Systems Biology

Genetic Analysis of the ts-Lethal Mutant <em>Δpa0665</em>/<em>pTS-pa0665</em> Reveals Its Role in Cell Morphology and Oxidative Phosphorylation in <em>Pseudomonas aeruginosa</em>

Sat, 2024-05-25 06:00

Genes (Basel). 2024 May 7;15(5):590. doi: 10.3390/genes15050590.

ABSTRACT

Pa0665 in Pseudomonas aeruginosa shares homologous sequences with that of the essential A-type iron-sulfur (Fe-S) cluster insertion protein ErpA in Escherichia coli. However, its essentiality in P. aeruginosa and its complementation with E. coli erpA has not been experimentally examined. To fulfill this task, we constructed plasmid-based ts-mutant Δpa0665/pTS-pa0665 using a three-step protocol. The mutant displayed growth defects at 42 °C, which were complemented by expressing ec.erpA. Microscopic observations indicated a petite cell phenotype for Δpa0665/pTS-pa0665 at 42 °C, correlated with the downregulation of the oprG gene. RNA sequencing revealed significant transcriptional changes in genes associated with the oxidative phosphorylation (OXPHOS) system, aligning with reduced ATP levels in Δpa0665/pTS-pa0665 under 42 °C. Additionally, the ts-mutant showed heightened sensitivity to H2O2 at 42 °C. Overall, our study demonstrates the essential role of pa0665 for OXPHOS function and is complemented by ec.erpA. We propose that the plasmid-based ts-allele is useful for genetic analysis of essential genes of interest in P. aeruginosa.

PMID:38790219 | DOI:10.3390/genes15050590

Categories: Literature Watch

Comprehensive Bioinformatic Investigation of TP53 Dysregulation in Diverse Cancer Landscapes

Sat, 2024-05-25 06:00

Genes (Basel). 2024 Apr 30;15(5):577. doi: 10.3390/genes15050577.

ABSTRACT

P53 overexpression plays a critical role in cancer pathogenesis by disrupting the intricate regulation of cellular proliferation. Despite its firmly established function as a tumor suppressor, elevated p53 levels can paradoxically contribute to tumorigenesis, influenced by factors such as exposure to carcinogens, genetic mutations, and viral infections. This phenomenon is observed across a spectrum of cancer types, including bladder (BLCA), ovarian (OV), cervical (CESC), cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), diffuse large B-cell lymphoma (DLBC), esophageal carcinoma (ESCA), head and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and uterine corpus endometrial carcinoma (UCEC). This broad spectrum of cancers is often associated with increased aggressiveness and recurrence risk. Effective therapeutic strategies targeting tumors with p53 overexpression require a comprehensive approach, integrating targeted interventions aimed at the p53 gene with conventional modalities such as chemotherapy, radiation therapy, and targeted drugs. In this extensive study, we present a detailed analysis shedding light on the multifaceted role of TP53 across various cancers, with a specific emphasis on its impact on disease-free survival (DFS). Leveraging data from the TCGA database and the GTEx dataset, along with GEPIA, UALCAN, and STRING, we identify TP53 overexpression as a significant prognostic indicator, notably pronounced in prostate adenocarcinoma (PRAD). Supported by compelling statistical significance (p < 0.05), our analysis reveals the distinct influence of TP53 overexpression on DFS outcomes in PRAD. Additionally, graphical representations of overall survival (OS) underscore the notable disparity in OS duration between tumors exhibiting elevated TP53 expression (depicted by the red line) and those with lower TP53 levels (indicated by the blue line). The hazard ratio (HR) further emphasizes the profound impact of TP53 on overall survival. Moreover, our investigation delves into the intricate TP53 protein network, unveiling genes exhibiting robust positive correlations with TP53 expression across 13 out of 27 cancers. Remarkably, negative correlations emerge with pivotal tumor suppressor genes. This network analysis elucidates critical proteins, including SIRT1, CBP, p300, ATM, DAXX, HSP 90-alpha, Mdm2, RPA70, 14-3-3 protein sigma, p53, and ASPP2, pivotal in regulating cell cycle dynamics, DNA damage response, and transcriptional regulation. Our study underscores the paramount importance of deciphering TP53 dynamics in cancer, providing invaluable insights into tumor behavior, disease-free survival, and potential therapeutic avenues.

PMID:38790205 | DOI:10.3390/genes15050577

Categories: Literature Watch

Sarcopenia as a Risk Factor for Alzheimer's Disease: Genetic and Epigenetic Perspectives

Sat, 2024-05-25 06:00

Genes (Basel). 2024 Apr 27;15(5):561. doi: 10.3390/genes15050561.

ABSTRACT

Sarcopenia, defined as the age-associated loss of muscle mass and increased fragility with age, is increasing worldwide. The condition often precedes the development of Alzheimer's disease, thereby decreasing the levels of mobility and physical activity in those affected. Indeed, the loss of muscle mass has, in some studies, been associated with an increased risk of Alzheimer's disease and other dementias. However, a detailed understanding of the interplay between both conditions is not available and needs to be thoroughly addressed. In the following review, we focus on several genes, specifically APOE, BDNF, ACE, FTO, and FNDC5, that have been associated with both conditions. We also discuss the epigenetic regulation of each of these genes along with non-coding RNAs (ncRNAs) that may have a role in the development of both the sarcopenic and Alzheimer's disease phenotypes. Finally, we assert that the application of systems biology will unravel the relationship between sarcopenia and Alzheimer's disease and believe that the prevention of muscle loss in older age will reduce the incidence of debilitating cognitive decline.

PMID:38790190 | DOI:10.3390/genes15050561

Categories: Literature Watch

Effect of genomic and cellular environments on gene expression noise

Fri, 2024-05-24 06:00

Genome Biol. 2024 May 24;25(1):137. doi: 10.1186/s13059-024-03277-9.

ABSTRACT

BACKGROUND: Individual cells from isogenic populations often display large cell-to-cell differences in gene expression. This "noise" in expression derives from several sources, including the genomic and cellular environment in which a gene resides. Large-scale maps of genomic environments have revealed the effects of epigenetic modifications and transcription factor occupancy on mean expression levels, but leveraging such maps to explain expression noise will require new methods to assay how expression noise changes at locations across the genome.

RESULTS: To address this gap, we present Single-cell Analysis of Reporter Gene Expression Noise and Transcriptome (SARGENT), a method that simultaneously measures the noisiness of reporter genes integrated throughout the genome and the global mRNA profiles of individual reporter-gene-containing cells. Using SARGENT, we perform the first comprehensive genome-wide survey of how genomic locations impact gene expression noise. We find that the mean and noise of expression correlate with different histone modifications. We quantify the intrinsic and extrinsic components of reporter gene noise and, using the associated mRNA profiles, assign the extrinsic component to differences between the CD24+ "stem-like" substate and the more "differentiated" substate. SARGENT also reveals the effects of transgene integrations on endogenous gene expression, which will help guide the search for "safe-harbor" loci.

CONCLUSIONS: Taken together, we show that SARGENT is a powerful tool to measure both the mean and noise of gene expression at locations across the genome and that the data generatd by SARGENT reveals important insights into the regulation of gene expression noise genome-wide.

PMID:38790076 | DOI:10.1186/s13059-024-03277-9

Categories: Literature Watch

Exploring the landscape of symbiotic diversity and distribution in unicellular ciliated protists

Fri, 2024-05-24 06:00

Microbiome. 2024 May 24;12(1):96. doi: 10.1186/s40168-024-01809-w.

ABSTRACT

BACKGROUND: The eukaryotic-bacterial symbiotic system plays an important role in various physiological, developmental, and evolutionary processes. However, our current understanding is largely limited to multicellular eukaryotes without adequate consideration of diverse unicellular protists, including ciliates.

RESULTS: To investigate the bacterial profiles associated with unicellular organisms, we collected 246 ciliate samples spanning the entire Ciliophora phylum and conducted single-cell based metagenome sequencing. This effort has yielded the most extensive collection of bacteria linked to unicellular protists to date. From this dataset, we identified 883 bacterial species capable of cohabiting with ciliates, unveiling the genomes of 116 novel bacterial cohabitants along with 7 novel archaeal cohabitants. Highlighting the intimate relationship between ciliates and their cohabitants, our study unveiled that over 90% of ciliates coexist with bacteria, with individual hosts fostering symbiotic relationships with multiple bacteria concurrently, resulting in the observation of seven distinct symbiotic patterns among bacteria. Our exploration of symbiotic mechanisms revealed the impact of host digestion on the intracellular diversity of cohabitants. Additionally, we identified the presence of eukaryotic-like proteins in bacteria as a potential contributing factor to their resistance against host digestion, thereby expanding their potential host range.

CONCLUSIONS: As the first large-scale analysis of prokaryotic associations with ciliate protists, this study provides a valuable resource for future research on eukaryotic-bacterial symbioses. Video Abstract.

PMID:38790063 | DOI:10.1186/s40168-024-01809-w

Categories: Literature Watch

Tumor necrosis factor-inducible gene 6 protein and its derived peptide ameliorate liver fibrosis by repressing CD44 activation in mice with alcohol-related liver disease

Fri, 2024-05-24 06:00

J Biomed Sci. 2024 May 24;31(1):54. doi: 10.1186/s12929-024-01042-5.

ABSTRACT

BACKGROUND: Alcohol-related liver disease (ALD) is a major health concern worldwide, but effective therapeutics for ALD are still lacking. Tumor necrosis factor-inducible gene 6 protein (TSG-6), a cytokine released from mesenchymal stem cells, was shown to reduce liver fibrosis and promote successful liver repair in mice with chronically damaged livers. However, the effect of TSG-6 and the mechanism underlying its activity in ALD remain poorly understood.

METHODS: To investigate its function in ALD mice with fibrosis, male mice chronically fed an ethanol (EtOH)-containing diet for 9 weeks were treated with TSG-6 (EtOH + TSG-6) or PBS (EtOH + Veh) for an additional 3 weeks.

RESULTS: Severe hepatic injury in EtOH-treated mice was markedly decreased in TSG-6-treated mice fed EtOH. The EtOH + TSG-6 group had less fibrosis than the EtOH + Veh group. Activation of cluster of differentiation 44 (CD44) was reported to promote HSC activation. CD44 and nuclear CD44 intracellular domain (ICD), a CD44 activator which were upregulated in activated HSCs and ALD mice were significantly downregulated in TSG-6-exposed mice fed EtOH. TSG-6 interacted directly with the catalytic site of MMP14, a proteolytic enzyme that cleaves CD44, inhibited CD44 cleavage to CD44ICD, and reduced HSC activation and liver fibrosis in ALD mice. In addition, a novel peptide designed to include a region that binds to the catalytic site of MMP14 suppressed CD44 activation and attenuated alcohol-induced liver injury, including fibrosis, in mice.

CONCLUSIONS: These results demonstrate that TSG-6 attenuates alcohol-induced liver damage and fibrosis by blocking CD44 cleavage to CD44ICD and suggest that TSG-6 and TSG-6-mimicking peptide could be used as therapeutics for ALD with fibrosis.

PMID:38790021 | DOI:10.1186/s12929-024-01042-5

Categories: Literature Watch

A scheme to underpin key mediator(s) in Salinosporamide(s) against pan-tumor via systems biology concept

Fri, 2024-05-24 06:00

J Transl Med. 2024 May 24;22(1):492. doi: 10.1186/s12967-024-05299-0.

NO ABSTRACT

PMID:38789990 | DOI:10.1186/s12967-024-05299-0

Categories: Literature Watch

Rosace: a robust deep mutational scanning analysis framework employing position and mean-variance shrinkage

Fri, 2024-05-24 06:00

Genome Biol. 2024 May 24;25(1):138. doi: 10.1186/s13059-024-03279-7.

ABSTRACT

Deep mutational scanning (DMS) measures the effects of thousands of genetic variants in a protein simultaneously. The small sample size renders classical statistical methods ineffective. For example, p-values cannot be correctly calibrated when treating variants independently. We propose Rosace, a Bayesian framework for analyzing growth-based DMS data. Rosace leverages amino acid position information to increase power and control the false discovery rate by sharing information across parameters via shrinkage. We also developed Rosette for simulating the distributional properties of DMS. We show that Rosace is robust to the violation of model assumptions and is more powerful than existing tools.

PMID:38789982 | DOI:10.1186/s13059-024-03279-7

Categories: Literature Watch

Maboss for HPC environments: implementations of the continuous time Boolean model simulator for large CPU clusters and GPU accelerators

Fri, 2024-05-24 06:00

BMC Bioinformatics. 2024 May 24;25(1):199. doi: 10.1186/s12859-024-05815-5.

ABSTRACT

BACKGROUND: Computational models in systems biology are becoming more important with the advancement of experimental techniques to query the mechanistic details responsible for leading to phenotypes of interest. In particular, Boolean models are well fit to describe the complexity of signaling networks while being simple enough to scale to a very large number of components. With the advance of Boolean model inference techniques, the field is transforming from an artisanal way of building models of moderate size to a more automatized one, leading to very large models. In this context, adapting the simulation software for such increases in complexity is crucial.

RESULTS: We present two new developments in the continuous time Boolean simulators: MaBoSS.MPI, a parallel implementation of MaBoSS which can exploit the computational power of very large CPU clusters, and MaBoSS.GPU, which can use GPU accelerators to perform these simulations.

CONCLUSION: These implementations enable simulation and exploration of the behavior of very large models, thus becoming a valuable analysis tool for the systems biology community.

PMID:38789933 | DOI:10.1186/s12859-024-05815-5

Categories: Literature Watch

MKI67 with arterial hypertension predict a poor survival for prostate cancer patients, a real-life investigation

Fri, 2024-05-24 06:00

Clin Transl Oncol. 2024 May 24. doi: 10.1007/s12094-024-03505-5. Online ahead of print.

ABSTRACT

INTRODUCTION: Prostate cancer is a common urology malignant in males, ranking second globally. The disease is especially severe when diagnosed alongside hypertension. MKI67 is an established marker of neoplastic cell proliferation in humans, but the significance of its prognostic value in patients with prostate cancer and hypertension requires further research.

METHODS: In this retrospective analysis, we evaluated 296 hypertensive prostate cancer patients between March 2, 2012, and November 1, 2015. We used Cox regression models and prediction analysis to assess overall survival. Furthermore, we created a nomogram and verified its accuracy using a calibration curve.

RESULTS: Of all participants, 101 (34.12%) died. Our multi-factor analysis revealed that MKI67 expression was associated with an increased hazard ratio of death (> fivefold) (Hazard Ratio 5.829, 95% CI 3.349-10.138, p value < 0.01) and progression (twofold) (HR 2.059, 95% CI 1.368-3.102, p value < 0.01). Our Lasso analysis model displayed that several factors, including heart failure, smoking, ACS, serum albumin, Gealson score, prognostic nutritional index, MKI67 expression, surgery, and stage were high risks of prostate cancer. To ensure each covariate's contribution to cancer prognosis, we created a Cox model nomogram, which accurately predicted the risk of death (C-statistic of 0.8289) and had a proper calibration plot for risk assessment.

CONCLUSION: MKI67 expression predicts poor outcomes for overall mortality in prostate cancer and hypertension patients. Additionally, our cross-validated multivariate score, which includes MKI67, demonstrated accuracy efficacy of predicting prognosis.

PMID:38789889 | DOI:10.1007/s12094-024-03505-5

Categories: Literature Watch

Comparison of the transcriptome, lipidome, and c-di-GMP production between BCGΔBCG1419c and BCG, with Mincle- and Myd88-dependent induction of proinflammatory cytokines in murine macrophages

Fri, 2024-05-24 06:00

Sci Rep. 2024 May 24;14(1):11898. doi: 10.1038/s41598-024-61815-8.

ABSTRACT

We have previously reported the transcriptomic and lipidomic profile of the first-generation, hygromycin-resistant (HygR) version of the BCGΔBCG1419c vaccine candidate, under biofilm conditions. We recently constructed and characterized the efficacy, safety, whole genome sequence, and proteomic profile of a second-generation version of BCGΔBCG1419c, a strain lacking the BCG1419c gene and devoid of antibiotic markers. Here, we compared the antibiotic-less BCGΔBCG1419c with BCG. We assessed their colonial and ultrastructural morphology, biofilm, c-di-GMP production in vitro, as well as their transcriptomic and lipidomic profiles, including their capacity to activate macrophages via Mincle and Myd88. Our results show that BCGΔBCG1419c colonial and ultrastructural morphology, c-di-GMP, and biofilm production differed from parental BCG, whereas we found no significant changes in its lipidomic profile either in biofilm or planktonic growth conditions. Transcriptomic profiling suggests changes in BCGΔBCG1419c cell wall and showed reduced transcription of some members of the DosR, MtrA, and ArgR regulons. Finally, induction of TNF-α, IL-6 or G-CSF by bone-marrow derived macrophages infected with either BCGΔBCG1419c or BCG required Mincle and Myd88. Our results confirm that some differences already found to occur in HygR BCGΔBCG1419c compared with BCG are maintained in the antibiotic-less version of this vaccine candidate except changes in production of PDIM. Comparison with previous characterizations conducted by OMICs show that some differences observed in BCGΔBCG1419c compared with BCG are maintained whereas others are dependent on the growth condition employed to culture them.

PMID:38789479 | DOI:10.1038/s41598-024-61815-8

Categories: Literature Watch

Functional antibody responses targeting the Spike protein of SARS-CoV-2 Omicron XBB.1.5 in elderly nursing home residents following Wuhan-Hu-1-based mRNA booster vaccination

Fri, 2024-05-24 06:00

Sci Rep. 2024 May 24;14(1):11896. doi: 10.1038/s41598-024-62874-7.

ABSTRACT

The immune effector mechanisms involved in protecting against severe COVID-19 infection in elderly nursing home residents following vaccination or natural infection are not well understood. Here, we measured SARS-CoV-2 Spike (S)-directed functional antibody responses, including neutralizing antibodies (NtAb) and antibody Fc-mediated NK cell activity (degranulation and IFNγ production), against the Wuhan-Hu-1, BA.4/5 (for NtAb), and Omicron XBB.1.5 variants in elderly nursing home residents (n = 39; median age, 91 years) before and following a third (pre- and post-3D) and a fourth (pre- and post-4D) mRNA COVID-19 vaccine dose. Both 3D and 4D boosted NtAb levels against both (sub)variants. Likewise, 3D and 4D increased the ability of sera to trigger both LAMP1- and IFNγ-producing NK cells, in particular against XBB.1.5. In contrast to NtAb titres, the frequencies of LAMP1- and IFNγ-producing NK cells activated by antibodies binding to Wuhan-Hu-1 and Omicron XBB.1.5 S were comparable at all testing times. Stronger functional antibody responses were observed in vaccine-experienced participants compared to vaccine-naïve at some testing times. These findings can contribute to identifying a reliable correlate of protection in elderly nursing home residents against severe COVID-19 and inform future vaccine strategies in this population group.

PMID:38789475 | DOI:10.1038/s41598-024-62874-7

Categories: Literature Watch

Environment modulates protein heterogeneity through transcriptional and translational stop codon readthrough

Fri, 2024-05-24 06:00

Nat Commun. 2024 May 24;15(1):4446. doi: 10.1038/s41467-024-48387-x.

ABSTRACT

Stop codon readthrough events give rise to longer proteins, which may alter the protein's function, thereby generating short-lasting phenotypic variability from a single gene. In order to systematically assess the frequency and origin of stop codon readthrough events, we designed a library of reporters. We introduced premature stop codons into mScarlet, which enabled high-throughput quantification of protein synthesis termination errors in E. coli using fluorescent microscopy. We found that under stress conditions, stop codon readthrough may occur at rates as high as 80%, depending on the nucleotide context, suggesting that evolution frequently samples stop codon readthrough events. The analysis of selected reporters by mass spectrometry and RNA-seq showed that not only translation but also transcription errors contribute to stop codon readthrough. The RNA polymerase was more likely to misincorporate a nucleotide at premature stop codons. Proteome-wide detection of stop codon readthrough by mass spectrometry revealed that temperature regulated the expression of cryptic sequences generated by stop codon readthrough in E. coli. Overall, our findings suggest that the environment affects the accuracy of protein production, which increases protein heterogeneity when the organisms need to adapt to new conditions.

PMID:38789441 | DOI:10.1038/s41467-024-48387-x

Categories: Literature Watch

Orange carotenoid proteins: structural understanding of evolution and function

Fri, 2024-05-24 06:00

Trends Biochem Sci. 2024 May 23:S0968-0004(24)00110-5. doi: 10.1016/j.tibs.2024.04.010. Online ahead of print.

ABSTRACT

Cyanobacteria uniquely contain a primitive water-soluble carotenoprotein, the orange carotenoid protein (OCP). Nearly all extant cyanobacterial genomes contain genes for the OCP or its homologs, implying an evolutionary constraint for cyanobacteria to conserve its function. Genes encoding the OCP and its two constituent structural domains, the N-terminal domain, helical carotenoid proteins (HCPs), and its C-terminal domain, are found in the most basal lineages of extant cyanobacteria. These three carotenoproteins exemplify the importance of the protein for carotenoid properties, including protein dynamics, in response to environmental changes in facilitating a photoresponse and energy quenching. Here, we review new structural insights for these carotenoproteins and situate the role of the protein in what is currently understood about their functions.

PMID:38789305 | DOI:10.1016/j.tibs.2024.04.010

Categories: Literature Watch

MousiPLIER: A Mouse Pathway-Level Information Extractor Model

Fri, 2024-05-24 06:00

eNeuro. 2024 May 24:ENEURO.0313-23.2024. doi: 10.1523/ENEURO.0313-23.2024. Online ahead of print.

ABSTRACT

High throughput gene expression profiling measures individual gene expression across conditions. However, genes are regulated in complex networks, not as individual entities, limiting the interpretability of gene expression data. Machine learning models that incorporate prior biological knowledge are a powerful tool to extract meaningful biology from gene expression data. Pathway-level information extractor (PLIER) is an unsupervised machine learning method that defines biological pathways by leveraging the vast amount of published transcriptomic data. PLIER converts gene expression data into known pathway gene sets, termed latent variables (LVs), to substantially reduce data dimensionality and improve interpretability. In the current study, we trained the first mouse PLIER model on 190,111 mouse brain RNA-sequencing samples, the greatest amount of training data ever used by PLIER. We then validated the mousiPLIER approach in a study of microglia and astrocyte gene expression across mouse brain aging. mousiPLIER identified biological pathways that are significantly associated with aging, including one latent variable (LV41) corresponding to striatal signal. To gain further insight into the genes contained in LV41, we performed k-means clustering on the training data to identify studies that respond strongly to LV41. We found that the variable was relevant to striatum and aging across the scientific literature. Finally, we built a web server (http://mousiplier.greenelab.com/) for users to easily explore the learned latent variables. Taken together this study defines mousiPLIER as a method to uncover meaningful biological processes in mouse brain transcriptomic studies.Significance statement RNA-sequencing studies define differential expression of individual genes across conditions. However, genes are regulated in complex networks, not as individual entities. Machine learning models that incorporate biological pathway information are a powerful tool to analyze human gene expression. However, such models are lacking for mouse, despite the vast number of mouse RNA-seq datasets. We trained a mouse pathway-level information extractor model (mousiPLIER) to reduce data dimensionality from over 10,000 genes to 196 'latent variables' that map to known biological pathways. To validate this approach, we applied mousiPLIER to differential expression across mouse brain aging. We identified 26 functional pathways (latent variables) that varied across aging. Finally, we developed a web server to facilitate use of mousiPLIER by the scientific community.

PMID:38789274 | DOI:10.1523/ENEURO.0313-23.2024

Categories: Literature Watch

System biology approaches for drug repurposing

Fri, 2024-05-24 06:00

Prog Mol Biol Transl Sci. 2024;205:221-245. doi: 10.1016/bs.pmbts.2024.03.027. Epub 2024 Apr 4.

ABSTRACT

Drug repurposing, or drug repositioning, refers to the identification of alternative therapeutic applications for established medications that go beyond their initial indications. This strategy has becoming increasingly popular since it has the potential to significantly reduce the overall costs of drug development by around $300 million. System biology methodologies have been employed to facilitate medication repurposing, encompassing computational techniques such as signature matching and network-based strategies. These techniques utilize pre-existing drug-related data types and databases to find prospective repurposed medications that have minimal or acceptable harmful effects on patients. The primary benefit of medication repurposing in comparison to drug development lies in the fact that approved pharmaceuticals have already undergone multiple phases of clinical studies, thereby possessing well-established safety and pharmacokinetic properties. Utilizing system biology methodologies in medication repurposing offers the capacity to expedite the discovery of viable candidates for drug repurposing and offer novel perspectives for structure-based drug design.

PMID:38789180 | DOI:10.1016/bs.pmbts.2024.03.027

Categories: Literature Watch

Development of a multiplex real-time PCR assay for the simultaneous detection of mpox virus and orthopoxvirus infections

Fri, 2024-05-24 06:00

J Virol Methods. 2024 May 22:114957. doi: 10.1016/j.jviromet.2024.114957. Online ahead of print.

ABSTRACT

Since May 2022, the multi-country outbreak of monkeypox (mpox) has raised a great concern worldwide. Early detection of mpox virus infection is recognized as an efficient way to prevent mpox transmission. Mpox specific detection methods reported up to now are based on the SNPs among mpox virus and other orthopoxviruses. We have therefore developed a real-time PCR based mpox detection method targeting mpox virus specific sequences (N3R and B18Rplus). We have also optimized an orthopoxvirus detection system which targets the highly conserved E9L and D6R genes. The mpox and orthopoxvirus real-time PCR assays have a high sensitivity (1 copy/reaction) and specificity. Mpox viral DNA and clinical samples from mpox patients are detected with the mpox detection system. Furthermore, we have established a multiplex real-time PCR detection system allowing simultaneous and efficient detection of mpox and orthopoxvirus infections.

PMID:38788978 | DOI:10.1016/j.jviromet.2024.114957

Categories: Literature Watch

Heterogeneity in Liver Cancer Immune Microenvironment: Emerging Single-Cell and Spatial Perspectives

Fri, 2024-05-24 06:00

Semin Liver Dis. 2024 May 24. doi: 10.1055/s-0044-1787152. Online ahead of print.

ABSTRACT

Primary liver cancer is a solid malignancy with a high mortality rate. The success of immunotherapy has shown great promise in improving patient care and highlights a crucial need to understand the complexity of the liver tumor immune microenvironment (TIME). Recent advances in single-cell and spatial omics technologies, coupled with the development of systems biology approaches, are rapidly transforming the landscape of tumor immunology. Here we review the cellular landscape of liver TIME from single-cell and spatial perspectives. We also discuss the cellular interaction networks within the tumor cell community in regulating immune responses. We further highlight the challenges and opportunities with implications for biomarker discovery, patient stratification, and combination immunotherapies.

PMID:38788780 | DOI:10.1055/s-0044-1787152

Categories: Literature Watch

An evolutionarily conserved mechanism controls reversible amyloids of pyruvate kinase via pH-sensing regions

Fri, 2024-05-24 06:00

Dev Cell. 2024 May 21:S1534-5807(24)00271-5. doi: 10.1016/j.devcel.2024.04.018. Online ahead of print.

ABSTRACT

Amyloids are known as irreversible aggregates associated with neurodegenerative diseases. However, recent evidence shows that a subset of amyloids can form reversibly and fulfill essential cellular functions. Yet, the molecular mechanisms regulating functional amyloids and distinguishing them from pathological aggregates remain unclear. Here, we investigate the conserved principles of amyloid reversibility by studying the essential metabolic enzyme pyruvate kinase (PK) in yeast and human cells. We demonstrate that yeast PK (Cdc19) and human PK (PKM2) form reversible amyloids through a pH-sensitive amyloid core. Stress-induced cytosolic acidification promotes aggregation via protonation of specific glutamate (yeast) or histidine (human) residues within the amyloid core. Mutations mimicking protonation cause constitutive PK aggregation, while non-protonatable PK mutants remain soluble even upon stress. Physiological PK aggregation is coupled to metabolic rewiring and glycolysis arrest, causing severe growth defects when misregulated. Our work thus identifies an evolutionarily conserved, potentially widespread mechanism regulating functional amyloids during stress.

PMID:38788715 | DOI:10.1016/j.devcel.2024.04.018

Categories: Literature Watch

Relationship between cortical brain atrophy, delirium, and long-term cognitive decline in older surgical patients

Fri, 2024-05-24 06:00

Neurobiol Aging. 2024 May 18;140:130-139. doi: 10.1016/j.neurobiolaging.2024.05.008. Online ahead of print.

ABSTRACT

In older patients, delirium after surgery is associated with long-term cognitive decline (LTCD). The neural substrates of this association are unclear. Neurodegenerative changes associated with dementia are possible contributors. We investigated the relationship between brain atrophy rates in Alzheimer's disease (AD) and cognitive aging signature regions from magnetic resonance imaging before and one year after surgery, LTCD assessed by the general cognitive performance (GCP) score over 6 years post-operatively, and delirium in 117 elective surgery patients without dementia (mean age = 76). The annual change in cortical thickness was 0.2(1.7) % (AD-signature p = 0.09) and 0.4(1.7) % (aging-signature p = 0.01). Greater atrophy was associated with LTCD (AD-signature: beta(CI) = 0.24(0.06-0.42) points of GCP/mm of cortical thickness; p < 0.01, aging-signature: beta(CI) = 0.55(0.07-1.03); p = 0.03). Atrophy rates were not significantly different between participants with and without delirium. We found an interaction with delirium severity in the association between atrophy and LTCD (AD-signature: beta(CI) = 0.04(0.00-0.08), p = 0.04; aging-signature: beta(CI) = 0.08(0.03-0.12), p < 0.01). The rate of cortical atrophy and severity of delirium are independent, synergistic factors determining postoperative cognitive decline in the elderly.

PMID:38788524 | DOI:10.1016/j.neurobiolaging.2024.05.008

Categories: Literature Watch

Pages