Systems Biology

The tRNA Gm18 methyltransferase TARBP1 promotes hepatocellular carcinoma progression via metabolic reprogramming of glutamine

Wed, 2024-06-12 06:00

Cell Death Differ. 2024 Jun 12. doi: 10.1038/s41418-024-01323-4. Online ahead of print.

ABSTRACT

Cancer cells rely on metabolic reprogramming to sustain the prodigious energetic requirements for rapid growth and proliferation. Glutamine metabolism is frequently dysregulated in cancers and is being exploited as a potential therapeutic target. Using CRISPR/Cas9 interference (CRISPRi) screening, we identified TARBP1 (TAR (HIV-1) RNA Binding Protein 1) as a critical regulator involved in glutamine reliance of cancer cell. Consistent with this discovery, TARBP1 amplification and overexpression are frequently observed in various cancers. Knockout of TARBP1 significantly suppresses cell proliferation, colony formation and xenograft tumor growth. Mechanistically, TARBP1 selectively methylates and stabilizes a small subset of tRNAs, which promotes efficient protein synthesis of glutamine transporter-ASCT2 (also known as SLC1A5) and glutamine import to fuel the growth of cancer cell. Moreover, we found that the gene expression of TARBP1 and ASCT2 are upregulated in combination in clinical cohorts and their upregulation is associated with unfavorable prognosis of HCC (hepatocellular carcinoma). Taken together, this study reveals the unexpected role of TARBP1 in coordinating the tRNA availability and glutamine uptake during HCC progression and provides a potential target for tumor therapy.

PMID:38867004 | DOI:10.1038/s41418-024-01323-4

Categories: Literature Watch

Three-dimensional chromatin reorganization regulates B cell development during ageing

Wed, 2024-06-12 06:00

Nat Cell Biol. 2024 Jun 12. doi: 10.1038/s41556-024-01424-9. Online ahead of print.

ABSTRACT

The contribution of three-dimensional genome organization to physiological ageing is not well known. Here we show that large-scale chromatin reorganization distinguishes young and old bone marrow progenitor (pro-) B cells. These changes result in increased interactions at the compartment level and reduced interactions within topologically associated domains (TADs). The gene encoding Ebf1, a key B cell regulator, switches from compartment A to B with age. Genetically reducing Ebf1 recapitulates some features of old pro-B cells. TADs that are most reduced with age contain genes important for B cell development, including the immunoglobulin heavy chain (Igh) locus. Weaker intra-TAD interactions at Igh correlate with altered variable (V), diversity (D) and joining (J) gene recombination. Our observations implicate three-dimensional chromatin reorganization as a major driver of pro-B cell phenotypes that impair B lymphopoiesis with age.

PMID:38866970 | DOI:10.1038/s41556-024-01424-9

Categories: Literature Watch

Genome-wide association and expression quantitative trait loci in cattle reveals common genes regulating mammalian fertility

Wed, 2024-06-12 06:00

Commun Biol. 2024 Jun 12;7(1):724. doi: 10.1038/s42003-024-06403-2.

ABSTRACT

Most genetic variants associated with fertility in mammals fall in non-coding regions of the genome and it is unclear how these variants affect fertility. Here we use genome-wide association summary statistics for Heifer puberty (pubertal or not at 600 days) from 27,707 Bos indicus, Bos taurus and crossbred cattle; multi-trait GWAS signals from 2119 indicine cattle for four fertility traits, including days to calving, age at first calving, pregnancy status, and foetus age in weeks (assessed by rectal palpation of the foetus); and expression quantitative trait locus for whole blood from 489 indicine cattle, to identify 87 putatively functional genes affecting cattle fertility. Our analysis reveals a significant overlap between the set of cattle and previously reported human fertility-related genes, impling the existence of a shared pool of genes that regulate fertility in mammals. These findings are crucial for developing approaches to improve fertility in cattle and potentially other mammals.

PMID:38866948 | DOI:10.1038/s42003-024-06403-2

Categories: Literature Watch

Single-cell transcriptome analysis reveals secretin as a hallmark of human enteroendocrine cell maturation

Wed, 2024-06-12 06:00

Sci Rep. 2024 Jun 12;14(1):13525. doi: 10.1038/s41598-024-63699-0.

ABSTRACT

The traditional nomenclature of enteroendocrine cells (EECs), established in 1977, applied the "one cell - one hormone" dogma, which distinguishes subpopulations based on the secretion of a specific hormone. These hormone-specific subpopulations included S cells for secretin (SCT), K cells for glucose-dependent insulinotropic polypeptide (GIP), N cells producing neurotensin (NTS), I cells producing cholecystokinin (CCK), D cells producing somatostatin (SST), and others. In the past 15 years, reinvestigations into murine and human organoid-derived EECs, however, strongly questioned this dogma and established that certain EECs coexpress multiple hormones. Using the Gut Cell Atlas, the largest available single-cell transcriptome dataset of human intestinal cells, this study consolidates that the original dogma is outdated not only for murine and human organoid-derived EECs, but also for primary human EECs, showing that the expression of certain hormones is not restricted to their designated cell type. Moreover, specific analyses into SCT-expressing cells reject the presence of any cell population that exhibits significantly elevated secretin expression compared to other cell populations, previously referred to as S cells. Instead, this investigation indicates that secretin production is realized jointly by other enteroendocrine subpopulations, validating corresponding observations in murine EECs also for human EECs. Furthermore, our findings corroborate that SCT expression peaks in mature EECs, in contrast, progenitor EECs exhibit markedly lower expression levels, supporting the hypothesis that SCT expression is a hallmark of EEC maturation.

PMID:38866945 | DOI:10.1038/s41598-024-63699-0

Categories: Literature Watch

Enhancing the diagnosis of functionally relevant coronary artery disease with machine learning

Wed, 2024-06-12 06:00

Nat Commun. 2024 Jun 12;15(1):5034. doi: 10.1038/s41467-024-49390-y.

ABSTRACT

Functionally relevant coronary artery disease (fCAD) can result in premature death or nonfatal acute myocardial infarction. Its early detection is a fundamentally important task in medicine. Classical detection approaches suffer from limited diagnostic accuracy or expose patients to possibly harmful radiation. Here we show how machine learning (ML) can outperform cardiologists in predicting the presence of stress-induced fCAD in terms of area under the receiver operating characteristic (AUROC: 0.71 vs. 0.64, p = 4.0E-13). We present two ML approaches, the first using eight static clinical variables, whereas the second leverages electrocardiogram signals from exercise stress testing. At a target post-test probability for fCAD of <15%, ML facilitates a potential reduction of imaging procedures by 15-17% compared to the cardiologist's judgement. Predictive performance is validated on an internal temporal data split as well as externally. We also show that combining clinical judgement with conventional ML and deep learning using logistic regression results in a mean AUROC of 0.74.

PMID:38866791 | DOI:10.1038/s41467-024-49390-y

Categories: Literature Watch

Whole-genome sequencing analysis of multidrug-resistant Serratia marcescens isolates in an intensive care unit in Brazil

Wed, 2024-06-12 06:00

J Infect Dev Ctries. 2024 May 30;18(5):726-731. doi: 10.3855/jidc.18913.

ABSTRACT

INTRODUCTION: Serratia marcescens is an opportunistic pathogen found ubiquitously in the environment and associated with a wide range of nosocomial infections. This multidrug-resistant bacterium has been a cause of concern for hospitals and healthcare facilities due to its ability to spread rapidly and cause outbreaks. Next generation sequencing genotyping of bacterial isolates has proven to be a valuable tool for tracking the spread and transmission of nosocomial infections. This has allowed for the identification of outbreaks and transmission chains, as well as determining whether cases are due to endogenous or exogenous sources. Evidence of nosocomial transmission has been gathered through genotyping methods. The aim of this study was to investigate the genetic diversity of carbapenemase-producing S. marcescens in an outbreak at a public hospital in Cuiaba, MT, Brazil.

METHODOLOGY: Ten isolates of S. marcenses were sequenced and antibiotic resistance profiles analyzed over 12 days.

RESULTS: The isolates were clonal and multidrug resistant. Gentamycin and tigecycline had sensitivity in 90% and 80% isolates, respectively. Genomic analysis identified several genes that encode β-lactamases, aminoglycoside-modifying enzymes, efflux pumps, and other virulence factors.

CONCLUSIONS: Systematic surveillance is crucial in monitoring the evolution of S. marcescens genotypes, as it can lead to early detection and prevention of outbreaks.

PMID:38865389 | DOI:10.3855/jidc.18913

Categories: Literature Watch

Arsenic stress triggers active exudation of arsenic-phytochelatin complexes from Lupinus albus roots

Wed, 2024-06-12 06:00

J Exp Bot. 2024 Jun 12:erae272. doi: 10.1093/jxb/erae272. Online ahead of print.

ABSTRACT

Arsenic contamination of soils threatens the health of millions globally through accumulation in crops. While plants detoxify arsenic via phytochelatin (PC) complexation and efflux of arsenite from roots, arsenite efflux mechanisms are not fully understood. Here, white lupin (Lupinus albus) was grown in semi-hydroponics and exudation of glutathione (GSH) derivatives and PCs in response to arsenic was scrutinised using LC-MS/MS. Inhibiting synthesis of PC precursor GSH with L-buthionine sulfoximine (BSO) or ABC transporters with vanadate drastically reduced (>22%) GSH-derivative and PC2 exudation, but not PC3 exudation. This was accompanied by arsenic hypersensitivity in plants treated with BSO and moderate sensitivity with vanadate treatment. Investigating arsenic-phytochelatin (As-PC) complexation revealed two distinct As-PC complexes, As bound to GSH and PC2 (GS-As-PC2) and As bound to PC3 (As-PC3), in exudates of As-treated lupin. Vanadate inhibited As-PC exudation, while BSO inhibited both the synthesis and exudation of As-PC complexes. These results demonstrate a role of GSH-derivatives and PC exudation in lupin arsenic tolerance and reveal As-PC exudation as a new potential mechanism contributing to active arsenic efflux in plants. Overall, this study uncovers insight into rhizosphere arsenic detoxification with potential to help mitigate pollution and reduce arsenic accumulation in crops.

PMID:38864852 | DOI:10.1093/jxb/erae272

Categories: Literature Watch

Genomic and phenotypic studies among <em>Clostridioides difficile</em> isolates show a high prevalence of clade 2 and great diversity in clinical isolates from Mexican adults and children with healthcare-associated diarrhea

Wed, 2024-06-12 06:00

Microbiol Spectr. 2024 Jun 12:e0394723. doi: 10.1128/spectrum.03947-23. Online ahead of print.

ABSTRACT

Clostridioides difficile (C. difficile) is widely distributed in the intestinal tract of humans, animals, and in the environment. It is the most common cause of diarrhea associated with the use of antimicrobials in humans and among the most common healthcare-associated infections worldwide. Its pathogenesis is mainly due to the production of toxin A (TcdA), toxin B (TcdB), and a binary toxin (CDT), whose genetic variants may be associated with disease severity. We studied genetic diversity in 39 C. difficile isolates from adults and children attended at two Mexican hospitals, using different gene and genome typing methods and investigated their association with in vitro expression of toxins. Whole-genome sequencing in 39 toxigenic C. difficile isolates were used for multilocus sequence typing, tcdA, and tcdB typing sequence type, and phylogenetic analysis. Strains were grown in broth media, and expression of toxin genes was measured by real-time PCR and cytotoxicity in cell-culture assays. Clustering of strains by genome-wide phylogeny matched clade classification, forming different subclusters within each clade. The toxin profile tcdA+/tcdB+/cdt+ and clade 2/ST1 were the most prevalent among isolates from children and adults. Isolates presented two TcdA and three TcdB subtypes, of which TcdA2 and TcdB2 were more prevalent. Prevalent clades and toxin subtypes in strains from children differed from those in adult strains. Toxin gene expression or cytotoxicity was not associated with genotyping or toxin subtypes. In conclusion, genomic and phenotypic analysis shows high diversity among C. difficile isolates from patients with healthcare-associated diarrhea.

IMPORTANCE: Clostridioides difficile is a toxin-producing bacterial pathogen recognized as the most common cause of diarrhea acquired primarily in healthcare settings. This bacterial species is diverse; its global population has been divided into five different clades using multilocus sequence typing, and strains may express different toxin subtypes that may be related to the clades and, importantly, to the severity and progression of disease. Genotyping of children strains differed from adults suggesting toxins might present a reduced toxicity. We studied extensively cytotoxicity, expression of toxins, whole genome phylogeny, and toxin typing in clinical C. difficile isolates. Most isolates presented a tcdA+/ tcdB+/cdt+ pattern, with high diversity in cytotoxicity and clade 2/ST1 was the most prevalent. However, they all had the same TcdA2/TcdB2 toxin subtype. Advances in genomics and bioinformatics tools offer the opportunity to understand the virulence of C. difficile better and find markers for better clinical use.

PMID:38864670 | DOI:10.1128/spectrum.03947-23

Categories: Literature Watch

Targeted proteomics involved in cardiovascular health and heart rate variability in children with overweight/obesity

Wed, 2024-06-12 06:00

Am J Hum Biol. 2024 Jun 12:e24113. doi: 10.1002/ajhb.24113. Online ahead of print.

ABSTRACT

BACKGROUND: Children with overweight/obesity often exhibit alterations in their plasma protein profiles and reduced heart rate variability (HRV). Plasma proteomics is at the forefront of identifying biomarkers for various clinical conditions. We aimed to examine the association between plasma-targeted proteomics involved in cardiovascular health and resting vagal-related HRV parameters in children with overweight/obesity.

METHODS: Forty-four children with overweight/obesity (10.2 ± 1.1 years old; 52% boys) participated in the study. Olink's technology was used to quantify 92 proteins involved in cardiovascular health. HRV was measured using a heart rate monitor (Polar RS800CX). Four resting vagal-related HRV parameters were derived in time- and frequency-domain.

RESULTS: Eight proteins (KIM1, IgG Fc receptor II-b, IDUA, BOC, IL1RL2, TNFRSF11A, VSIG2, and TF) were associated with at least one out of the four vagal-related HRV parameters (β values ranging from -0.188 to 0.288; all p < .05), while KIM1, IDUA, and BOC associated with ≥ three vagal-related HRV parameters. Multiple hypothesis testing corrections did not reach statistical significance (false discovery rate [FDR >0.05]).

CONCLUSION: Plasma-targeted proteomics suggested novel biomarkers for resting vagal-related HRV parameters in children with overweight/obesity. Future studies using larger cohorts and longitudinal designs should confirm our findings and their potential clinical implications.

PMID:38864311 | DOI:10.1002/ajhb.24113

Categories: Literature Watch

Confinement promotes nematic alignment of spindle-shaped cells during Drosophila embryogenesis

Wed, 2024-06-12 06:00

Development. 2024 Jun 12:dev.202577. doi: 10.1242/dev.202577. Online ahead of print.

ABSTRACT

Tissue morphogenesis is often controlled by actomyosin networks pulling on adherens junctions (AJs), but junctional myosin levels vary. At an extreme, the Drosophila embryo amnioserosa forms a horseshoe-shaped strip of aligned, spindle-shaped cells lacking junctional myosin. What are the bases of amnioserosal cell interactions and alignment? Compared with surrounding tissue, we find that amnioserosal AJ continuity has lesser dependence on α-catenin, the mediator of AJ-actomyosin association, and greater dependence on Bazooka/Par-3, a junction-associated scaffold protein. Microtubule bundles also run along amnioserosal AJs and support their long-range curvilinearity. Amnioserosal confinement is apparent from partial overlap of its spindle-shaped cells, its outward bulging from surrounding tissue, and compressive stress detected within the amnioserosa. Genetic manipulations that alter amnioserosal confinement by surrounding tissue also result in amnioserosal cells losing alignment and gaining topological defects characteristic of nematically ordered systems. With Bazooka depletion, confinement by surrounding tissue appears relatively normal and amnioserosal cells align despite their AJ fragmentation. Overall, the fully elongated amnioserosa seems to form through tissue-autonomous generation of spindle-shaped cells which nematically align in response to confinement by surrounding tissue.

PMID:38864272 | DOI:10.1242/dev.202577

Categories: Literature Watch

Establishing an optimized ATAC-seq protocol for the maize

Wed, 2024-06-12 06:00

Front Plant Sci. 2024 May 28;15:1370618. doi: 10.3389/fpls.2024.1370618. eCollection 2024.

ABSTRACT

The advent of next-generation sequencing in crop improvement offers unprecedented insights into the chromatin landscape closely linked to gene activity governing key traits in plant development and adaptation. Particularly in maize, its dynamic chromatin structure is found to collaborate with massive transcriptional variations across tissues and developmental stages, implying intricate regulatory mechanisms, which highlights the importance of integrating chromatin information into breeding strategies for precise gene controls. The depiction of maize chromatin architecture using Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq) provides great opportunities to investigate cis-regulatory elements, which is crucial for crop improvement. In this context, we developed an easy-to-implement ATAC-seq protocol for maize with fewer nuclei and simple equipment. We demonstrate a streamlined ATAC-seq protocol with four key steps for maize in which nuclei purification can be achieved without cell sorting and using only a standard bench-top centrifuge. Our protocol, coupled with the bioinformatic analysis, including validation by read length periodicity, key metrics, and correlation with transcript abundance, provides a precise and efficient assessment of the maize chromatin landscape. Beyond its application to maize, our testing design holds the potential to be applied to other crops or other tissues, especially for those with limited size and amount, establishing a robust foundation for chromatin structure studies in diverse crop species.

PMID:38863553 | PMC:PMC11165127 | DOI:10.3389/fpls.2024.1370618

Categories: Literature Watch

Harmonic Imaging of Stem Cells in Whole Blood at GHz Pixel Rate

Wed, 2024-06-12 06:00

Small. 2024 Jun 11:e2401472. doi: 10.1002/smll.202401472. Online ahead of print.

ABSTRACT

The pre-clinical validation of cell therapies requires monitoring the biodistribution of transplanted cells in tissues of host organisms. Real-time detection of these cells in the circulatory system and identification of their aggregation state is a crucial piece of information, but necessitates deep penetration and fast imaging with high selectivity, subcellular resolution, and high throughput. In this study, multiphoton-based in-flow detection of human stem cells in whole, unfiltered blood is demonstrated in a microfluidic channel. The approach relies on a multiphoton microscope with diffractive scanning in the direction perpendicular to the flow via a rapidly wavelength-swept laser. Stem cells are labeled with metal oxide harmonic nanoparticles. Thanks to their strong and quasi-instantaneous second harmonic generation (SHG), an imaging rate in excess of 10 000 frames per second is achieved with pixel dwell times of 1 ns, a duration shorter than typical fluorescence lifetimes yet compatible with SHG. Through automated cell identification and segmentation, morphological features of each individual detected event are extracted and cell aggregates are distinguished from isolated cells. This combination of high-speed multiphoton microscopy and high-sensitivity SHG nanoparticle labeling in turbid media promises the detection of rare cells in the bloodstream for assessing novel cell-based therapies.

PMID:38863131 | DOI:10.1002/smll.202401472

Categories: Literature Watch

The glutathione S-transferase Gstt1 drives survival and dissemination in metastases

Tue, 2024-06-11 06:00

Nat Cell Biol. 2024 Jun 11. doi: 10.1038/s41556-024-01426-7. Online ahead of print.

ABSTRACT

Identifying the adaptive mechanisms of metastatic cancer cells remains an elusive question in the treatment of metastatic disease, particularly in pancreatic cancer (pancreatic adenocarcinoma, PDA). A loss-of-function shRNA targeted screen in metastatic-derived cells identified Gstt1, a member of the glutathione S-transferase superfamily, as uniquely required for dissemination and metastasis, but dispensable for primary tumour growth. Gstt1 is expressed in latent disseminated tumour cells (DTCs), is retained within a subpopulation of slow-cycling cells within existing metastases, and its inhibition leads to complete regression of macrometastatic tumours. This distinct Gstt1high population is highly metastatic and retains slow-cycling phenotypes, epithelial-mesenchymal transition features and DTC characteristics compared to the Gstt1low population. Mechanistic studies indicate that in this subset of cancer cells, Gstt1 maintains metastases by binding and glutathione-modifying intracellular fibronectin, in turn promoting its secretion and deposition into the metastatic microenvironment. We identified Gstt1 as a mediator of metastasis, highlighting the importance of heterogeneity and its influence on the metastatic tumour microenvironment.

PMID:38862786 | DOI:10.1038/s41556-024-01426-7

Categories: Literature Watch

Transcriptomics analysis reveals molecular alterations underpinning spaceflight dermatology

Tue, 2024-06-11 06:00

Commun Med (Lond). 2024 Jun 11;4(1):106. doi: 10.1038/s43856-024-00532-9.

ABSTRACT

BACKGROUND: Spaceflight poses a unique set of challenges to humans and the hostile spaceflight environment can induce a wide range of increased health risks, including dermatological issues. The biology driving the frequency of skin issues in astronauts is currently not well understood.

METHODS: To address this issue, we used a systems biology approach utilizing NASA's Open Science Data Repository (OSDR) on space flown murine transcriptomic datasets focused on the skin, biochemical profiles of 50 NASA astronauts and human transcriptomic datasets generated from blood and hair samples of JAXA astronauts, as well as blood samples obtained from the NASA Twins Study, and skin and blood samples from the first civilian commercial mission, Inspiration4.

RESULTS: Key biological changes related to skin health, DNA damage & repair, and mitochondrial dysregulation are identified as potential drivers for skin health risks during spaceflight. Additionally, a machine learning model is utilized to determine gene pairings associated with spaceflight response in the skin. While we identified spaceflight-induced dysregulation, such as alterations in genes associated with skin barrier function and collagen formation, our results also highlight the remarkable ability for organisms to re-adapt back to Earth via post-flight re-tuning of gene expression.

CONCLUSION: Our findings can guide future research on developing countermeasures for mitigating spaceflight-associated skin damage.

PMID:38862781 | DOI:10.1038/s43856-024-00532-9

Categories: Literature Watch

Crowd-sourced benchmarking of single-sample tumor subclonal reconstruction

Tue, 2024-06-11 06:00

Nat Biotechnol. 2024 Jun 11. doi: 10.1038/s41587-024-02250-y. Online ahead of print.

ABSTRACT

Subclonal reconstruction algorithms use bulk DNA sequencing data to quantify parameters of tumor evolution, allowing an assessment of how cancers initiate, progress and respond to selective pressures. We launched the ICGC-TCGA (International Cancer Genome Consortium-The Cancer Genome Atlas) DREAM Somatic Mutation Calling Tumor Heterogeneity and Evolution Challenge to benchmark existing subclonal reconstruction algorithms. This 7-year community effort used cloud computing to benchmark 31 subclonal reconstruction algorithms on 51 simulated tumors. Algorithms were scored on seven independent tasks, leading to 12,061 total runs. Algorithm choice influenced performance substantially more than tumor features but purity-adjusted read depth, copy-number state and read mappability were associated with the performance of most algorithms on most tasks. No single algorithm was a top performer for all seven tasks and existing ensemble strategies were unable to outperform the best individual methods, highlighting a key research need. All containerized methods, evaluation code and datasets are available to support further assessment of the determinants of subclonal reconstruction accuracy and development of improved methods to understand tumor evolution.

PMID:38862616 | DOI:10.1038/s41587-024-02250-y

Categories: Literature Watch

Space radiation damage rescued by inhibition of key spaceflight associated miRNAs

Tue, 2024-06-11 06:00

Nat Commun. 2024 Jun 11;15(1):4825. doi: 10.1038/s41467-024-48920-y.

ABSTRACT

Our previous research revealed a key microRNA signature that is associated with spaceflight that can be used as a biomarker and to develop countermeasure treatments to mitigate the damage caused by space radiation. Here, we expand on this work to determine the biological factors rescued by the countermeasure treatment. We performed RNA-sequencing and transcriptomic analysis on 3D microvessel cell cultures exposed to simulated deep space radiation (0.5 Gy of Galactic Cosmic Radiation) with and without the antagonists to three microRNAs: miR-16-5p, miR-125b-5p, and let-7a-5p (i.e., antagomirs). Significant reduction of inflammation and DNA double strand breaks (DSBs) activity and rescue of mitochondria functions are observed after antagomir treatment. Using data from astronaut participants in the NASA Twin Study, Inspiration4, and JAXA missions, we reveal the genes and pathways implicated in the action of these antagomirs are altered in humans. Our findings indicate a countermeasure strategy that can potentially be utilized by astronauts in spaceflight missions to mitigate space radiation damage.

PMID:38862542 | DOI:10.1038/s41467-024-48920-y

Categories: Literature Watch

Single-cell multi-ome and immune profiles of the Inspiration4 crew reveal conserved, cell-type, and sex-specific responses to spaceflight

Tue, 2024-06-11 06:00

Nat Commun. 2024 Jun 11;15(1):4954. doi: 10.1038/s41467-024-49211-2.

ABSTRACT

Spaceflight induces an immune response in astronauts. To better characterize this effect, we generated single-cell, multi-ome, cell-free RNA (cfRNA), biochemical, and hematology data for the SpaceX Inspiration4 (I4) mission crew. We found that 18 cytokines/chemokines related to inflammation, aging, and muscle homeostasis changed after spaceflight. In I4 single-cell multi-omics data, we identified a "spaceflight signature" of gene expression characterized by enrichment in oxidative phosphorylation, UV response, immune function, and TCF21 pathways. We confirmed the presence of this signature in independent datasets, including the NASA Twins Study, the I4 skin spatial transcriptomics, and 817 NASA GeneLab mouse transcriptomes. Finally, we observed that (1) T cells showed an up-regulation of FOXP3, (2) MHC class I genes exhibited long-term suppression, and (3) infection-related immune pathways were associated with microbiome shifts. In summary, this study reveals conserved and distinct immune disruptions occurring and details a roadmap for potential countermeasures to preserve astronaut health.

PMID:38862516 | DOI:10.1038/s41467-024-49211-2

Categories: Literature Watch

Collection of biospecimens from the inspiration4 mission establishes the standards for the space omics and medical atlas (SOMA)

Tue, 2024-06-11 06:00

Nat Commun. 2024 Jun 11;15(1):4964. doi: 10.1038/s41467-024-48806-z.

ABSTRACT

The SpaceX Inspiration4 mission provided a unique opportunity to study the impact of spaceflight on the human body. Biospecimen samples were collected from four crew members longitudinally before (Launch: L-92, L-44, L-3 days), during (Flight Day: FD1, FD2, FD3), and after (Return: R + 1, R + 45, R + 82, R + 194 days) spaceflight, spanning a total of 289 days across 2021-2022. The collection process included venous whole blood, capillary dried blood spot cards, saliva, urine, stool, body swabs, capsule swabs, SpaceX Dragon capsule HEPA filter, and skin biopsies. Venous whole blood was further processed to obtain aliquots of serum, plasma, extracellular vesicles and particles, and peripheral blood mononuclear cells. In total, 2,911 sample aliquots were shipped to our central lab at Weill Cornell Medicine for downstream assays and biobanking. This paper provides an overview of the extensive biospecimen collection and highlights their processing procedures and long-term biobanking techniques, facilitating future molecular tests and evaluations.As such, this study details a robust framework for obtaining and preserving high-quality human, microbial, and environmental samples for aerospace medicine in the Space Omics and Medical Atlas (SOMA) initiative, which can aid future human spaceflight and space biology experiments.

PMID:38862509 | DOI:10.1038/s41467-024-48806-z

Categories: Literature Watch

Spatial multi-omics of human skin reveals KRAS and inflammatory responses to spaceflight

Tue, 2024-06-11 06:00

Nat Commun. 2024 Jun 11;15(1):4773. doi: 10.1038/s41467-024-48625-2.

ABSTRACT

Spaceflight can change metabolic, immunological, and biological homeostasis and cause skin rashes and irritation, yet the molecular basis remains unclear. To investigate the impact of short-duration spaceflight on the skin, we conducted skin biopsies on the Inspiration4 crew members before (L-44) and after (R + 1) flight. Leveraging multi-omics assays including GeoMx™ Digital Spatial Profiler, single-cell RNA/ATAC-seq, and metagenomics/metatranscriptomics, we assessed spatial gene expressions and associated microbial and immune changes across 95 skin regions in four compartments: outer epidermis, inner epidermis, outer dermis, and vasculature. Post-flight samples showed significant up-regulation of genes related to inflammation and KRAS signaling across all skin regions. These spaceflight-associated changes mapped to specific cellular responses, including altered interferon responses, DNA damage, epithelial barrier disruptions, T-cell migration, and hindered regeneration were located primarily in outer tissue compartments. We also linked epithelial disruption to microbial shifts in skin swab and immune cell activity to PBMC single-cell data from the same crew and timepoints. Our findings present the inaugural collection and examination of astronaut skin, offering insights for future space missions and response countermeasures.

PMID:38862494 | DOI:10.1038/s41467-024-48625-2

Categories: Literature Watch

Cosmic kidney disease: an integrated pan-omic, physiological and morphological study into spaceflight-induced renal dysfunction

Tue, 2024-06-11 06:00

Nat Commun. 2024 Jun 11;15(1):4923. doi: 10.1038/s41467-024-49212-1.

ABSTRACT

Missions into Deep Space are planned this decade. Yet the health consequences of exposure to microgravity and galactic cosmic radiation (GCR) over years-long missions on indispensable visceral organs such as the kidney are largely unexplored. We performed biomolecular (epigenomic, transcriptomic, proteomic, epiproteomic, metabolomic, metagenomic), clinical chemistry (electrolytes, endocrinology, biochemistry) and morphometry (histology, 3D imaging, miRNA-ISH, tissue weights) analyses using samples and datasets available from 11 spaceflight-exposed mouse and 5 human, 1 simulated microgravity rat and 4 simulated GCR-exposed mouse missions. We found that spaceflight induces: 1) renal transporter dephosphorylation which may indicate astronauts' increased risk of nephrolithiasis is in part a primary renal phenomenon rather than solely a secondary consequence of bone loss; 2) remodelling of the nephron that results in expansion of distal convoluted tubule size but loss of overall tubule density; 3) renal damage and dysfunction when exposed to a Mars roundtrip dose-equivalent of simulated GCR.

PMID:38862484 | DOI:10.1038/s41467-024-49212-1

Categories: Literature Watch

Pages