited specificity, protracted sample preparation, and reliance on fluorescence imaging.

METHODS: Based on cellular morphology in phase contrast images, we developed a deep-learning model named Detector of Mitosis, Apoptosis, Interphase, Necrosis, and Senescence (D-MAINS).

RESULTS: D-MAINS utilizes machine learning and image processing techniques, enabling swift and label-free categorization of cell death, division, and senescence at a single-cell resolution. Impressively, D-MAINS achieved an accuracy of 96.4 ± 0.5% and was validated with established molecular biomarkers. D-MAINS underwent rigorous testing under varied conditions not initially present in the training dataset. It demonstrated proficiency across diverse scenarios, encompassing additional cell lines, drug treatments, and distinct microscopes with different objective lenses and magnifications, affirming the robustness and adaptability of D-MAINS across multiple experimental setups.

CONCLUSIONS: D-MAINS is an example showcasing the feasibility of a low-cost, rapid, and label-free methodology for distinguishing various cellular states. Its versatility makes it a promising tool applicable across a broad spectrum of biomedical research contexts, particularly in cell death and oncology studies.

PMID:38920634 | DOI:10.3390/cells13121004

Categories: Literature Watch

Perspectives on the future of host-microbe biology from the Council on Microbial Sciences of the American Society for Microbiology

Wed, 2024-06-26 06:00

mSphere. 2024 Jun 26:e0025624. doi: 10.1128/msphere.00256-24. Online ahead of print.

ABSTRACT

Host-microbe biology (HMB) stands on the cusp of redefinition, challenging conventional paradigms to instead embrace a more holistic understanding of the microbial sciences. The American Society for Microbiology (ASM) Council on Microbial Sciences hosted a virtual retreat in 2023 to identify the future of the HMB field and innovations needed to advance the microbial sciences. The retreat presentations and discussions collectively emphasized the interconnectedness of microbes and their profound influence on humans, animals, and environmental health, as well as the need to broaden perspectives to fully embrace the complexity of these interactions. To advance HMB research, microbial scientists would benefit from enhancing interdisciplinary and transdisciplinary research to utilize expertise in diverse fields, integrate different disciplines, and promote equity and accessibility within HMB. Data integration will be pivotal in shaping the future of HMB research by bringing together varied scientific perspectives, new and innovative techniques, and 'omics approaches. ASM can empower under-resourced groups with the goal of ensuring that the benefits of cutting-edge research reach every corner of the scientific community. Thus, ASM will be poised to steer HMB toward a future that champions inclusivity, innovation, and accessible scientific progress.

PMID:38920371 | DOI:10.1128/msphere.00256-24

Categories: Literature Watch

Pangenome reconstruction of <em>Lactobacillaceae</em> metabolism predicts species-specific metabolic traits

Wed, 2024-06-26 06:00

mSystems. 2024 Jun 26:e0015624. doi: 10.1128/msystems.00156-24. Online ahead of print.

ABSTRACT

Strains across the Lactobacillaceae family form the basis for a trillion-dollar industry. Our understanding of the genomic basis for their key traits is fragmented, however, including the metabolism that is foundational to their industrial uses. Pangenome analysis of publicly available Lactobacillaceae genomes allowed us to generate genome-scale metabolic network reconstructions for 26 species of industrial importance. Their manual curation led to more than 75,000 gene-protein-reaction associations that were deployed to generate 2,446 genome-scale metabolic models. Cross-referencing genomes and known metabolic traits allowed for manual metabolic network curation and validation of the metabolic models. As a result, we provide the first pangenomic basis for metabolism in the Lactobacillaceae family and a collection of predictive computational metabolic models that enable a variety of practical uses.IMPORTANCELactobacillaceae, a bacterial family foundational to a trillion-dollar industry, is increasingly relevant to biosustainability initiatives. Our study, leveraging approximately 2,400 genome sequences, provides a pangenomic analysis of Lactobacillaceae metabolism, creating over 2,400 curated and validated genome-scale models (GEMs). These GEMs successfully predict (i) unique, species-specific metabolic reactions; (ii) niche-enriched reactions that increase organism fitness; (iii) essential media components, offering insights into the global amino acid essentiality of Lactobacillaceae; and (iv) fermentation capabilities across the family, shedding light on the metabolic basis of Lactobacillaceae-based commercial products. This quantitative understanding of Lactobacillaceae metabolic properties and their genomic basis will have profound implications for the food industry and biosustainability, offering new insights and tools for strain selection and manipulation.

PMID:38920366 | DOI:10.1128/msystems.00156-24

Categories: Literature Watch

Evidence-based unification of potato gene models with the UniTato collaborative genome browser

Wed, 2024-06-26 06:00

Front Plant Sci. 2024 Jun 11;15:1352253. doi: 10.3389/fpls.2024.1352253. eCollection 2024.

ABSTRACT

Potato (Solanum tuberosum) is the most popular tuber crop and a model organism. A variety of gene models for potato exist, and despite frequent updates, they are not unified. This hinders the comparison of gene models across versions, limits the ability to reuse experimental data without significant re-analysis, and leads to missing or wrongly annotated genes. Here, we unify the recent potato double monoploid v4 and v6 gene models by developing an automated merging protocol, resulting in a Unified poTato genome model (UniTato). We subsequently established an Apollo genome browser (unitato.nib.si) that enables public access to UniTato and further community-based curation. We demonstrate how the UniTato resource can help resolve problems with missing or misplaced genes and can be used to update or consolidate a wider set of gene models or genome information. The automated protocol, genome annotation files, and a comprehensive translation table are provided at github.com/NIB-SI/unitato.

PMID:38919818 | PMC:PMC11196761 | DOI:10.3389/fpls.2024.1352253

Categories: Literature Watch

Haplotype-resolved chromosomal-level genome assembly reveals regulatory variations in mulberry fruit anthocyanin content

Wed, 2024-06-26 06:00

Hortic Res. 2024 Apr 23;11(6):uhae120. doi: 10.1093/hr/uhae120. eCollection 2024 Jun.

ABSTRACT

Understanding the intricate regulatory mechanisms underlying the anthocyanin content (AC) in fruits and vegetables is crucial for advanced biotechnological customization. In this study, we generated high-quality haplotype-resolved genome assemblies for two mulberry cultivars: the high-AC 'Zhongsang5801' (ZS5801) and the low-AC 'Zhenzhubai' (ZZB). Additionally, we conducted a comprehensive analysis of genes associated with AC production. Through genome-wide association studies (GWAS) on 112 mulberry fruits, we identified MaVHAG3, which encodes a vacuolar-type H+-ATPase G3 subunit, as a key gene linked to purple pigmentation. To gain deeper insights into the genetic and molecular processes underlying high AC, we compared the genomes of ZS5801 and ZZB, along with fruit transcriptome data across five developmental stages, and quantified the accumulation of metabolic substances. Compared to ZZB, ZS5801 exhibited significantly more differentially expressed genes (DEGs) related to anthocyanin metabolism and higher levels of anthocyanins and flavonoids. Comparative analyses revealed expansions and contractions in the flavonol synthase (FLS) and dihydroflavonol 4-reductase (DFR) genes, resulting in altered carbon flow. Co-expression analysis demonstrated that ZS5801 displayed more significant alterations in genes involved in late-stage AC regulation compared to ZZB, particularly during the phase stage. In summary, our findings provide valuable insights into the regulation of mulberry fruit AC, offering genetic resources to enhance cultivars with higher AC traits.

PMID:38919559 | PMC:PMC11197311 | DOI:10.1093/hr/uhae120

Categories: Literature Watch

The effect of different sweeteners on the oral microbiome: a randomized clinical exploratory pilot study

Wed, 2024-06-26 06:00

J Oral Microbiol. 2024 Jun 24;16(1):2369350. doi: 10.1080/20002297.2024.2369350. eCollection 2024.

ABSTRACT

INTRODUCTION: The aim of the study was to evaluate the modulating effects of five commonly used sweetener (glucose, inulin, isomaltulose, tagatose, trehalose) containing mouth rinses on the oral microbiome.

METHODS: A single-centre, double-blind, parallel randomized clinical trial was performed with healthy, 18-55-year-old volunteers (N = 65), who rinsed thrice-daily for two weeks with a 10% solution of one of the allocated sweeteners. Microbiota composition of supragingival dental plaque and the tongue dorsum coating was analysed by 16S RNA gene amplicon sequencing of the V4 hypervariable region (Illumina MiSeq). As secondary outcomes, dental plaque red fluorescence and salivary pH were measured.

RESULTS: Dental plaque microbiota changed significantly for two groups: inulin (F = 2.0239, p = 0.0006 PERMANOVA, Aitchison distance) and isomaltulose (F = 0.67, p = 0.0305). For the tongue microbiota, significant changes were observed for isomaltulose (F = 0.8382, p = 0.0452) and trehalose (F = 1.0119, p = 0.0098). In plaque, 13 species changed significantly for the inulin group, while for tongue coating, three species changed for the trehalose group (ALDEx2, p < 0.1). No significant changes were observed for the secondary outcomes.

CONCLUSION: The effects on the oral microbiota were sweetener dependant with the most pronounced effect on plaque microbiota. Inulin exhibited the strongest microbial modulating potential of the sweeteners tested. Further full-scale clinical studies are required.

PMID:38919384 | PMC:PMC11198155 | DOI:10.1080/20002297.2024.2369350

Categories: Literature Watch

Inhibition of Mir-21-5p Affects the Expression of LNCRNA X-Inactive Specific Transcript and Induces Apoptosis in MCF-7 Breast Cancer Cells

Wed, 2024-06-26 06:00

Iran J Public Health. 2024 Mar;53(3):714-725. doi: 10.18502/ijph.v53i3.15154.

ABSTRACT

BACKGROUND: We aimed to investigate miR-21-5p inhibition effect on lncRNA-XIST expression and apoptosis status of MCF-7 cells.

METHODS: The MCF-7 cells were cultured and transfected by the anti-miR-21-5p oligonucleotide and expression of miR-21-5p, lncRNA-XIST, apoptosis-associated genes (bax and p53) and one miR-21-5p-unrelated lncRNA (BC200) was assessed by RT-qPCR. Furthermore, cell viability checked by MTT assay and apoptosis and cell cycle in transfected cells were detected by flow cytometry. Also, bioinformatics analysis on the transcriptome data confirmed that the lncRNA XIST might have a critical role in breast cancer (BC) cell apoptosis through ceRNAs mechanism and possible regulatory interactions with miR-21-5p.

RESULTS: Expression of miR-21-5p and lncRNA-XIST was significantly down- and up-regulated respectively (P<0.05). However, there was no significant change in lncRNA-BC200 expression. Also, the expression of bax and p53 upraised significantly (P<0.05). In transfected cells, MTT and flow cytometry assays reported a highly significant decrease and increase in viability and apoptosis respectively.

CONCLUSION: Inhibition of miR-21-5p resulted in significant upregulation of lncRNA-XIST and apoptosis-associated genes bax and p53, which led to the induction of apoptosis in MCF-7 cells. Therefore, more investigations may provide a valuable target for studies on molecular therapies for BC.

PMID:38919297 | PMC:PMC11194654 | DOI:10.18502/ijph.v53i3.15154

Categories: Literature Watch

Neutralizing antibodies after nebulized phage therapy in cystic fibrosis patients

Tue, 2024-06-25 06:00

Med. 2024 Jun 17:S2666-6340(24)00221-6. doi: 10.1016/j.medj.2024.05.017. Online ahead of print.

ABSTRACT

BACKGROUND: Cystic fibrosis (CF) patients are prone to recurrent multi-drug-resistant (MDR) bacterial lung infections. Under this scenario, phage therapy has been proposed as a promising tool. However, the limited number of reported cases hampers the understanding of clinical outcomes. Anti-phage immune responses have often been overlooked and only described following invasive routes of administration.

METHODS: Three monophage treatments against Staphylococcus aureus and/or Pseudomonas aeruginosa lung infections were conducted in cystic fibrosis patients. In-house phage preparations were nebulized over 10 days with standard-of-care antibiotics. Clinical indicators, bacterial counts, phage and antibiotic susceptibility, phage detection, and immune responses were monitored.

FINDINGS: Bacterial load was reduced by 3-6 log in two of the treatments. No adverse events were described. Phages remained in sputum up to 33 days after completion of the treatment. In all cases, phage-neutralizing antibodies were detected in serum from 10 to 42 days post treatment, with this being the first report of anti-phage antibodies after nebulized therapy.

CONCLUSIONS: Nebulized phage therapy reduced bacterial load, improving quality of life even without bacterial eradication. The emergence of antibodies emphasizes the importance of long-term monitoring to better understand clinical outcomes. These findings encourage the use of personalized monophage therapies in contrast to ready-to-use cocktails, which might induce undesirable antibody generation.

FUNDING: This study was supported by the Spanish Ministry of Science, Innovation and Universities; Generalitat Valenciana; and a crowdfunding in collaboration with the Spanish Cystic Fibrosis Foundation.

PMID:38917792 | DOI:10.1016/j.medj.2024.05.017

Categories: Literature Watch

Open-ST: High-resolution spatial transcriptomics in 3D

Tue, 2024-06-25 06:00

Cell. 2024 Jun 21:S0092-8674(24)00636-6. doi: 10.1016/j.cell.2024.05.055. Online ahead of print.

ABSTRACT

Spatial transcriptomics (ST) methods unlock molecular mechanisms underlying tissue development, homeostasis, or disease. However, there is a need for easy-to-use, high-resolution, cost-efficient, and 3D-scalable methods. Here, we report Open-ST, a sequencing-based, open-source experimental and computational resource to address these challenges and to study the molecular organization of tissues in 2D and 3D. In mouse brain, Open-ST captured transcripts at subcellular resolution and reconstructed cell types. In primary head-and-neck tumors and patient-matched healthy/metastatic lymph nodes, Open-ST captured the diversity of immune, stromal, and tumor populations in space, validated by imaging-based ST. Distinct cell states were organized around cell-cell communication hotspots in the tumor but not the metastasis. Strikingly, the 3D reconstruction and multimodal analysis of the metastatic lymph node revealed spatially contiguous structures not visible in 2D and potential biomarkers precisely at the 3D tumor/lymph node boundary. All protocols and software are available at https://rajewsky-lab.github.io/openst.

PMID:38917789 | DOI:10.1016/j.cell.2024.05.055

Categories: Literature Watch

Pages